Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner

Anja Bremm1,2,*, Sonia Moniz3, Julia Mader1, Sonia Rocha3,** & David Komander2,***

Abstract

The transcription factor HIF-1α is essential for cells to rapidly adapt to low oxygen levels (hypoxia). HIF-1α is frequently deregulated in cancer and correlates with poor patient prognosis. Here, we demonstrate that the deubiquitinase Cezanne regulates HIF-1α homeostasis. Loss of Cezanne decreases HIF-1α target gene expression due to a reduction in HIF-1α protein levels. Surprisingly, although the Cezanne-regulated degradation of HIF-1α depends on the tumour suppressor pVHL, hydroxylase and proteasome activity are dispensable. Our data suggest that Cezanne is essential for HIF-1α protein stability and that loss of Cezanne stimulates HIF-1α degradation via proteasome-independent routes, possibly through chaperone-mediated autophagy.

Keywords Cezanne; HIF-1α; hypoxia; Lys11-linked ubiquitin chains; ubiquitin

Subject Categories Post-translational Modifications; Proteolysis & Proteomics; Signal Transduction

DOI 10.15252/embr.201438850 | Received 30 March 2014 | Revised 24 September 2014 | Accepted 29 September 2014 | Published online 29 October 2014

EMBO Reports (2014) 15: 1268–1277

Introduction

Cellular adaptation to hypoxia depends on the heterodimeric transcription factor HIF. The α-subunit of HIF is carefully regulated in order to prevent inappropriate target gene expression, and dysfunction of this pathway is associated with various diseases [1,2]. Rapid turnover of HIF-1α in normoxia is mediated by a well-characterised oxygen-dependent enzymatic cascade involving prolyl hydroxylases (PHDs) and a specialised cullin–RING E3 ubiquitin (Ub) ligase complex (CRL2VHL [3]) that consists of the tumour suppressor von Hippel–Lindau (pVHL), cullin-2, elongin B/C and the small RING finger protein RBX1. Hydroxylation of HIF-1α by PHDs results in its recognition by pVHL, ubiquitination, and rapid degradation by the proteasome. Deregulated HIF-1α levels caused by inactivating VHL mutations predispose humans to a variety of cancers, in which the regulation machinery for HIF-1α degradation has been studied extensively [4]. In hypoxia, oxygen-dependent hydroxylases are gradually inhibited, and HIF-1α protein levels rise substantially [5,6]. More recently, oxygen-independent degradation mechanisms of HIF-1α have been described [7–9], emphasising the complexity of HIF-1α homeostasis.

Deubiquitinases (DUBs) oppose the function of E3 ligases by hydrolysing Ub chains [10]. Ub-specific protease (USP) 20 binds pVHL [11] and was shown to deubiquitinate and stabilise HIF-1α [12]. Recent reports also suggested roles for other USP DUBs in HIF-1α regulation [13–15].

Here, we demonstrate that the Lys11 linkage-specific ovarian tumour (OTU) DUB Cezanne regulates HIF transcriptional activity by directly affecting HIF-1α protein homeostasis in a proteasome-independent way.

Results and Discussion

Cezanne regulates HIF-1α-dependent gene expression

OTU DUBs control many important cell signalling pathways [16]. To test whether OTU family members are involved in regulating HIF-1α transcriptional activity in hypoxia, 14 human OTU DUBs were depleted in U2OS cells, and reporter gene assays were performed. USP20 served as a positive control [12] and its depletion reduced HIF-1α activity as suggested by the literature (Supplementary Fig S1A). Interestingly, knockdown of Cezanne-1/OTUD7B (hereafter referred to as Cezanne) but not of any other OTU DUB (including OTUD7A/Cezanne-2) decreased HIF-1α activity to the same extent as knockdown of USP20 (Supplementary Fig S1A).

To validate the results from the siRNA screen, Cezanne was depleted by a siRNA pool or by three individual siRNA oligonucleotides, which decreased HIF-1α transcriptional activity after exposure to hypoxia (Fig 1A, Supplementary Fig S1D). Knockdown of Cezanne was efficient at the mRNA level (Fig 1B, Supplementary Fig S1E) as shown...
before [17], and also of p53 (Supplementary Fig S1F), suggesting that Cezanne can act as a positive and a negative regulator of transcription factors.

To determine whether knockdown of Cezanne derails adaptive responses to hypoxia, we examined expression of HIF target genes in Cezanne-depleted cells. HIF-1 controls a plethora of genes with
Cezanne controls HIF-1α protein levels

We next set out to determine how Cezanne controls HIF-1α transcriptional activity. It was recently reported that low oxygen levels induce Cezanne expression in cultured endothelial cells [22]. In contrast, Cezanne expression levels were not affected in hypoxic HeLa or U2OS cells (Fig 2, Supplementary Fig S3A), but importantly, loss of Cezanne caused decreased HIF-1α protein levels with or without hypoxia treatment in both the cytoplasm and the nucleus (Fig 2A). Depletion of Cezanne also reduced HIF-2α protein levels (Fig 2B), but did not alter expression levels of other transcription factors like Rb, β-catenin or the NF-κB subunit Rel A (Supplementary Fig S1G). PCR analysis showed no significant change in HIF-1α mRNA levels upon Cezanne knockdown (Fig 2C), suggesting that Cezanne acts on HIF-1α protein at a post-translational level. Consistently, overexpression of GFP-tagged wild-type Cezanne increased HIF-1α protein levels, whereas expression of the inactive enzyme decreased HIF-1α levels (Fig 2D, Supplementary Fig S3B).

A defect in HIF-1α homeostasis was also observed in a Cezanne knockout mouse model. Primary mouse embryonic fibroblasts (MEFs) isolated from Cezanne knockout mice accumulated less HIF-1α under hypoxic conditions than cells from wild-type mice (Fig 2E). However, while HIF-1α deletion results in embryonic lethality [23,24], Cezanne knockout mice do not display an obvious phenotype except that male mice are infertile (http://www.phenogenomics.ca). Recently, it was shown that Cezanne knockout mice are more resistant to the intestinal bacterial pathogen C. rodentium [25]. It will be interesting to study how Cezanne knockout mice adapt to hypoxia.

Decreased HIF-1α protein upon Cezanne knockdown suggested a deregulation in upstream components of the HIF-1α degradation machinery instead of transcriptional regulators. Consistently, Cezanne depletion did not change levels of FIH-1 and p300 [1,2] (Fig 2F). Surprisingly, proteins involved in HIF-1α degradation were also not affected in Cezanne-depleted cells (Fig 2F), indicating that Cezanne regulates HIF-1α degradation differently.

HIF-1α is modified with Lys11-linked Ub chains

We had shown that the catalytic OTU domain of Cezanne is specific for Lys11-linked polyUb [26,27]. Also full-length Cezanne isolated from HEK293 cells is specific for Lys11-linked chains in vitro (Fig 3A). Moreover, using a Lys11 linkage-specific Ub antibody [28] (Supplementary Fig S3C), we found that overexpression of Cezanne resulted in a reduction of Lys11-linked Ub chains, while a catalytically inactive Cezanne mutant enriched this chain type in normoxic asynchronous cells (Fig 3B). Consistently, siRNA knockdown of Cezanne increased the amount of Lys11-linked polyUb in cells but had no obvious effect on Lys48 linkages (Fig 3C), which are more abundant in asynchronous cells. Together, this showed that Cezanne was able to regulate Lys11 polyubiquitination events in cells, raising the intriguing possibility that the observed effect of Cezanne on HIF-1α abundance was mediated by this chain type. Indeed, we detected endogenous Cezanne in the same complex as endogenous HIF-1α when it accumulated in cells under hypoxic conditions (Fig 3D). Importantly, when ubiquitinated HIF-1α was immunoprecipitated from cells treated with the proteasome inhibitor MG132, we identified Lys48 and Lys11 linkages in the precipitate by Ub linkage-specific antibodies (Fig 3E) and by Ub chain restriction analysis [27] (Supplementary Fig S3D). Knockdown of Cezanne increased the levels of Lys11 linkages on HIF-1α (Fig 3F).

Together, our results that the Lys11-specific DUB Cezanne affects hypoxia signalling suggest a role for atypical Lys11 linkages in this pathway. Lys11-linked polyUb has emerged as an independent Ub signal only recently, and important cellular roles, in particular in cell cycle regulation, have been suggested [29,30]. The only known Lys11 linkage-specific E2 enzyme, UBE2S, is cell cycle-regulated and associates with the E3 Ub ligase APC/C, promoting proteasomal degradation of mitotic regulators [31,32]. Our discovery of Lys11 linkages on HIF-1α adds another target for this chain type to the currently limited list of non-cell cycle-regulated proteins. UBE2S has also been suggested to mediate ubiquitination and degradation of pVHL, thus leading to increased HIF-1α levels [33]. We found that loss of Cezanne decreased HIF-1α levels independently of UBE2S (Supplementary Fig S3E). Consequently, what assembles Lys11 linkages in HIF-1α signalling has to be examined in more detail.

Cezanne regulates non-proteasomal degradation of HIF-1α

We next studied the mechanism of HIF-1α degradation in Cezanne-depleted cells. An important regulator of protein turnover is the AAA+ ATPase p97. Interestingly, the effect of Cezanne knockdown on HIF-1α levels in both normoxia and hypoxia could be rescued by co-depletion of p97 (Fig 4A). p97 regulates proteasomal degradation, ER-associated degradation as well as proteasome-independent processes such as autophagy and lysosomal sorting [34]. It was reported that Lys11-modified APC/C substrates are targets for proteasomal degradation [31,32], but surprisingly, inhibition of the proteasome by MG132 or epoxomicin, which efficiently stabilised
HIF-1α protein levels, did not rescue the effect of Cezanne knockdown on HIF-1α (Fig 4B, Supplementary Fig S4A and C). Cezanne depletion did not lead to accumulation of high molecular weight HIF-1α species, but showed an apparently equal reduction in modified and unmodified HIF-1α species, also when cells were directly lysed in SDS sample buffer (Supplementary Fig S4B). In addition, co-depletion of Cezanne and the proteasome regulatory subunit RPN11 could not rescue reduced HIF-1α levels (Supplementary Fig S4D). Together, these data suggest that Cezanne does not impact solely on proteasomal degradation of HIF-1α, and raise the general question whether the canonical HIF-1α degradation machinery is required for Cezanne-mediated HIF-1α downregulation. To test this, we inhibited the PHD enzymes, the most upstream signal required to trigger CRL2VHL ubiquitination. Suppression of PHD activity by the hydroxylase inhibitor DMOG averts HIF-1α hydroxylation and stabilises HIF-1α (Fig 4C, compare lane 1 and 3), but protein levels of HIF-1α and its transcriptional activity were still decreased in Cezanne-depleted cells (Fig 4C and D). Interestingly, in the complete absence of functional pVHL as in the renal cell carcinoma cell lines RCC4 and A498, the effect of Cezanne knockdown was rescued (Fig 4E and F). Consistently, RCC4 cells expressing HA-tagged pVHL showed again reduced HIF-1α levels upon Cezanne knockdown (Fig 4E). This suggests that while Cezanne does not affect pVHL levels (Fig 2F), it regulates HIF-1α homeostasis in a pVHL-dependent way. HIF-1α hydroxylation is a prerequisite for pVHL-mediated HIF-1α degradation via the proteasome. The apparent dependence of Cezanne on pVHL, but not hydroxylation, is unexplained. Attempts to test the action of Cezanne on prolyl mutant HIF-1α have so far been unsuccessful.

Figure 2. Cezanne is a positive regulator of HIF-1α protein levels.
A Subcellular fractionation revealed that loss of Cezanne caused reduced HIF-1α levels in cytoplasmic (CP) and nuclear (N) fractions in both untreated and hypoxia-treated cells.
B Knockdown of Cezanne in HeLa cells subjected to hypoxia resulted in decreased HIF-1α and HIF-2α protein levels, and reduced hypoxia-induced PHD3 and BNIP3 levels compared to control cells.
C RT–PCR analysis showed no significant changes of HIF-1α mRNA levels in Cezanne-depleted cells relative to control cells.
D Overexpression of GFP-tagged wild-type (wt) or inactive (C194S) Cezanne in hypoxia-treated cells affected HIF-1α levels in a dose-dependent manner.
E Mouse embryonic fibroblasts (MEFs) isolated from Cezanne knockout mice (Cezanne−/−) accumulated less HIF-1α in hypoxia than WT MEFs.
F Depletion of Cezanne did not affect proteins involved in the regulation of HIF-1α activity or stability.

Data information: All experiments were performed three times; bar graphs represent the mean plus standard deviation of these independent experiments.
Figure 3. Lys11-linked polyUb in hypoxia.

A Full-length (fl) GFP-tagged Cezanne isolated from HEK293 cells specifically cleaved Lys11-linked diUb in an in vitro DUB assay comprising eight differently linked Ub dimers.

B Global levels of ubiquitin Lys11 linkages in total cell extracts were determined using a linkage-specific antibody (see Supplementary Fig S3C). Overexpression of WT Cezanne decreased the amount of Ub chains containing Lys11 linkages, whereas a catalytically inactive Cezanne (C194S) enriched this linkage type.

C Knockdown of Cezanne caused increased levels of Lys11-linked polyUb relative to the NT control, but did not affect K48 linkages.

D Cezanne and HIF-1α co-immunoprecipitated in hypoxia-treated cells.

E, F Polyubiquitinated HIF-1α was immunoprecipitated with HIF-1α antibody from MG132-treated HeLa cells. Ub linkage-specific antibodies detected Lys11 and Lys48 linkages in the high-molecular-weight smear enriched with HIF-1α antibody, showing that HIF-1α is modified with Lys11-linked polyUb (E). Knockdown of Cezanne increased Lys11 linkages on HIF-1α (F). *, heavy chain.

Data information: All experiments were performed three times.
Figure 4.

A

siCezanne

siVCP/p97

Hypoxia (4h)

HIF-1α

HIF-1α

(longer exposure)

p97

Cezanne

Actin

B

+ + ++

siCezanne

MG132 (2 h)

++ + +

HIF-1α

Cezanne

Actin

C

+ + + +

siCezanne

DMOG (24 h)

++ + +

HIF-1α

Cezanne

Actin

D

HeLa

fold change luciferase activity

Control

Hypoxia (24h)

NT

siCezanne

NT

siCezanne

DMOG

E

+ + ++

siCezanne

DFX (4 h)

++ + +

HA

HA-VHL

HIF-1α

Cezanne

Actin

RCC4

F

+ + + +

siCezanne

MG132

+++ + +

HIF-1α

Cezanne

Actin

A498

G

0 15 30 60

CHX (min)

HIF-1α

Actin

Hypoxia (4h)

H

+ + + +

siCezanne

MG132

CHX (min)

HIF-1α

Cezanne

Actin

Hypoxia (4h)

I

+ + + +

GFP-HIF1a (wt)

GFP-HIF1a (AA)

siCezanne

MG132 (4 h)

GFP

GFP

(longer exposure)

Cezanne

Tubulin

J

Wild-type:

Cezanne knockdown:

CRL2

Proteasome-independent degradation

Proteasome

Cezanne

Cezanne

HIF-1α

HIF-1α

© 2014 MRC Laboratory of Molecular Biology
HIF-1α has a very high turnover rate in normoxia with a half-life of only 5–8 min [35]. Lack of oxygen inhibits PHD activity [36], which increases HIF-1α levels and transcriptional activity. HIF-1α-mediated transcription of PHD2 and PHD3 establishes a negative feedback mechanism [37–39], which leads to partial destabilisation of HIF-1α, even in hypoxia. To investigate HIF-1α turnover under hypoxic conditions, cells were subjected to 4 h hypoxia before protein translation was blocked using cycloheximide (Fig 4G). As expected, HIF-1α turnover was significantly delayed in hypoxia, but protein levels still declined after 60 min, highlighting that HIF-1α is also degraded in hypoxia. As previously shown [40], this can be rescued by proteasome inhibition (Fig 4H, lanes 5–6), and ubiquitinated HIF-1α species start to accumulate at later time points (Fig 4H, see longer exposure). Importantly, adding MG132 failed to rescue HIF-1α degradation in Cezanne-depleted cells in this experiment (Fig 4H, lanes 5–6). Overall, these results imply that loss of Cezanne promotes degradation of HIF-1α in a proteasome-independent manner.

Two recent reports revealed that HIF-1α is targeted for lysosomal degradation via chaperone-mediated autophagy (CMA) [9,41]. Since decreased HIF-1α levels in Cezanne-depleted cells could only partially be rescued by combined inhibition of proteasome and lysosome activity (Supplementary Fig S4E), we interfered with the KFERQ-like motif in HIF-1α [41], which has been identified in all CMA substrates. Interestingly, mutation of this motif in GFP-tagged HIF-1α generated a protein that was no longer affected by Cezanne knockdown (Fig 4I). This suggests that Cezanne regulates the CMA-mediated degradation of HIF-1α.

In summary, we identified Cezanne as a new regulator of HIF-1α homeostasis. Our data show that Cezanne controls HIF-1α transcriptional activity by preventing proteasome-independent degradation of HIF-1α. Loss of Cezanne may alter the ubiquitination pattern of HIF-1α, thereby causing excessive clearance of the transcription factor. Even though this process is not reliant on full hydroxylase activity, it depends on pVHL as demonstrated in pVHL-deficient cells (Fig 4J). This indicates that Cezanne regulates the pVHL-mediated degradation of HIF-1α.

Figure 4. Cezanne regulates proteasome-independent degradation of HIF-1α.

A Decreased HIF-1α levels in Cezanne knockdown cells were complemented by co-depletion of p97
B, C Reduced HIF-1α levels caused by Cezanne depletion cannot be complemented with the proteasome inhibitor MG132 (B) nor the hydroxylase inhibitor DMOG (C).
D Control and Cezanne-depleted cells were treated with or without hypoxia and DMOG. Loss of Cezanne reduced HIF-1α-dependent luciferase activity also when hydroxylases were inhibited.
E, F Knockdown of Cezanne in VHL-deficient RCC4 cells (E, lanes 1 and 2) and A498 cells (F) had no effect on HIF-1α levels. Expression of exogenous VHL sensitised RCC4 cells for Cezanne regulation (E, lanes 3–6).
G Cells were exposed to hypoxia and subsequently treated with cycloheximide to block protein translation. HIF-1α degradation under these conditions was followed over time.
H Cells were treated with hypoxia before cycloheximide and MG132 were added. HIF-1α degradation could be rescued with proteasome inhibition in control cells but not in Cezanne-depleted cells.
I Loss of Cezanne did not affect protein levels of HIF-1α with mutations in the KFERQ-like motif (GFP-HIF-1α (AA)).
J Model: Cezanne prevents proteasome-independent HIF-1α degradation.

Data information: All experiments were performed three times, experiment in panel (E) was repeated four times; bar graphs represent the mean plus standard deviation of these independent experiments. P-values were calculated using Student’s t-test (***P < 0.001).

Materials and Methods

Cell culture and transfection

Human cell lines (U2OS, HeLa, HEK293, RCC4, A498) and mouse embryonic fibroblasts were cultured in Dulbecco’s modified Eagle medium (Life Technologies) supplemented with 10% (v/v) foetal bovine serum (Thermo Scientific), 50 U/ml penicillin and 50 μg/ml streptomycin (GE Healthcare) at 37°C and 5% CO2. A498 cells were a kind gift from R. Pawlowksi, Institute for Molecular Health Sciences, ETH Zurich, Switzerland. U2OS-HRE and HeLa-HRE-luciferase cells were described in [43]. Hypoxia treatment at 1% O2 was achieved using an INVIVO2 hypoxia workstation (Ruskin) or Don Whitley H35 workstation. To avoid reoxygenation, cells were lysed in the workstation. For immunoblot and real-time RT–PCR, 2 × 105 cells were seeded in 6-well plates and transfected after 24 h with either 30 nM siRNA duplexes using INTERFERin transfection reagent (Polyplus) or 1 μg plasmid DNA using GeneJuice (Merck Biosciences). Further information on siRNA oligonucleotides can be found in the Supplementary Information.

Luciferase reporter assay

2 × 104 cells were seeded in 24-well plates and transfected with 40 nM siRNA duplexes using INTERFERin transfection reagent (Polyplus). A PG13-luciferase construct [44] was co-transfected with siRNA using jetPRIME transfection reagent (Polyplus). Forty-eight hours post-transfection cells were lysed in 1× passive lysis buffer (Promega), and luciferase assays were performed according to the
manufacturer’s instructions (Luciferase Assay System, Promega). U2OS- and HeLa-HRE-luciferase cells were cultured in 1% O2 prior to lysis. U2OS-kb-luciferase cells [45] were treated with 10 ng/ml TNF-α (Peprotech) for 6 h prior to harvest. Results were normalised for protein concentration with all experiments being performed a minimum of three times before calculating means and standard deviations as shown in the figures.

Analysis of gene expression levels by real-time RT–PCR

DNase-treated total RNA was reverse-transcribed using QuantiTect Reverse Transcription Kit (Qiagen). RT–PCR was performed on a Rotor-Gen 6000 (Qiagen) using QuantiFast SYBR Green PCR Kit (Qiagen). RT–PCR data were analysed using the comparative concentration module of the Rotor-Gen software, which is based on [46]. Signal for the gene of interest was normalised to signal for ACTB, and then fold change was calculated relative to calibrator sample. For each primer pair, the formation of a single product was confirmed by melt curve analysis [47].

Custom PCR Arrays: cDNA was made using RT2 First Strand Kit (Qiagen). RT–PCR was performed using 2× RT2 SYBR Green ROX FAST Mastermix (Qiagen). Threshold cycle (Ct) for each well was calculated using the Rotor-Gen software after threshold was manually defined. Subsequently, fold change was calculated by the web-based PCR Array Data Analysis Tool provided by Qiagen/SABiosciences.

Immunoblot

Cells were lysed in 50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 5 mM MgCl2, 1% (v/v) IGEPA CA-630, 0.5% (v/v) sodium deoxycholate, 0.1% (v/v) SDS, 100 mM NaF, 5 mM N-ethylmaleimide, 10 mM iodoacetamide, 1 tablet/10 ml cOmplete, Mini, EDTA-free protease inhibitors (Roche) and 2 μl/ml benzonase nuclease (250 units/l). Cells were treated with 20 μM MG132 (Sigma), 2 μM epoxomicin (Enzo Life Sciences), 200 μM deferoxamine (Sigma), or 50 μM chloroquine (Sigma) as specified in the main text. SDS–PAGE and immunoblots were carried out using standard protocols. A list of antibodies used can be found in the Supplementary Information.

Apoptosis assay

Apoptosis was measured by Annexin V staining using the Nexin assay kit (Millipore). Cells were processed and stained according to the manufacturer’s instructions and acquired using flow cytometry (Guava EasyCyte, Millipore).

Immunoprecipitation

For precipitation of endogenous HIF-1α, Cezanne-depleted and control cells were treated with 20 μM MG132 for 2 h (6-well plate) and subsequently lysed in 100 μl lysis buffer per well (50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1% (v/v) IGEPA CA-630, 2 mM EDTA, 1 mM dithiothreitol, 100 mM NaF and 1 tablet/10 ml cOmplete, Mini, EDTA-free protease inhibitors (Roche)). Cleared cell lysate was rotated at 4°C for 3 h with 2 μg of anti-HIF-1α antibody (sc-10790, Santa Cruz) and Protein A Sepharose (GE Healthcare), which was added after 2 h. Immobilised antigen–antibody complex was then washed three times with PBS and eluted in 2× LDS sample buffer (Invitrogen).

Supplementary information for this article is available online: http://embor.embopress.org

Acknowledgements

We thank M. Pasparakis for providing us with Cezanne−/− MEFS, E. Chilvers and B. Brune for allocating hypoxia workstations, T.E.T. Mevissen, L. James, F. Hauler, F. Randow and I. Dikic for reagents and technical advice. We thank members of the Komander, the Rocha and the Bremm laboratory for helpful discussions. A.B. was supported by the Medical Research Council and the German Research Foundation (DFG) and is currently funded by the DFG (Emmy Noether Programme). S.R. is funded by a Senior Research Fellowship from Cancer Research UK and by the Wellcome Trust (097945/2/11/Z). Work in the D.K. laboratory is supported by the Medical Research Council [U105192732], the European Research Council [309795], the Lister Institute for Preventive Medicine and the EMBO Young Investigator Program.

Author contributions

AB, SM, JM and SR performed experiments; AB, SR and DK conceived the project and wrote the manuscript.

Conflict of interest

DK is a part of the DUB Alliance that includes Cancer Research Technology and FORMA Therapeutics. The remaining authors declare that they have no conflict of interest.

References

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner

Supplementary Information

Anja Bremm¹,²*, Sonia Moniz³, Julia Mader¹, Sonia Rocha³,* and David Komander²,*

¹ Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt (Main), Germany
² Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
³ College of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK

* Correspondence to: Anja Bremm (bremm@em.uni-frankfurt.de), Sonia Rocha (s.rocha@dundee.ac.uk), David Komander (dk@mrc-lmb.cam.ac.uk)
Figure legends

Figure S1. Cezanne regulates HIF-1α - siRNA deconvolution and controls.
A siRNA knockdown of 14 OTU-family DUBs in U2OS cells treated with hypoxia (1% oxygen) for 24 h. Depletion of Cezanne and USP20 decreased HRE-luciferase activity to similar extents compared to control cells. The presented screen was conducted once in triplicate (Z-score >0.8). B, C Transfection of three different Cezanne siRNA oligonucleotides decreased Cezanne mRNA (B) and protein levels (C). D Reporter gene assay showing that depletion of Cezanne resulted in decreased HIF-1α-dependent luciferase activity. E, F In contrast, loss of Cezanne increased activity of the transcription factors NF-κB and p53 (PG13 reporter). G Protein levels of Rb, β-catenin, and the NF-κB subunit RelA are not affected by loss of Cezanne. H, I siRNA knockdown of Cezanne resulted in upregulated cleaved-PARP and cleaved-Caspase 3 levels (H), and an increase in the number of apoptotic cells in hypoxia as seen by Annexin V staining (I). (If not specified differently, all experiments were performed three times; bar graphs represent the mean plus standard deviation of these independent experiments. P values were calculated using Student’s t test (* < 0.1, **p < 0.01, ***p < 0.001).)

Figure S2. Global effects on HIF-1α target gene expression.
A Cezanne-depleted and control U2OS cells were treated with hypoxia (24h) and expression of 81 HIF-target genes was analysed by RT-PCR using a customised PCR screen. Threshold cycle (C_T) for each well was calculated using the Rotor-Gene software (QIAGEN) after threshold was manually defined.
Subsequently, fold change was calculated by the web-based PCR Array data analysis tool provided by Qiagen. Data are shown as fold change when compared to untreated, NT control. **B** 23 genes out of the 81 genes analysed in (A) were induced more than 2-fold in hypoxia treated cells. Hypoxia-dependent induction of these genes was reduced in Cezanne-depleted cells. mRNA levels are shown relative to hypoxia-treated control (NT) cells. See **Table S2**. (Bar graphs represent the mean of two independent experiments.)

Figure S3. Controls.

A U2OS cells were treated with hypoxia and Cezanne protein levels were monitored at various time points. **B** Overexpression of GFP-tagged wild-type or inactive Cezanne in hypoxia-treated U2OS cells affected HIF-1α levels in a dose-dependent manner. **C** Identical amounts of diubiquitin of all eight linkage types (Coomassie stained, bottom panel) were blotted and incubated with Lys11-linkage specific antibody (top panel) or Lys48-linkage specific antibody (middle panel). **D** Ubiquitin chain restriction (UbiCRest) analysis [1] of polyubiquitinated HIF-1α using non-specific USP21 as a positive control, as well as the Lys11-specific Cezanne catalytic domain, and the Lys48-specific OTUB1, both of which reduce HIF-1α poly-ubiquitination. **D** Loss of Cezanne also resulted in lower HIF-1α protein levels when the Lys11 linkage-specific E2 enzyme UBE2S was co-depleted. (All experiments were performed three times.)

Figure S4. Effect of Cezanne on HIF-1α degradation
A Reduced HIF-1α protein levels upon Cezanne knockdown in MG132-treated cells was observed with four different siRNA oligonucleotides. B Cezanne-depleted and control U2OS cells were treated with hypoxia for 8 h or 24 h and directly lysed in SDS sample buffer. Knockdown of Cezanne decreased HIF-1α protein levels in normoxia and hypoxia. C Inhibition of proteasome activity by epoxomicin did not rescued HIF-1α levels in Cezanne-depleted cells neither under normoxia nor under hypoxia. D Co-depletion of Cezanne and the proteasome subunit Rpn11 resulted in decreased HIF-1α levels. E VHL-negative RCC4 cells expressed equal HIF-1α levels in the presence and absence of Cezanne. Reconstitution of VHL rendered RCC4 cells sensitive again for HIF-1α regulation by Cezanne, i.e. in HA-VHL expressing RCC4 cells HIF-1α levels were decrease by approx. 25% when Cezanne was depleted. Quantification of four independent experiments using ImageJ software. F Combined inhibition of proteasome and lysosome activity by MG132 and chloroquine did not fully rescue HIF-1α levels in Cezanne-depleted cells (lane 5-6). G Knockdown of Cezanne did not alter cell cycle distribution. (If not specified differently, all experiments were performed three times; bar graphs represent the mean plus standard deviation of these independent experiments. P values were calculated using Student’s t test (***p < 0.001).)
Table S1. HIF-target genes analysed in PCR screen

<table>
<thead>
<tr>
<th>Uniprot</th>
<th>Gene name</th>
<th>Protein name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P08183</td>
<td>ABCB1</td>
<td>Multidrug resistance protein 1</td>
</tr>
<tr>
<td>Q9UNQ0</td>
<td>ABCG2</td>
<td>ATP-binding cassette sub-family G member 2</td>
</tr>
<tr>
<td>P35318</td>
<td>ADM</td>
<td>ADM</td>
</tr>
<tr>
<td>P35368</td>
<td>ADRA1B</td>
<td>Alpha-1B adrenergic receptor</td>
</tr>
<tr>
<td>P04076</td>
<td>ALDOA</td>
<td>Fructose-bisphosphat aldolase A</td>
</tr>
<tr>
<td>Q15123</td>
<td>ANGPT2</td>
<td>Angiopoietin-2</td>
</tr>
<tr>
<td>Q14503</td>
<td>BHLHB2</td>
<td>Basic helix-loop-helix family, member e40</td>
</tr>
<tr>
<td>Q9COJ9</td>
<td>BHLHB3</td>
<td>Basic helix-loop-helix family, member e41</td>
</tr>
<tr>
<td>Q12983</td>
<td>BNIP3</td>
<td>BCL2/adenovirus E1B 19 kDa protein-interacting protein 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like</td>
</tr>
<tr>
<td>Q60238</td>
<td>BNIP3L</td>
<td></td>
</tr>
<tr>
<td>Q16790</td>
<td>CAIX</td>
<td>Carbonic anhydrase IX</td>
</tr>
<tr>
<td>Q16602</td>
<td>CALCR</td>
<td>Calcitonin gene-related peptide type 1 receptor</td>
</tr>
<tr>
<td>Q16689</td>
<td>CCNG2</td>
<td>Cyclin G2</td>
</tr>
<tr>
<td>P38936</td>
<td>CDKN1A</td>
<td>Cyclin-dependent kinase inhibitor 1</td>
</tr>
<tr>
<td>Q99697</td>
<td>CITED2</td>
<td>Cbp/p300-interacting transactivator 2</td>
</tr>
<tr>
<td>P20908</td>
<td>COL5A1</td>
<td>Collagen alpha-1(V) chain</td>
</tr>
<tr>
<td>P00450</td>
<td>CP</td>
<td>Ceruloplasmin</td>
</tr>
<tr>
<td>P29279</td>
<td>CTGF</td>
<td>Connective tissue growth factor</td>
</tr>
<tr>
<td>P05339</td>
<td>CTSD</td>
<td>Cathepsin D</td>
</tr>
<tr>
<td>P48061</td>
<td>CXCL12</td>
<td>Stromal cell-derived factor 1</td>
</tr>
<tr>
<td>P61073</td>
<td>CXCR4</td>
<td>C-X-C chemokine receptor type 4</td>
</tr>
<tr>
<td>Q9NX09</td>
<td>DDIT4/RTP801</td>
<td>DNA damage-inducible transcript 4 protein</td>
</tr>
<tr>
<td>Q9GZT9</td>
<td>EGLN1</td>
<td>Egl nine homolog 1 (PHD2)</td>
</tr>
<tr>
<td>Q9H6Z9</td>
<td>EGLN3</td>
<td>Egl nine homolog 3 (PHD3)</td>
</tr>
<tr>
<td>P05305</td>
<td>END1</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>P17813</td>
<td>ENG</td>
<td>Endoglin</td>
</tr>
<tr>
<td>P06733</td>
<td>ENO1</td>
<td>Alpha-enolase</td>
</tr>
<tr>
<td>P01588</td>
<td>EPO</td>
<td>Erythropoietin</td>
</tr>
<tr>
<td>P14921</td>
<td>ETS1</td>
<td>Protein C-ets-1</td>
</tr>
<tr>
<td>P22830</td>
<td>FECH</td>
<td>Ferrochelatase, mitochondrial</td>
</tr>
<tr>
<td>P11487</td>
<td>FGFR3</td>
<td>Fibroblast growth factor 3</td>
</tr>
<tr>
<td>P17948</td>
<td>FLT1</td>
<td>Vascular endothelial growth factor receptor 1</td>
</tr>
<tr>
<td>P11100</td>
<td>FOS</td>
<td>Proto-oncogene c-Fos</td>
</tr>
<tr>
<td>P02792</td>
<td>FTL</td>
<td>Ferritin light chain</td>
</tr>
<tr>
<td>P04406</td>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>P22352</td>
<td>GPX3</td>
<td>Gluthathione peroxidase 3</td>
</tr>
<tr>
<td>P14210</td>
<td>HGF</td>
<td>Hepatocyte growth factor</td>
</tr>
<tr>
<td>Q9Y2N7</td>
<td>HIF3A</td>
<td>Hypoxia-inducible factor 3-alpha</td>
</tr>
<tr>
<td>P52789</td>
<td>HK2</td>
<td>Hexokinase-2</td>
</tr>
<tr>
<td>P09691</td>
<td>HMOX1</td>
<td>Heme oxygenase 1</td>
</tr>
<tr>
<td>Q02363</td>
<td>ID2</td>
<td>DNA-binding protein inhibitor ID-2</td>
</tr>
<tr>
<td>P01344</td>
<td>IGF2</td>
<td>Insulin-like growth factor II</td>
</tr>
<tr>
<td>P08833</td>
<td>IGFBP1</td>
<td>Insulin-like growth factor-binding protein 1</td>
</tr>
<tr>
<td>P05107</td>
<td>ITGB2</td>
<td>Integrin beta-2</td>
</tr>
<tr>
<td>P05412</td>
<td>JUN</td>
<td>Transcription factor AP-1</td>
</tr>
<tr>
<td>Q9Y4C1</td>
<td>KDM3A</td>
<td>Lysine-specific demethylase 3A</td>
</tr>
<tr>
<td>Q94953</td>
<td>KDM4B</td>
<td>Lysine-specific demethylase 4B</td>
</tr>
<tr>
<td>P21583</td>
<td>KITLG</td>
<td>Kit ligand / Stem cell factor</td>
</tr>
<tr>
<td>Uniprot ID</td>
<td>Gene Symbol</td>
<td>Gene Name</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Q16787</td>
<td>LAMA3</td>
<td>Laminin subunit alpha-3</td>
</tr>
<tr>
<td>P00336</td>
<td>LDHA</td>
<td>L-lactate dehydrogenase A chain</td>
</tr>
<tr>
<td>P41159</td>
<td>LEP</td>
<td>Leptin</td>
</tr>
<tr>
<td>Q07820</td>
<td>MCL1</td>
<td>Induced myeloid leukemia cell differentiation protein Mcl-1</td>
</tr>
<tr>
<td>P08581</td>
<td>Met</td>
<td>Hepatocyte growth factor receptor</td>
</tr>
<tr>
<td>P50281</td>
<td>MMP14</td>
<td>Matrix metalloproteinase-14</td>
</tr>
<tr>
<td>P50539</td>
<td>MXI1</td>
<td>Max-interacting protein 1</td>
</tr>
<tr>
<td>P35228</td>
<td>NOS2A</td>
<td>Nitric oxide synthase, inducible</td>
</tr>
<tr>
<td>P29474</td>
<td>NOS3</td>
<td>Nitric oxide synthase, endothelial</td>
</tr>
<tr>
<td>Q86UR1</td>
<td>NOXA1</td>
<td>NADPH oxidase activator 1</td>
</tr>
<tr>
<td>P06748</td>
<td>NPM1</td>
<td>Nucleophosmin</td>
</tr>
<tr>
<td>P21589</td>
<td>NT5E</td>
<td>Ecto-5'-nucleotidase</td>
</tr>
<tr>
<td>P13674</td>
<td>P4HA1</td>
<td>Prolyl 4-hydroxylase subunit alpha-1</td>
</tr>
<tr>
<td>P17858</td>
<td>PFK</td>
<td>6-phosphofructokinase, liver type</td>
</tr>
<tr>
<td>Q16875</td>
<td>PFKFB3</td>
<td>6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3</td>
</tr>
<tr>
<td>Q16877</td>
<td>PFKFB4</td>
<td>6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4</td>
</tr>
<tr>
<td>P00558</td>
<td>PGK1</td>
<td>Phosphoglycerate kinase 1</td>
</tr>
<tr>
<td>Q03405</td>
<td>PLAUR</td>
<td>Urokinase plasminogen activator surface receptor</td>
</tr>
<tr>
<td>Q13794</td>
<td>PMAIP1</td>
<td>Phorbol-12-myristate-13-acetate-induced protein 1</td>
</tr>
<tr>
<td>P37231</td>
<td>PPARG</td>
<td>Peroxisome proliferator-activated receptor gamma</td>
</tr>
<tr>
<td>Q96QC0</td>
<td>PPP1R10</td>
<td>Serine/threonine-protein phosphatase 1 regulatory subunit 10</td>
</tr>
<tr>
<td>P53041</td>
<td>PPP5C</td>
<td>Serine/threonine-protein phosphatase 5</td>
</tr>
<tr>
<td>P35354</td>
<td>PTGS2</td>
<td>Prostaglandin G/H synthase 2</td>
</tr>
<tr>
<td>Q9UBF6</td>
<td>RNF7</td>
<td>RING-box protein 2 (RBX2)</td>
</tr>
<tr>
<td>P11166</td>
<td>SLC2A1</td>
<td>Solute carrier family 2, facilitated glucose transporter member 3</td>
</tr>
<tr>
<td>P11169</td>
<td>SLC2A3</td>
<td>Solute carrier family 2, facilitated glucose transporter member 3</td>
</tr>
<tr>
<td>Q14746</td>
<td>TERT</td>
<td>Telomerase reverse transcriptase</td>
</tr>
<tr>
<td>P02787</td>
<td>TF</td>
<td>Serotransferrin</td>
</tr>
<tr>
<td>Q07654</td>
<td>TFF3</td>
<td>Trefoil factor 3</td>
</tr>
<tr>
<td>P02786</td>
<td>TFRC</td>
<td>Transferrin receptor protein 1</td>
</tr>
<tr>
<td>P10600</td>
<td>TGBF3</td>
<td>Transforming growth factor beta-3</td>
</tr>
<tr>
<td>Q15672</td>
<td>TWIST1</td>
<td>Twist-related protein 1</td>
</tr>
<tr>
<td>P15692</td>
<td>VEGFA</td>
<td>Vascular endothelial growth factor A</td>
</tr>
<tr>
<td>P19544</td>
<td>WT1</td>
<td>Wilms tumor protein</td>
</tr>
</tbody>
</table>
Table S2. Altered HIF-target gene expression in Cezanne-depleted U2OS cells

Listed genes (column 1) were induced more than 2-fold compared to non-targeting control. The absolute values for induction (column 2) compared to the absolute values in Cezanne-depleted cells (column 3) are shown. Column 4 shows the % reduction in target gene expression induced by Cezanne knockdown. Data is represented in Figure S2.

<table>
<thead>
<tr>
<th>Gene</th>
<th>NT</th>
<th>siCezanne</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM</td>
<td>11.92</td>
<td>8.46</td>
<td>29.04</td>
</tr>
<tr>
<td>BHLHE40</td>
<td>2.03</td>
<td>1.45</td>
<td>28.30</td>
</tr>
<tr>
<td>BHLHE41</td>
<td>4.47</td>
<td>3.05</td>
<td>31.70</td>
</tr>
<tr>
<td>BNIP3</td>
<td>11.96</td>
<td>7.73</td>
<td>35.38</td>
</tr>
<tr>
<td>BNIP3L</td>
<td>5.45</td>
<td>3.99</td>
<td>26.80</td>
</tr>
<tr>
<td>CA9</td>
<td>663.98</td>
<td>410.15</td>
<td>38.23</td>
</tr>
<tr>
<td>CCNG2</td>
<td>2.46</td>
<td>1.64</td>
<td>33.57</td>
</tr>
<tr>
<td>DDIT4</td>
<td>8.52</td>
<td>6.57</td>
<td>22.89</td>
</tr>
<tr>
<td>EGLN1</td>
<td>4.96</td>
<td>4.03</td>
<td>18.77</td>
</tr>
<tr>
<td>EGLN3</td>
<td>53.08</td>
<td>34.54</td>
<td>34.93</td>
</tr>
<tr>
<td>HIF3A</td>
<td>4.20</td>
<td>3.15</td>
<td>25.00</td>
</tr>
<tr>
<td>HK2</td>
<td>5.31</td>
<td>4.16</td>
<td>21.81</td>
</tr>
<tr>
<td>KDM3A</td>
<td>2.01</td>
<td>1.71</td>
<td>15.03</td>
</tr>
<tr>
<td>KDM4B</td>
<td>2.27</td>
<td>1.77</td>
<td>22.08</td>
</tr>
<tr>
<td>LDHA</td>
<td>3.06</td>
<td>2.33</td>
<td>23.95</td>
</tr>
<tr>
<td>PFKFB4</td>
<td>18.19</td>
<td>12.17</td>
<td>33.10</td>
</tr>
<tr>
<td>PFKL</td>
<td>2.08</td>
<td>1.77</td>
<td>15.03</td>
</tr>
<tr>
<td>PGK1</td>
<td>6.06</td>
<td>4.87</td>
<td>19.62</td>
</tr>
<tr>
<td>PTGS2</td>
<td>2.18</td>
<td>2.11</td>
<td>3.41</td>
</tr>
<tr>
<td>P4HA1</td>
<td>5.46</td>
<td>4.20</td>
<td>23.16</td>
</tr>
<tr>
<td>SLC2A1</td>
<td>4.56</td>
<td>3.23</td>
<td>29.29</td>
</tr>
<tr>
<td>SLC2A3</td>
<td>4.66</td>
<td>3.27</td>
<td>29.78</td>
</tr>
<tr>
<td>TFF3</td>
<td>19.84</td>
<td>5.74</td>
<td>71.08</td>
</tr>
</tbody>
</table>
Materials and Methods

siRNA oligonucleotides

siRNA oligonucleotides were synthesized by Thermo Scientific (Non-targeting siRNA control, D-001810-01; SMARTpool ZA20D1 (OTUD7B/ Cezanne), L-008670-00; Set of 4 siRNA ZA20D1 (OTUD7B/ Cezanne), LQ-008670-00; SMARTpool UBE2S, L-009707-00); Eurofins MWG Operon (HIF-1, CUG AUG ACC AGC AAC UUG A [1]); (Rpn11, UUA CAA UAA GGC UGU AGA A); or Life Technologies (VCP/p97, a kind gift from L. James, MRC Laboratory of Molecular Biology, Cambridge, UK).

Antibodies used for immunoblots

HIF-1α (MAB1536, R&D Systems), Cezanne (custom antibody, Eurogentec), beta Actin (ab8227, Abcam), LC3B (2775, Cell Signaling), cleaved PARP (Asp214) (9541, Cell Signaling), cleaved Caspase-3 (9664, Cell Signaling), PHD3 (A300-327A, Bethyl Labs), BNIP3 (ab10433, Abcam), HIF-2α (PA1-16510, Thermo Pierce), Tubulin (2125, Cell Signaling), CUL-2 (sc-166506, Santa Cruz), Factor Inhibiting HIF-1 (NB100-428, Novus Biologicals), Von Hippel Lindau (NB100-485SS, Novus Biologicals), beta-catenin (4270, Cell Signaling), Rb (9309, Cell Signaling), RelA (sc-3-72, Santa Cruz), Ubiquitin (07-375, Millipore), Ubiquitin K11 linkage, clone 2A3/2E6 (MABS107, Millipore), Ubiquitin, Lys48-specific, clone Apu2 (05-1307, Millipore), UBE2S, (11878, Cell Signaling), p97 ATPase (MA1-21412, Thermo Scientific), GFP (sc-8334Santa Cruz), Rpn11 (Cell Signaling), Normal Rabbit IgG (2729, Cell Signaling)
Immunoprecipitation of GFP-tagged Cezanne

HEK293 cells were transfected with 4 µg pOPIN-GFP-Cezanne plasmid DNA per 10 cm culture dish using GeneJuice (Merck Biosciences) according to manufacturer’s instructions. Cells were lysed in 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% (v/v) IGEPAL® CA-630, 100 mM NaF and 1 tablet/10 ml Complete, Mini, EDTA-free protease inhibitors (Roche). Cleared cell lysate was rotated at 4°C for 2 h with GFP-Trap®-A agarose beads. GFP-Trap®-Cezanne complex was washed twice with PBS, once with 1× DUB buffer (50 mM NaCl, 50 mM Tris (pH 7.5) and 5 mM DTT) and immediately used for deubiquitination assays.

Deubiquitination assay

Full-length GFP-tagged Cezanne was isolated from two 10 cm culture dishes HEK293 cells (see above) and divided into eight different reaction tubes. Cezanne-GFP-Trap®-agarose complex was spun down, resuspended in 30 µl 1× DUB buffer (50 mM NaCl, 50 mM Tris (pH 7.5) and 5 mM DTT) containing 2 µg diubiquitin and incubation at 37°C. 10 µl were taken immediately (time point zero) and after 60 min, and reactions were stopped by adding 10 µl LDS sample buffer (Life Technologies). Ubiquitin cleavage was detected by silver staining using the Silver Stain Plus kit (BioRad).

Ubiquitin chain restriction analysis (UbiCRest)

Ubiquitinated HIF-1α was immunoprecipitated from HeLa cells treated with 20 µM MG132 for 4 h as described above. Immobilized antigen-antibody complex was washed with 1× DUB buffer (see above), distributed into four different
tubes, spun down and resuspended again in 25 µl 1× DUB buffer. 5 µl of diluted DUBs were mixed with the substrate and incubated for 60 min at 37 °C before the reaction was stopped by adding 10 µl 4× LDS sample buffer. Samples were resolved on 4%-12% SDS-PAGE gradient gels and analysed by western blotting.

References

Figure S1

A. Fold change luciferase activity

B. Fold change Cezanne mRNA

C. Western blot showing Cezanne and Actin

D. HIF-1α

E. NF-κB

F. PG13

G. Western blot showing Cezanne, Rb, β-catenin, and Rel A

H. Western blot showing cleaved PARP, cleaved Caspase-3, Cezanne, and Actin

I. % apoptotic cells

Legend:
- NT: Non-targeting siRNA
- siCezanne: Cezanne siRNA
- Control: Non-treated
- Hypoxia: Hypoxic conditions
Figure S2

A

B

 fold change relative to NT normoxia

NT

siCezanne

 fold change relative to NT hypoxia

NT

siCezanne
Figure S4

A. Western blots showing the expression of HIF-1α, Cezanne, and Actin in U2OS cells treated with siCezanne and MG132.

B. Western blots showing the expression of HIF-1α, Cezanne, and Actin in U2OS cells treated with siCezanne, MG132, and hypoxia for 8 and 24 hours.

C. Western blots showing the expression of HIF-1α, Cezanne, and Actin in U2OS cells treated with siCezanne, Epoxomicin, and hypoxia.

D. Western blots showing the expression of HIF-1α, Cezanne, Rpn11, and Actin in U2OS cells treated with siCezanne, siRpn11, and hypoxia.

E. Bar graph showing the levels of HIF-1α in RCC4 cells treated with NT, siCezanne, HA, HA-VHL, and HA-VHL + DFX.

F. Bar graph showing the cell distribution in U2OS cells treated with NT and siCezanne.