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Focusing-in on microtubules
Linda A Amos

A good approximation of the atomic structure of a microtubule
has been derived from docking the high-resolution structure of
tubulin, solved by electron crystallography, into lower resolution
maps of whole microtubules. Some structural interactions with
other molecules, including nucleotides, drugs, motor proteins
and microtubule-associated proteins, can now be predicted.
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Abbreviations

EM electron microscopy

GMP-CPP  guanylyl-(a.,B)-methylenediphosphonate
IRR inter-repeat region

MAP MT-associated protein

MT microtubule

PF protofilament

Introduction

Understanding the precise role of microtubules (MTs) as
elements of the infrastructure of the cytoplasm and their
involvement in intracellular transport requires knowledge
of their molecular structure at atomic level. The assembly
of M'Ts from af-tubulin heterodimers (see Figure 1) and
their dynamic behaviour [1] are controlled by a variety of
factors, including an exchangeable nucleotide bound to
B-tubulin and specific M'T-associated proteins (MAPs) that
lower the critical concentration for assembly. Motor pro-
teins carry vesicular and other cargo along their surfaces.
This review considers what recent new structural informa-
tion reveals about these interactions.

Conformation of assembled tubulin

The 2D sheets used in determining the atomic structure of
tubulin [2] contained longitudinal protofilaments (PFs)
equivalent to those in M'Ts and therefore revealed normal
longitudinal interactions. Normal lateral interactions have
recently been established by fitting the PFs into electron
microscopy (EM) maps of both undecorated M'Ts [3°°] and
M'Ts decorated with motor proteins [4°]. The position on the
M'T inside surface (Figure 1) of the binding site for paclitax-
el (Taxol®) was unexpected in view of the rapidity with which
paclitaxel binds to pre-assembled M'T5; Diaz ez al. [5°°] found
it took less than 1 min for paclitaxel to convert M'Ts with
approximately 14 PFs into mainly 12-PF structures.

Although tubulin heterodimers assemble 7z vitro so that
lateral contacts between adjacent PFs are mainly between
pairs of like subunits, most of the resulting MTs also have
one line of connections, the so-called ‘seam’, where

o-tubulin monomers in one PF contact B-tubulin
monomers in the next. Paclitaxel may enter the M'T" lumen
because the ‘seam’ opens up periodically [5°°], but it is
more likely that it simply enters via gaps between PF
bonds (see Figure 1). Even if individual lateral bonds are
weak, a long row of them should be difficult to disrupt.
Also, analysis of electron cryomicroscopy (cryo-EM)
images [6] has shown that lateral bonds are stiff enough to
conserve the helical lattice during large-scale deforma-
tions. This would not be true if there were slippage along
a weak seam.

The 7n vitro preference for lateral associations among like
subunits is reduced in some buffer conditions. Very high
NaCl concentrations not only encourage assembly of 10-PF
M'Ts, but also introduce more ‘seams’ [7], making M'Ts with
mixed lateral contacts. /7 vivo, other factors, such as specif-
ic MAPs, may influence the lateral contacts and native M'T’
lattices may vary according to the circumstances.

Nogales er al. [3°°] established that helix H3 of the N-ter-
minal G'T'Pase domain of one tubulin subunit contacts the
‘M-loop’ of the smaller globular domain of an adjacent sub-
unit. Paclitaxel binds to B-tubulin near the M-loop and may
exert some of its stabilising effect through the lateral con-
tacts. o- lubulin seems to be permanently stabilised by an
extended loop (S9-S10) that occupies a pocket equivalent
to the paclitaxel-binding site in B-tubulin. It is intriguing
that the effect of paclitaxel bound to the smaller globular
domain of B-tubulin is similar to the effect of the presence
of unhydrolysed nucleotide in a site at the top of the
N-terminal domain. Both produce the same small increase
in the spacing of subunits along tubulin PFs [5°°]. GTP
bound to a-tubulin is trapped in the middle of the het-
erodimer and is never hydrolysed; the exchangeable site on
B-tubulin is exposed and G'TP that binds there is hydrol-
ysed to GDP during assembly. Hydrolysis is thought to be
triggered upon the addition of a new heterodimer [8°], by
contact with its 'T'7 loop (see Figure 1) [9]. M'Ts normally
show dynamic instability [1], but those assembled with a
nonhydrolysable analogue, guanylyl-(o,B)-methylene-
diphosphonate (GMP-CPP), are relatively stable.

The state of the nucleotide bound to B-tubulin may be
sensed by any of the surrounding loops. Nogales ¢z a/. [3°°]
suggested that loop 1.3 may control lateral interactions by
affecting the conformation of H3, the helix that follows it.
An alternative suggestion is that the core helices (H7) of
tubulins and their bacterial homologue, FtsZ [9], have a
controlling effect on the conformation of the whole mole-
cule [10°]. H7 contacts both the nucleotide and either the
a-tubulin extended loop or paclitaxel if it is bound to
B-tubulin. This helix may act as a lever, controlling the ori-
entations of the globular domains, as well as of loop T'7 at
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Current models of MT structure at atomic resolution. Tubulin exists as
of-heterodimers, which are oriented in a polar fashion along the
longitudinal PFs from which an MT is made. The 3D structure of
tubulin, from cryo-EM data [2], represented as a ribbon model, is
docked on to low-resolution 3D images of tubulin PFs in the
orientation found to fit best [3*]; the MT surface structure shown is
from [51]. (a) A section through an MT, revealing part of the inside
surface; two views of the atomic structure are shown, from inside the
MT (left) and from one side of a PF (right). (b) A view of the outside
surface of an MT. PFs are oriented with their plus ends towards the top
of the picture. Outside views of the tubulin atomic structure are
docked on to two PFs (left and centre), the atomic structure of kinesin
[52] is superimposed on the third PF (right). The subunit at the top of
each tubulin heterodimer is B-tubulin, with a-tubulin closer to the MT
minus end. ‘M’ labels the ‘M-loops’, which contact helix H3 in the
adjacent PF. At the top of each monomer is a guanine-nucleotide-
binding site; GTP (bound to a-tubulin) and GDP (bound to B-tubulin),
shown as space-filling models, occupy sites in the interfaces between
subunits. Here, each nucleotide is contacted by loop T7 of the next

subunit in the PF. Paclitaxel, also shown as a space-filling molecule,
lies in a pocket on the inside surface of the B-subunit (a). The tubulin
core helix (H7) lies between the GTPase domain and the smaller
globular paclitaxel-binding domain. At the tubulin C termini, the
positions of the last visible residues (0440 and 3437) are indicated by
dark circles; the conformations of the last 8—10 residues are unknown,
but H12 of B-tubulin may extend for a further nine residues under
favourable conditions [63°]. White circles in (b) indicate positions on
the PFs where kinesin and ncd can bind. The kinesin monomer is
shown in the orientation in which it docked best into a cryo-EM map of
the weakly binding ADP-filled state [40°°]. In this orientation, loop L12,
important in sensing the presence of MTs [16°°], is positioned close to
the C terminus of B-tubulin. Loops L8 and L11 are on the far surface of
kinesin, facing helices H11 and H12 of B-tubulin. Kinesin's ‘neck’,
including coiled-coil helix o7, which is essential for processive
movement [16°°,56°°], lies in the same region. Alternative proposed
dockings [42,55¢°,56°] are similar except for a 40—-60° rotation about a
longitudinal axis, putting L12 in direct contact with the PF surface.

the base of the helix. The substoichiometric effect of pacli-
taxel suggests there is cooperativity among tubulin
subunits. Possibly, the line of H7 helices linking succes-
sive nucleotide-binding sites via I'7 loops (Figure 1) forms
a backbone along the PF, so the effect of tilting one core
helix may be transmitted to successive ‘vertebrae’.

A study with an M'I-depolymerising motor [11°°] has
revealed an interesting difference between the effects of
paclitaxel and GMP-CPP; when M'Ts are assembled with
paclitaxel, the products of disassembly are tubulin dimers,
whereas in the presence of GMP-CPP, PFs are not dissoci-

ated, but roll up into spirals. This suggests that the effect
that the state of the nucleotide has on the interdimer con-
tact is not necessarily coupled to conformational changes
associated with the bending/straightening of the PFs.
When normal kinesin or ncd bind strongly to tubulin, the
B-monomer appears tilted compared with its position in
undecorated M'Ts [4°,12]; destabilising motors such as
Kar3 [13] and Kin I kinesins [11°°] may have a similar, but
more pronounced, action.

Studies of 2D sheets of FtsZ PFs [14°] affirm their close
homology to tubulin PFs, except that they consist of
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monomers not heterodimers. The hydrolysis of GTP at the
top of an FtsZ monomer appears to be controlled by con-
tact with the 'T'7 loop at the bottom of the next monomer.
FtsZ PFs even appear to have associated proteins with
some homology to MAPs [15°].

Microtubule-associated proteins

The definition of M'T=associated proteins (MAPs) as ‘pro-
teins that attach to M'Ts iz vivo’ [16°°] encompasses a
steadily growing and very diverse group (e.g.
[17,18,19°,20,21°-23°,24-26,27°-29°]). Members of a more
narrowly defined family, ‘proteins that bind (/z vitro) in a
nucleotide-insensitive manner to the M'T" lattice’ [1], con-
tain a variety of repeated MTT-binding motifs
[30°°,31,32°-34°]. The ‘classical’ model for their activity is
that each motif binds to a separate tubulin subunit and that
much of the stabilising effect of such MAPs results from
cross-linking adjacent tubulin dimers [1]. But this does not
explain how these MAPs, at very low molar stoichiometric
levels relative to tubulin, suppress M'T" dynamics [1] and
even affect MT rigidity [35]. It is likely that MAPs also
affect the conformation of tubulin PFs in analogous ways

to paclitaxel and GMP-CPP.

Recent work [30°°] illustrates the complexity of the inter-
action between the MAP tau and tubulin. The adult form
of tau has a M'I-binding C-terminal domain that includes
four 18-residue repeat motifs, separated by 13—-14-residue
inter-repeat regions (IRRs). Juvenile forms of tau (also
found in adults) have only three repeat motifs. These
three or four repeat motifs are known to stabilise MTs,
whereas a separate proline-rich region binds strongly to
tubulin, but does not by itself promote assembly. Within
the four-repeat region, it has previously been shown [36]
that one of the IRRs (the 10 residues of R1-R2) possesses
more than twice the binding affinity of a repeat motif and
is, by itself, sufficient to promote tubulin polymerisation.
The authors [36] suggest that the role of this IRR is to
increase the stability of adult M'Ts by anchoring tau to the
tubulin lattice, whereas three-repeat tau molecules that
lack it, predominant in immature neurons, are more mobile
to allow developmental plasticity.

Having the proline-rich region, as well as the repeat region
of tau enhances M'T assembly iz virro by 10-fold [30°°].
"This cooperative effect suggests that a tau molecule, which
has no detectable secondary structure in solution, folds up
so that distant parts of the molecule specify the way that
the stabilising motifs interact with tubulin. Nonconsecutive
segments of tau may even interact with the same tubulin
subunit. /# vitro, it is apparently possible to saturate M'Ts
with one tau molecule to every two tubulin dimers [33°,36];
it may be that only the most strongly binding repeat motifs
are then occupied.

The R1-R2 IRR can be cross-linked to the approximately
12-residue acidic C-terminal segments of both o~ and B-
tubulin, whereas a subset of other repeat motifs binds to

more internal sites in the C-terminal thirds of o- and B-tubu-
lin [30°°]. If these sites are close to the M-loops, the repeat
motifs may have a role in controlling lateral bonds. The
presence of neuronal MAPs causes tubulin PFs in zinc-
induced sheets to move approximately 2 A further apart
[37], presumably involving a movement of the M-loops.

MAP2 and MAP4 both have C-terminal domains similar in
structure and activity to those of the tau family [32°,33°],
but it has been reported that only 50% of a saturating level
of MAP2 (one molecule per tubulin dimer) on M'Ts was
released by competition with tau [33°]. The subtle cooper-
ation between stabilising and cross-linking motifs of MAPs
means that even closely related molecules can have differ-
ent properties and dissimilar effects on dynamic instability
parameters, such as rates of growth and shrinkage, and rates
of catastrophe and rescue [16°°], and on treadmilling [38°].

Motor-protein-binding sites

There seems to be some overlap between binding sites for
MAPs and motor proteins [39] in the region of the tubulin
C termini (Figure 1). I vivo, transfection of tau into cells
decreases the run length of vesicles moving along M'T5s [34°].

Kinesins

3D cryo-EM has shown that motor domains of the kinesin
family bind to tubulin across both subunits of a het-
erodimer (Figure 1) [12,40°°], covering part of the surface
of the G'TPase domain of B-tubulin, as well as part of the
ridge that contains the C-terminal domains (helices H11
and H12) of both tubulins [4°]. It is not yet clear which
point on this surface is mimicked by a naturally occurring
kinesin inhibitor [41°].

Docking kinesin’s atomic coordinates into EM maps of
M'T-motor protein complexes has led to a range of solu-
tions [42], but a recent model [40°°] has the advantage that
kinesin’s stalk would not clash with the M'T surface. It also
suggests that the head—head interaction seen in Kinesin
dimer crystals [43] is not merely a crystal artefact. At the
same time, it is consistent with M T-dependent protection
of kinesin from proteolysis [44]. An important prediction is
that the kinesin .12 loop, implicated in M'T" stimulation of
ATPase activity [16°°,45°°], only makes a close contact with
tubulin when the motor domain is strongly bound, being
held away from the surface of B-tubulin at the weakly
bound ADP-filled stage of the hydrolysis cycle (Figure 1).

Although it has only a single head, the kinesin KIF1A is able
to move along a M'T for a distance of a micron or more with-
out detaching [45°°]. Compared with normal (dimeric)
kinesin, members of the KIF1A subfamily have an extended
.12 loop, containing six extra lysine residues. The excep-
tionally high affinity of KIF1A for M'I’s is probably due to the
presence of this extended loop [45°°], stopping the motor
from diffusing away between power strokes. It is likely that
loop .12 tethers KIF1A to one or both of the acidic C termi-
ni of the tubulin heterodimer (see Figure 1). Similarly, a run



of lysines along one side of helix a7 in the neck of dimeric
kinesin may contribute to kinesin’s processive activity.

Dyneins

Although cytoplasmic dyneins have a pair of heads that
may cooperate in motility [46], a single-headed species of
axonemal dynein has also been shown to be processive;
single motor molecules are even sufficiently well tethered
that they can be pulled backwards without detaching
[47°°]. Helices H12 of both a- and B-tubulin [48] and their
C termini [49°] are implicated in dynein motility. Both
axonemal and cytoplasmic dyneins bind in an ATPase-sen-
sitive manner to MTs via a loop on the end of an
antiparallel coiled-coil stalk [50].

Conclusions

The stability of tubulin polymers is determined by the
conformations of the subunits in the lattice. GTP or
GMP-CPP directly strengthen intra-PF bonds, whereas
paclitaxel probably stabilises lateral bonds via the M-loop.
Both nucleotide and paclitaxel contact the core helix of B-
tubulin and may thus promote the straight PF
conformation. The action of MAPs is complex because of
multiple M'T-binding motifs; they probably have a cross-
linking, as well as a conformational, effect. Although their
productive interactions probably occur in different places
on the M'T surface, both MAPs and motor proteins also
make use of the acidic C termini of tubulin, which are
probably important for anchoring MAPs in place and for
tethering motors between active steps. These interactions
will be better understood when structural biologists suc-
ceed in crystallising tubulin complexed with domains of
the associated proteins.

Note added in proof

Kinesins

Amongst numerous interesting papers that have appeared
very recently, one by Okada and Hirokawa [54°°] strength-
ens the case for an interaction between the glutamate-rich
C termini of tubulin and the extended, lysine-rich .12
loop of KIF1A (see Figure 1). The removal of either tubu-
lin’s C-terminal glutamates by subtilisin digestion or the
six lysines in .12 of KIF1A by mutagenesis eliminated the
tethering of KIF1A to M'Ts. This interaction between glu-
tamates and lysines, which stops KIF1A from losing
contact with the M'T between ATP-driven steps, is only
effective in the weakly bound ADP-filled state. In the
strongly bound states, it has been proposed that kinesin’s
[.12 loop and the adjacent helix 04 move closer to the M'T
surface, where they may contribute to the strong interac-
tion [4°]. A reconstructed image [55°] of KIF1A bound to
M'Ts in a strongly bound state clearly shows the extended
[.12 loop as a protrusion from the motor domain making
contact with the ordered part of the tubulin surface. The
identity of the protrusion was confirmed by labelling 1.12
with a gold cluster. In a similar way, Rice er al. [56°°]
labelled residues within both the catalytic domain of con-
ventional kinesin and the ‘neck linker’ downstream of the
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catalytic domain. These two new structural studies
[55°,56°°] limit the possible range of ways (see Figure 2 of
[57]) that kinesin and related motors dock on to the surface
of a M'T" It is now almost certain that kinesin's interaction
with M'Ts involves loops .11 and L8, as well as [.12. "The
recent studies of Kinesin [56°°,58] also reveal the crucial
importance of the neck for motility.

Cytoplasmic dynein

Koonce and Tikhonenko [59°°] have made a significant
advance towards understanding dynein-M'T' interactions
by performing alanine scanning of the loop at the end of
the hairpin stalk. The first half of its sequence is homolo-
gous to the repetitive M'T-binding region of MAP1B; the
rest has no obvious homology, but both parts appear to be
required for binding. Although its structure suggests a role
as some sort of tether, this loop seems to be essential for
any binding, weak or strong, of dynein to MTs and its
attachment is sensitive to ATP.
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