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Abstract 
A wide spectrum of intracellular processes is dependent on the ability of cells to 
dynamically regulate membrane shape. Membrane bending by proteins is necessary 
for the generation of intracellular transport carriers and for the maintenance of 
otherwise intrinsically unstable regions of high membrane curvature in cell 
organelles. Understanding the mechanisms by which proteins curve membranes is 
therefore of primary importance. Here we suggest for the first time a quantitative 
mechanism of lipid membrane bending by hydrophobic or amphipathic rod-like 
inclusions which simulate amphipathic α -helices– structures shown to sculpt 
membranes. Considering the lipid monolayer matrix as an anisotropic elastic material, 
we compute the intra-membrane stresses and strains generated by the embedded 
inclusions, determine the resulting membrane shapes and the accumulated elastic 
energy. We characterize the ability of an inclusion to bend membranes by an effective 
spontaneous curvature, and show that shallow rod-like inclusions are more effective 
in membrane shaping than are lipids having a high propensity for curvature. Our 
computations provide experimentally testable predictions on the protein amounts 
needed to generate intracellular membrane shapes for various insertion depths and 
membrane thicknesses. We also predict that the ability of N-BAR domains to produce 
membrane tubules in vivo can be ascribed solely to insertion of their amphipathic 
helices. 
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Introduction 
  

Most cellular membranes have regions of very high curvature yet lipid 
bilayers resist bending (1). Therefore, active production of membrane curvature is one 
of the major challenges faced by a cell in the course of formation of its internal 
organelles and generation of membrane transport containers. How proteins can 
produce and stabilize the enormous range of membrane curvatures that exist in vivo is 
beginning to be understood.  

Generation of high membrane curvature requires action of specialized 
membrane associated proteins (2-4). These can either function as direct effectors by 
interactions with the membrane or as indirect scaffolds interacting with membranes 
via linking proteins (3). The list of proteins and protein complexes shown to be 
crucial for strong bending of membranes is constantly expanding (5-22). Complexes 
of clathrin with accessory proteins (2, 23), and COPI and COPII coat-complexes (7, 
24, 25) generate small vesicles. Narrow membrane tubules are produced by proteins 
of the dynamin family (see e.g. (19, 26-29)), BAR domain-containing proteins (9, 10, 
12, 13, 15, 18, 22), epsins (11), EHD-family proteins (8), C2 domain-containing 
proteins, such as synaptotagmins (17), and proteins of the reticulon and DP1/Yop1 
families (20, 21).  

Quantitative elaboration of the physical mechanisms by which proteins bend 
membranes is indispensable for classification of the rapidly accumulating 
phenomenology on the effects of proteins on membrane curvature and the 
understanding of the relationships between the structure of a protein and its efficiency 
in membrane shaping.  It was suggested that proteins can generate the membrane 
curvature either by embedding small hydrophobic or amphipathic regions into the 
membrane matrix (see for reviews (3, 4)) or by attaching the membrane surface to the 
intrinsically curved protein scaffolds by virtue of cognate charge interactions (3, 30). 

A common realization of the former mode of membrane bending referred to as 
the hydrophobic insertion mechanism is through a shallow embedding of amphipathic 
helices into the upper part of a lipid monolayer. Epsins were the first proteins shown 
to induce membrane curvature by amphipathic helix insertion (11). On interaction 
with phosphatidylinositol-4,5-biphosphate polar groups amphipathic α-helices fold 
and embed into the lipid monolayer matrix, transforming the flat membrane into 
tubules of ~20 nm diameter (11). Small G-proteins Arf1 and Sar1 expose amphipathic 
α-helices upon exchange of GDP to GTP, which results in the anchoring of such 
proteins to lipid bilayers and the subsequent bilayer bending (6, 14, 16). Amphipathic 
helices of N-BAR domains of amphiphysin and endophilin bind peripherally in the 
bilayer resulting in the midpoint of the helix insertion being aligned with the 
phosphate level of the lipid headgroups. This insertion is essential for generation of 
membrane tubules of 35-50 nm diameter which get converted into vesicles of the 
same diameter at increased amounts of the protein (13, 18).  The C2A and C2B 
domains of synaptotagmin-1 interact in Ca2+-dependent manner with the polar groups 
of negatively charged phospholipids and insert hydrophobic loops into the lipid 
monolayers at a depth of up to third of the monolayer thickness (31) resulting in the 
formation of narrow membrane tubes of ~17 nm diameter (17). 

  A number of proteins have the potential to scaffold membranes into curved 
shapes. These include dynamin family proteins (26, 32), BAR superfamily proteins 
(3, 12, 15), EHD2 (8), the clathrin coat (33) and COPI/IIcoats (25).  Notably, 
scaffolding proteins can contain hydrophobic and/or amphipathic fragments able to 
penetrate the membrane to a certain depth, thus contributing to the membrane 
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curvature generation. For example, while dynamin forms a helical oligomer capable 
of scaffolding high curvature, the variable loops of its PH domain are suggested to 
interact with the membrane and the VL1 loop is proposed to insert into the membrane 
(34-37).  The efficiency of membrane bending by N-BAR domains depends crucially 
on the integrity of their amphipathic helices (3, 13). COPI, COPII, and some clathrin 
adaptors, are recruited to the membrane by small G-proteins (Arf1p for AP1 and 
COPI, and Sar1p for COPII), which couple their respective scaffolding apparatuses to 
the potential to  bend membranes by insertion of the amphipathic α-helices (38). The 
reticulons and DP1/Yop1 family proteins possess two long hydrophobic hairpin 
segments which could induce membrane curvature changes by forming a wedge that 
occupies more space in the upper than the lower leaflet of a lipid bilayer (21). 

Hence, it is becoming clear that the majority of membrane bending proteins 
may employ membrane insertion of hydrophobic or amphipathic regions with, in 
some cases, a coupling to scaffolding domains.  

Here, for the first time we suggest and analyze quantitatively a mechanism by 
which the amphipathic and hydrophobic insertions bend membranes into tubular 
shapes with diameters of a few tens of nanometers. The analysis is based on a 
physical model of lipid monolayers. Our computations show that membrane insertions 
like amphipathic α -helices are more powerful in membrane bending than use of 
"non-bilayer" lipids, and that biologically relevant numbers of such insertions are 
sufficient to create even the extreme membrane curvatures of intracellular organelles 
and transport intermediates. Our analysis also considers the role of lipid monolayer 
coupling in curvature generation and demonstrates that shallow insertions are best 
suited to the production of high membrane curvature. We draw the experimentally 
testable predictions on the dependence of the membrane curvature on the bilayer 
thickness and the membrane area fraction occupied by the amphipathic helices. 

 
Qualitative essence of membrane bending by hydrophobic inclusions 

We consider an initially flat lipid membrane with rod-like inclusions inserted 
into its interior (Fig. 1). To grasp the major features of the mechanism of membrane 
bending by inclusions, we address here a simple case of two-dimensional 
deformations, meaning that the membrane adopts a form of a tube with rod-like 
inclusions ordered in rows along the tubular axis. The membrane shape is then 
characterized by the form of the tube cross-section. The diameter of the inclusion rod 
is assumed to be 1 nm, which is typical for an amphipathic α-helix with side chains; 
the lipid monolayer thickness is taken to be 2 nm.   

The inclusion pushes aside the elements of the membrane matrix and 
produces, in this way, the intra-membrane strains and stresses leading to the 
accumulation of elastic energy. The curving of the membrane from the initial flat 
configuration results in the partial relaxation of these stresses and minimizes the 
elastic energy.  

While being a part of a peripheral membrane protein, an amphipathicα -helix 
has a shallow membrane matrix penetration possibility. However, for generality and a 
broader understanding of the physics of membrane bending by small inclusions, we 
consider the effects of different modes of insertion including those where the 
inclusions reach the bilayer mid plane. The cases of deep insertions can account for 
membrane bending by isolated hydrophobic inclusions such as synthetic peptides 
mimicking fusion peptides.  

An inclusion inserted into one membrane monolayer results in curving of the 
whole bilayer. The extent of the bilayer bending depends on the way the monolayers 
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are coupled to each other. There are two kinds of such coupling (Fig.2). Due to their 
mutual attachment along the common hydrophobic interface the monolayers are 
always coupled in the transverse direction (perpendicular to the membrane plane). In 
addition, there may be monolayer coupling in the in-plane direction meaning that the 
areas of the two monolayers can not change independently (39).   

In most of the biologically relevant circumstances the inclusions are inserted 
only into small fragments of a large membrane such as the membrane regions 
destined for conversion into intracellular membrane carriers (Fig. 2a).  The two 
monolayers of such a fragment can, independently of each other, exchange their areas 
with the rest of the membrane, the latter providing a large reservoir of lipids (Fig. 2a). 
Due to the free and independent exchange of lipid between the reservoir and each of 
the monolayers of the membrane fragment in question, there is no in-plane coupling 
between the latter. The in-plane coupling comes into play if the inclusions are inserted 
across the whole area of a closed membrane. This happens, for example, in in vitro 
experiments where proteins are added to liposomes and embed without spatial 
restriction everywhere across the entire surfaces of the lipid membranes (Fig. 2b).  In 
this case, there is no reservoir for the monolayer area exchange, and, provided that the 
effects of slow flip-flop of lipid molecules between the monolayers can be neglected, 
the expansion of one monolayer cannot proceed independently of deformation of the 
second monolayer.  

Membrane monolayers subject to the transverse coupling only, will be referred 
to as the laterally uncoupled monolayers. In cases where there exists also in-plane 
coupling, the monolayers will be called laterally coupled. While in vitro experiments 
on liposome membrane curvature may not therefore closely mimic the in vivo 
situation, the potential for lateral monolayer coupling at the plasma membrane exists 
and may be provided by, for example, actin based corrals, which would limit lipid 
exchange with endocytic sites. For completeness we model both possibilities. 

Consider first the case of laterally coupled monolayers. A shallow insertion of 
inclusions into the upper monolayer expands its upper part, while the rest of this 
monolayer underneath the inclusions and the lower monolayer resist this expansion. 
To minimize the generated  T stresses that are asymmetrically distributed through the 
bilayer depth, the membrane must bulge towards the upper monolayer (Fig. 3a). 
According to a common convention, curvature resulting from bulging in this direction 
is defined as positive. A somewhat deeper insertion up to the middle of the upper 
monolayer expands this monolayer (Fig. 3b). Because of the lateral coupling between 
the monolayers, this expansion is opposed by the lower monolayer. According to the 
monolayer area asymmetry model (39), this leads to further generation of asymmetric 
stresses within the membrane and a positive membrane curvature (Fig. 3b). If the 
inclusion penetrates deeper into the membrane and reaches its mid plane, the strains 
and stresses are distributed symmetrically within the bilayer (Fig. 3c), so that bending 
in either direction will not relax the elastic energy. Such insertion does not induce 
membrane bending but results in the overall expansion of the membrane area (Fig. 
3c). An even deeper inclusion insertion expands the lower membrane part with 
respect to its upper part, which results in bending towards the lower monolayer and, 
hence, generation of a negative curvature (Fig. 3d). 

In the case of laterally uncoupled monolayers with inclusion inserted in the 
upper leaflet of the membrane, a qualitative consideration similar to the above one has 
to be applied to the upper monolayer only. Due to the transverse coupling between the 
monolayers, bending of the upper monolayer will result in bending also of the lower 
one, and, hence, of the whole membrane. Therefore, similarly to the above case of 
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coupled monolayers, shallow insertions generating asymmetric strains in the upper 
monolayer produce a positive curvature of the latter and of the whole membrane 
(Fig.4a). However, a bare expansion of the upper monolayer by an inclusion reaching 
its middle (Fig. 4b) will not result in the membrane bending since the upper 
monolayer can expand independently of the lower one due to the lipid exchange with 
the reservoir. As a result, for this depth of the inclusion insertion the membrane will 
be flat (Fig. 4b). This is different from the above case of coupled monolayers, in 
which insertion up to the middle of the upper monolayer resulted in the membrane 
curvature (Fig.3b). Penetration of an inclusion into the lower part of the upper 
monolayer generates its negative curvature, and, hence, a negative curvature of the 
whole membrane (Fig.4c).  
 
Model 

Elastic model of a lipid monolayer. A large literature exists on modeling 
membrane deformations by proteins spanning the whole lipid bilayer and generating 
small membrane curvatures (40-44).  These studies employ the Helfrich model of 
bending elasticity considering a membrane as an elastic surface (1). Here we can not 
use this common description since the cross-section of an inclusion in question is 
smaller than the lipid monolayer thickness and we are interested in the intra-
membrane deformations for different depths of the inclusion insertion generating 
large curvatures. Therefore, we consider a lipid monolayer as a three-dimensional 
layer with finite thickness and bulk elastic properties. To describe the system, we use 
the standard theory of elasticity of an anisotropic three-dimensional medium  (45). 
The volume density of the elastic energy is determined by 

 lmikiklmikik uuuf λσ
2
10 += ,     (1) 

where is the tensor of the initial intra-monolayer stresses existing before the 
inclusion insertion, 
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 Since we consider only the tubule-like shapes of membranes, we choose the 
Cartesian system of coordinates, with the x-y-axes lying in the initial membrane plane, 
the y-axis directed along the tube axis, and x-axis lying in the tube cross-section 
originating ( ) in the middle of inclusion (Fig. 1). The z-axis points towards the 
hydrophilic heads and originates (z=0) at the bottom surface of the monolayer.  The 
position of the inclusion will be characterized by the coordinate of its center, .    

0=x

incz
As the lipid material has properties of an isotropic liquid in the lateral (x-y) 

direction and of a solid film in the transverse z-direction, the system is described by 
only four independent elastic moduli (Appendix A): the moduli of volume stretching-
compression in the lateral, yyyyxxxx λλ = , and normal, zzzzλ , directions; the modulus of 
coupling between these two kinds of deformation, xxzzλ ; and the modulus of 
transverse shear deformation, xzxzλ .   

For a quantitative analysis we need the values of all these bulk elastic moduli 
and their dependencies on the position within the lipid monolayer matrix.  
To the best of our knowledge, only little experimental information has been obtained 
on the local elastic moduli of the lipid monolayer matrix. The orientational and 
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positional average of the volume compressibility of lipid material was measured to 

constitute about 
2

115 10 cm
dyne

−⋅  (46) meaning that the corresponding averaged volume 

stretching-compression elastic modulus is 2
9102

m
N

⋅ . Yet separate measurements 

exist neither of anyone of the four bulk elastic moduli, nor of their dependence on the 
position within the monolayer. At the same time, the values have been determined for 
the overall elastic moduli characterizing a lipid monolayer as a surface, namely, the 
moduli of monolayer bending,  (47), area stretching-compression, 

 (48), and tilt of the lipid hydrophobic chains with respect to the 
membrane plane, 

J20104 −⋅≈κ
mN /1.0≈Γ

mNt /03.0≈κ  (49, 50). In addition, experimental studies revealed 
position within lipid monolayers of the so called neutral surface, an intra-monolayer 
plane for which the deformations of bending and stretching-compression are 
energetically decoupled (51-53). For monolayers of different lipid compositions, the 
neutral surface was found to lie close to the interface between the lipid polar heads 
and the hydrocarbon tails at a depth of about one third of the monolayer thickness, 

meaning that the coordinate of neutral surface can be taken to be hzN 3
2

= .  

There are few relationships between the bulk elastic moduli of the monolayer 
material and the overall elastic moduli of lipid monolayer as a surface. The transverse 
shear modulus xzxzλ  can be related to the monolayer tilt modulus tκ  by  

∫ =
h

txzxzdz
0
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where the integration is performed over the monolayer thickness . We will assume 
that the two volume stretching-compression moduli are equal at any position within 
the monolayer, 

h

zzzzxxxx λλ = , and denote their values by STλ .  The modulus STλ and the 
coupling modulus xxzzλ  are related to the overall monolayer stretching-compression 
modulus by  Γ

∫ Γ=−
h

ST dz
ST

xxzz

0
2

2

)1(
λ
λ

λ .      (3) 

Finally, the position of the monolayer neutral surface (51-53), , corresponds to 
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The bulk elastic moduli must satisfy the relationships Eqs.(2-4).   
To satisfy Eq.4 for the position of the neutral surface , we assume that the 

moduli 
Nz

STλ and xxzzλ have different values in the regions of the lipid polar heads and 
the hydrocarbon tails. Taking the interface between these two regions to lie 

at hz
3
2

0 = , we present the two bulk moduli as step functions 
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Inserting Eq.5 into Eq.4 and requiring that, in accord with the measurements, 

the coordinate of the neutral surface coincides with that of the interface between the 

polar groups and the hydrocarbon tails, hzzN 3
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Eq.3 and a requirement that the positional average of the bulk stretching-compression 
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The transverse shear modulus is assumed to be constant through the 
monolayer thickness and equal .  27 /105.1 mNxzxz ⋅=λ

In the case of coupled monolayers, we take a vanishing shear modulus xzxzλ  at 
the interface between the two monolayers. 

We assume the inclusions to be much more rigid than the lipid material, and, 
therefore, neglect the potential for the inclusions themselves to be deformed. 

 
Computations. The equilibrium membrane configurations can be found by 

solving a set of equations for the intra-monolayer displacements following from 
minimization of the elastic energy (Eq.1) (45). We assume that the inclusions are 
evenly distributed along the circumference of the membrane tube cross-section, and 
using the related symmetry of the cross-section shape we perform calculations for a 
membrane element corresponding to half distance between the neighboring inclusions 
(Fig. 1). The total membrane shape is composed of such elements.  

lu

The equilibrium equations along with the boundary conditions and the details 
of the computation procedure are presented in the Appendix B.  

To analyze the case of the laterally uncoupled monolayers, we compute the 
deformations of an isolated monolayer and determine the effective monolayer 
curvature  generated by the inclusions (Appendix B). The curvaturem

SJ  of the bilayer 
mid plane, b

SJ , can then be expressed ,T  with good accuracy, through the induced 

curvatures of the upper, , and lower, , monolayers, out
SJ in

SJ )(
2
1 in

S
out
S

b
S JJJ −⋅= .  

In the case of laterally coupled monolayers, we compute deformations of the 
bilayer as a whole, accounting for the ability of the monolayers to locally slide with 
respect to each other, in spite of the global coupling between their areas, by taking a 
vanishing shear modulus xzxzλ  at the interface between the two monolayers.  

To analyze the results, it is convenient to relate the induced curvature to the 
area fraction occupied by the inclusions on the membrane surface,  

L
r

=φ ,         (6) 

where r  is the radius of the inclusion cross-section and L is the half distance between 
the inclusions (Fig. 1). 
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In the case of an isolated monolayer, we present this relation in the form 
φς ⋅= inc

m
SJ ,        (7)  

where is the monolayer curvature and m
SJ incς  can be seen as a spontaneous curvature 

of an effective particle composed of the inclusion and the deformed portion of the 
lipid matrix. The value incς referred to below as the inclusion spontaneous curvature 
can, in general, depend on the area fraction φ . 

In the case of laterally coupled monolayers, where the computed value is the 
curvature of the bilayer, , we will use the relationship b

SJ

φς ⋅= inc
b
SJ

2
1 ,        (8) 

taking into account that the tendency of one monolayer to bend due to the inclusion 
insertion is offset by the second monolayer and the resulting bilayer curvature is 
smaller than the favored monolayer curvature by a factor of two. 
 We T  perform here the calculations for a vanishing initial intra-monolayer 
stress profile, . Analysis presented in the Appendix C shows that , does 
not significantly change the induced membrane curvature. 

)(0 xLσ )(0 xLσ

We perform the calculations by the designated COMSOL Multiphysics 3.3 
software. 
 
 
Results 

Isolated monolayer (laterally uncoupled monolayers). A typical conformation 
of a bilayer consisting of laterally uncoupled monolayers with inclusions inserted at a 
relatively large distance from each other is presented in Fig.5. The internal strains and 
stresses of the lipid matrix are maximal near the inclusion and decay along the 
monolayer with a characteristic length ξ  of a few nanometers. Such an order of 
magnitude of the relaxation length could be expected based on the ratio between the 
overall shear, mN/m 03=tκ , and bending, ,  moduli of a lipid monolayer J104 20−⋅=κ

nm
t

1≈
κ
κ  (49). 

The monolayer as a whole undergoes sharp bending within the strained areas 
around the inclusions and remains nearly flat in the regions between the inclusions 
where the strains vanish. The resulting monolayer shape is not smoothly circular but 
can be characterized by an effective curvature  (see Appendix B). Dependence of 

 on the inclusion area fraction 

m
sJ

m
sJ φ  (Eq.6) is presented in Fig.6 for a depth of 

insertion typical for amphipathic α -helices (13). This dependence appears linear 
unless φ  approaches the values for which the distance between the adjacent 
inclusions is comparable to the decay length of the intra-monolayer stresses,ξ . For 
even smaller inter-inclusion distances, the growth of with increasing m

sJ φ becomes 
stronger than linear (Fig.6).  

In the range of the linear dependence of onm
sJ φ , the effective spontaneous 

curvature of the inclusion, incς , defined according to Eq.7, is constant and represents a 
convenient characteristic of the capability of the inclusion to curve the monolayer. 
The value of the inclusion spontaneous curvature is presented in Fig.7a as a function 
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of the insertion depth. In early stages of insertion incς  grows with the insertion depth 
and reaches its maximal value when more than half of the inclusion cross-section is 
embedded into the monolayer matrix. The maximal value of incς corresponds to the 
insertion depth of about 40% of the monolayer thickness ( h⋅4.0 ) typical for the 
amphipathic α -helices (13). Further insertion of the inclusion results in the 
monolayer unbending and the inclusion spontaneous curvature vanishes when the 
center of the inclusion attains a position just above the monolayer mid plane. 
Continuation of the inclusion insertion results in generation of a negative monolayer 
curvature (Fig. 7a).  

It is instructive to determine the dependence of the effective inclusion 
spontaneous curvature incς on the lipid monolayer thickness, , which is variable for 
different cell membranes. This dependence is illustrated in Fig. 8. The value of 

h

incς  is 
weakly dependent on h  (Fig.8(a)). The slow decrease of incς  with increasing h  is 
illustrated in Fig.8(b) for the insertion depth of about 0.8nm characteristic for the 
amphipathic α -helices. 

 
Laterally coupled monolayers. A representative conformation of a bilayer with 

laterally coupled monolayers containing inclusions is presented in Fig.5c. The 
spontaneous curvature of the inclusion, incς , determined according to Eq.8 from the 
computed bilayer curvature  is presented in Fig.7b. There is a qualitative difference 
between the behavior of 

b
SJ

incς in the cases of laterally uncoupled and coupled 
monolayers. In the latter case incς remains positive for all depths of the inclusion 
penetration into the upper membrane monolayer, while in the former case incς changes 
its sign as discussed above. The reason for this difference is stretching of the upper 
monolayer area induced by the inclusions, which has no effect on the curvature for the 
case of laterally uncoupled monolayers but generates a positive contribution to the 
bilayer curvature in the case of laterally coupled monolayers. At the same time, in the 
cases of both laterally uncoupled and coupled monolayers, the inclusion spontaneous 
curvature reaches its maximum for shallow insertions of the inclusion into the 
membrane matrix (Fig.7).  
 We define the energetic penalty of the inclusion insertion as the elastic energy 
accumulated within the monolayer matrix in the course of embedding of the inclusion. 
The density of this energy per unit length of the cylindrical inclusion is presented in 
(Fig.9) as a function of the insertion depth. The non-monotonous character of this 
function is related to the uneven profile of the intra-monolayer elastic moduli (Eq.3) 
and a complex distribution of strains generated within the monolayer matrix by a 
cylindrical inclusion. For the typical depth of h⋅4.0 , the energy density is 1.2kBT/nm.  
 

The hydrophobic insertion mechanism is sufficient for N-BAR domains to 
tubulate membranes. The N-BAR domains constitute one of best explored groups of 
protein modules capable of membrane bending in vivo and in vitro (9, 10, 13, 18). The 
N-BAR domain-containing proteins amphiphysin and endophilin are very important 
for membrane budding in endocytosis, and their N-BAR domains were shown to 
convert flat lipid bilayers into tubules of 35 to 50 nm diameter (13, 18). As mentioned 
in the introduction, the N-BAR domains have the potential to bend membranes 
according to two mechanisms: scaffolding the membrane by attaching its surface to 
the crescent-shaped BAR dimer, and by inserting amphipathic helices into the 
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membrane matrix. Dimerization of N-BAR domains results in an effective local 
concentration of the amphipathic helices underneath the BAR scaffold, and, hence, 
enhances the ability of the protein to bend membranes. A question arises about the 
contribution of the hydrophobic insertion mechanism to the membrane tube formation 
by N-BAR domains and whether this mechanism may solely drive the entire 
membrane bending process.   

To answer this question we computed the area fraction φ  of the α -helices 
needed to produce membrane tubes of 35 to 50 nm diameter. The results are 
illustrated in Fig.10, which presents the range of the required values of φ for different 
depths of insertion of the α -helices. We found that for a broad range of insertion 
depths, the required inclusion area fractions φ  are fewer than 15%. For the most 
relevant depths of around , to produce the experimentally observed curvature, 
only 7-10% of the tubule area has to be occupied by the inclusions in the case of 
laterally uncoupled monolayers and 9-15% for laterally coupled monolayers. The 
obtained values of 

h⋅4.0

φ are feasible. Indeed, according to crystallographic measurements 
the total area occupied in the membrane plane by one N-BAR dimer and one α -helix 
are about ~47 nm2 and ~6 nm2, respectively. Hence, for amphiphysin, which has two 
α -helices per N-BAR dimer, the maximal possible area fraction φ corresponding to a 
complete coverage of the membrane by the N-BAR domains is about 25%. For 
endophilin having four α -helices per N-BAR dimer assuming that the second 
amphipathic helix on each N-BAR monomer has the same length and inserts to the 
same depth, the maximal φ can approach 50%. In both cases, the limit of the α -helix 
area fraction is considerably larger than the inclusion amount required to induce the 
35-50 nm tubes. This means that the hydrophobic insertion mechanism alone may 
drive the experimentally observed membrane bending by N-BAR domains. However, 
given that BAR domain alone can generate membrane curvature in vitro, one should 
not ignore the significance of this structure. Given the potency of curvature generation 
by amphipathic helix insertions it is likely that BAR domains function more as 
curvature stabilizers/limiters (or sensors). 
 
Discussion  

We computed the membrane deformations generated by cylindrical inclusions 
which model the amphipathic α-helices inserted into the membrane matrix, and 
analyzed the dependence of the resulting membrane curvature on the depth of the 
inclusion insertion and the area fraction occupied by the inclusions on the membrane 
surface. We considered the effects of inclusions in two cases. In the first case, perhaps 
most relevant for the intracellular processes of membrane bending, the membrane 
monolayers are laterally uncoupled. This corresponds to a situation where the 
inclusions are inserted only into a small fragment of a large membrane for example 
representing the site of a forming endocytic vesicle on the plasma membrane. In the 
second case, which is likely most relevant for in vitro experiments with lipid vesicles 
(or areas of intracellular membranes where lateral translocation of lipids is limited), 
the inclusions are inserted along the whole membrane and the membrane monolayers 
are laterally coupled.  
  

Amphipathic helices are potent membrane curvature generators. According to 
Fig. 6, the dependence of the induced monolayer curvature, , on the inclusion 
surface fractions 

m
SJ

φ is practically linear as long as the inclusions do not occupy more 
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than 10% of the membrane surface )1.0( <φ  which corresponds to inter-inclusion 
separations that are larger than . Under these conditions, the effective 
spontaneous curvature of the inclusion,

nm10
incς , determined according to Eq.7, is a 

convenient characteristic of the ability of the inclusion to bend lipid monolayers. A 
representative value of incς  corresponds to a typical penetration depth of the 
amphipathic helices, which constitutes about 40% of the monolayer thickness (13) 
( n , in Fig. 7). According to Fig.7, such a penetration depth provides the 
maximal possible value of the inclusion spontaneous curvature which, in the case of 
laterally uncoupled monolayers, equals . It is instructive to compare 
this value with the spontaneous curvatures of phospholipids.  

m

inc

7.1=incz

1nm75.0 −≈incς

While the inclusion spontaneous curvature is positive i.e. produces membrane 
bulging towards the polar heads, most phospholipids have a negative spontaneous 
curvature (4). The exceptions are lysolipids which lack one out of two hydrocarbon 
chains and phospholipids whose polar heads carry an electric charge such as 
phosphatidylserine and phosphatidic acid under neutral pH. The largest positive 
spontaneous curvature of physiologically relevant lipids measured to date is that of 
lysophosphatidylcholine (LPC) and equals  (54). LPC belongs to the 
class of so-called "non-bilayer" lipids since they do not self-organize in bilayer 
structures in the absence of canonical lipids necessary for bilayer integrity. Hence, 
according to our computations, the inclusion spontaneous curvature

126.0 −≈ nmLPCς

 T ς  is 
considerably larger than the spontaneous curvatures measured for any of the 
positively curved non-bilayer lipids. This means that amphipathic α -helices are more 
powerful than phospholipids in generating positive membrane curvature.  

 
Repartitioning of non-bilayer lipids does not impede membrane bending by 

inclusions. It may be argued that bending of cell membranes containing lipids of 
different kinds by amphipathic inclusions will be much weaker than that predicted by 
the present study which assumes a homogeneous lipid composition. Indeed cell 
membranes include a small fraction of non-bilayer lipids such as diacylglycerol 
(DAG) which are characterized by strongly conical effective molecular shapes or a 
large negative spontaneous curvature (53). Redistribution of such lipid molecules into 
the direct proximity of the inclusions may considerably reduce the stresses generated 
by the inclusions, and hence, weaken the membrane tendency to bend. Estimations 
based on our results show however, that this effect is unlikely to be significant. 
Indeed, a maximal elastic energy, which can be released by one conically shaped lipid 
molecule approaching the helical inclusion, can be estimated as elliprelax fl ⋅−=µ  , 
where is the lipid dimension in the membrane plane and is the 
accumulated elastic energy per unit length of the inclusion. Based on Fig. 9, for the 
typical insertion depth of the amphipathic 

nm 8.0≈lipl elf

α -helices ( nm7.1≈incz ) the value of  in 
the biologically relevant case of laterally uncoupled monolayers is , 
meaning that

elf
nmTkf Bel /2.1≈

TkBrelax 1−≈µ . At the same time, the entropic penalty for the lipid 
redistribution can be estimated as lipBent cTk ln⋅−=µ  per lipid molecule, where is 
the molar fraction of the strongly conically shaped lipid in the membrane and 

lipc

kcal/mol 6.0≈TBκ  is the product of the Boltzmann constant and the absolute 
temperature. Taking into account that the molar fraction of molecules such as DAG in 
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cell membranes is small and can be estimated as 001.0≤lipc , the entropic penalty is 

TkBent 7≥µ , which exceeds the energy gain by an order of magnitude, relaxent µµ >> . 
Hence, the redistribution effects must be minor.  
 

Sensitivity of results to the model’s assumptions and parameters.  The major 
assumption of our model is a step-like profile of distribution through the lipid 
monolayer matrix of the local elastic moduli (Eq.5). To test the sensitivity of the 
model predictions to this assumption, we repeated the calculations for a completely 
different trans-monolayer distribution of the elastic moduli, which also satisfies the 
experimental data. We assumed a homogeneous distribution of the elastic moduli 

STλ and xxzzλ  throughout the whole monolayer thickness except for the plane hz
3
2

= , 

where the elastic moduli were larger than elsewhere (a δ -function like profile). The 
results were similar to those presented above (not shown) meaning that the predictions 
are insensitive to the details of the unknown distribution of the intra-membrane 
elasticity. 

Another issue concerns the specific parameter values we used and which are 
not known accurately. The major parameter is the transverse shear modulus xzxzλ . We 
performed computations for several values of this parameter, as well as for different 
monolayer thicknesses and different inclusion radii, varying within reasonable ranges. 
The results demonstrate that the sensitivity to these parameters of the effective 
spontaneous curvature of the inclusion, which is the major output of this study, is 
weak (Appendix D). While the elastic energy of the inclusion insertion does exhibit a 
noticeable dependence on the parameter values (Appendix D), it remains of the same 
order of magnitude so that the qualitative conclusions based on this energy do not 
change. 

We presented the results for inclusions having a shape of a cylindrical rod 
with a radius corresponding to the size of a typical α -helix with side chains. Probing 
computation for a square-like cross-section of the inclusions provided very similar 
values (not shown) of the inclusion effective spontaneous curvature showing that the 
major predictions of the model are insensitive to the details of the inclusion shapes. 
The dependence of the results on the size of the inclusion cross-section is presented in 
the Appendix D (Fig. D4). While the inclusion effective spontaneous curvature does 
change with the radius of the inclusion cross-section, qualitatively, these changes are 
not significant. 

Finally, the present work addresses two-dimensional deformations of the 
membrane. Preliminary computations (results not shown) demonstrate that three-
dimensional membrane deformations generated by rod-like inclusions mimicking 
amphipathic α -helices are characterized by curvatures very similar to those obtained 
in the present study (to be published elsewhere).  

  
 Conclusions.  Insertion of small hydrophobic inclusions into the upper part of 
membrane monolayers is a potent method for proteins to induce membrane curvatures 
in vivo. Notably, there are differences in the physics of bending by inclusions for the 
cases of  T laterally coupled and uncoupled membrane monolayers. In the biologically 
relevant case of laterally uncoupled monolayers the "shallowness" of the inclusion 
insertion is crucial for the membrane bending. The "shallow" membrane inclusions 
penetrating about 40% of monolayer thickness (13) are predicted to be extremely 
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effective in membrane shaping and their ability to produce positive  curvatures 
considerably exceeds that of non-bilayer lipids. 
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Appendix A 
 
Non-vanishing components of the tensor of elastic moduli.  
 
The contribution to the elastic energy of an arbitrary anisotropic medium (Eq.1 of the 
main text) depending on the elastic moduli  

lmikiklm uuf λ
2
1

= ,       (A1) 

can be simplified for the lipid monolayer, which has properties of an isotropic liquid 
in the lateral (x-y) direction. In this case, the energy (Eq.A1) must be invariant with 
respect to rotations around the z-direction perpendicular to the x-y plane. Analysis of 
the system with such symmetry showed (45) that there are only five independent 
components of the elastic modulus tensor, which are xxxxλ  , zzzzλ , xxzzλ , xzxzλ , xxyyλ . 
The corresponding elastic energy per unit volume is given by (45)  

( )( ) ( ) ( )

( ) ( ) ( ) ( ) (

2 2

2 22

1 1
4 2

12 4
4

xxxx xxyy xx yy zzzz zz xxzz xx yy zz

xzxz xz yz xxxx xxyy xx yy xy )
2

,

f u u u u u u

u u u u u

λ λ λ λ

λ λ λ

= + + + + +

⎡ ⎤ ⎡+ + + − − +⎢ ⎥ ⎢⎣ ⎦ ⎣
⎤
⎥⎦

 (A2) 

the last term of this expression corresponding to the lateral shear. Because of the 
lateral fluidity of the monolayer, the energy of the lateral shear must vanish meaning 
that xxxx xxyyλ λ= . The final form of the free energy is 

 ( ) ( ) (2 2 21 1 2
2 2xxxx xx yy zzzz zz xxzz xx yy zz xzxz xz yzf u u u u u u u uλ λ λ λ= + + + + + + )2 , (A3) 

and the only four non-vanishing independent elastic moduli are xxxxλ  , zzzzλ , xxzzλ , 

xzxzλ . 
 
 
 
Appendix B 
 
Equilibrium equations and their solution.  
We derive the equilibrium equations based on the local force balance. The condition 
of local mechanical equilibrium, which is a vanishing total force acting on each 
infinitesimal element of the system, is expressed through the gradient of the stress 
tensor ikσ  by (45) 

 0=
∂
∂

k

ik

ξ
σ .       (B1) 

The stress tensor, , consists of a contribution of the deformation 
expressed by a product of the strain tensor  and the elastic modulus tensor 

0
iklmiklmik u σλσ +=

lmu iklmλ , 
and the initial stresses . In the following we will consider only the former 
contribution to the stress tensor since  must satisfy on its own the equation 
(Eq.B1) provided that the initial configuration is an equilibrium one.  

0
ikσ

0
ikσ

Based on Eq.B1, we can write one equilibrium equation for each spatial 
direction. To this end, we first express explicitly the components of the stress tensor 
through the strains. Using the relationships between the non-vanishing components of 
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the elastic modulus tensor ( )  derived in 
the Appendix A, the components of the stress tensor can be presented as  

, , ,xxxx yyyy xxyy zzzz xzxz yzyz xxzz yyzzλ λ λ λ λ λ λ λ= = = =

       (B2) 

( )
( )

,

,

2 ,
2 .

xx yy xxxx xx yy xxzz zz

zz zzzz zz xxzz xx yy

xz xzxz xz

yz xzxz yz

u u u

u u u

u
u

σ σ λ λ

σ λ λ

σ λ
σ λ

= = + +

= + +

=

=
Plugging these relations into Eq.B1 and after some algebra, we get the equilibrium 
equations for a monolayer with rotational invariance with respect to the z-axis and 
lateral fluidity 

 

( )

( )

( )

22 2 2

2 2

2 22 2

2 2

222 2 2

2 2 2

0

0

yx x z
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y yx z
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yxz z z
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uu u u
x x y z x z

u uu u
y x y z y z

uuu u u
x y z x z y z

λ λ λ λ

λ λ λ λ

λ λ λ λ
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⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪ ⎞⎪ =⎟⎪ ⎟

⎠⎩

.  (B3) 

Now, considering the case of two-dimensional deformations, where the y-axis 
represents the tubular axis, we can simplify the former set of equations, 

 
( )

( )

2 2 2

2 2

22 2

2 2

0

0

x x z
xxxx xzxz xxzz xzxz

xz z
xzxz zzzz xxzz xzxz

u u u
x z x z

uu u
x z x z

λ λ λ λ

λ λ λ λ

⎧ ∂ ∂ ∂
+ + + =⎪ ∂ ∂ ∂ ∂⎪

⎨ ⎛ ⎞∂∂ ∂⎪ + + + =⎜ ⎟⎪ ∂ ∂ ∂ ∂⎝ ⎠⎩

.    (B4) 

 
The equilibrium equations (Eq.B4) have to be solved for a membrane element 

related to one inclusion as illustrated in Fig.1. To derive the boundary conditions for 
this solution, we characterize the position of the inclusion by coordinates of its 
center: , and . Based on the circular shape of the inclusion cross-section, 
the horizontal displacement  at the left boundary of the membrane element, , 
must be: 

0=x inczz =

xu 0=x

2 2

0 :
( 0, )

( ) :
inc

x
inc inc

z z r
u x z

r z z z z

< −⎧⎪= = ⎨
r− − ≥⎪⎩ −

,     (B5) 

where r is the inclusion radius.  
The vertical displacement at the left boundary must be constant for the region 

of insertion,  
left

z zzxu 0),0( == for .       (B6) rzz inc −≥
The top and bottom surfaces of the monolayer elements are free, and, 

therefore, the stresses ikσ must vanish on these boundaries. 
Finally, the right boundary of the membrane element separated from the left 

one by a distance L , is a symmetry plane. Therefore, it must remain straight but can 
rotate with respect to the left boundary by certain angle θ and get shifted in the 
horizontal and vertical directions by and , respectively.  rightx0

rightz0
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We solve numerically the equilibrium equations (Eq. B4) with the above 
mentioned boundary conditions. We then compute the elastic energy of the obtained 
conformation by integrating the energy density (Eq.1 of the main text) over the 
volume of the membrane fragment, and seek for the parameter values , , 

and 

leftz0
rightz0

rightx0 θ corresponding to minimum of this energy. The resulting parameters 
determine the final membrane shape. 
 Although the obtained membrane shape is not ideally circular (Fig.2) we can 
define its effective curvature, , by the relationship SJ

0

sin
S rightJ

L x
θ

=
+

,       (B7) 

where the values of θ and  are found in the course of the energy 
minimization. 

rightxL 0+

 
 
 
Appendix C 
 
Effect of the initial lateral stress profile 
 
To model the distribution of the initial stresses over the monolayer thickness, we 
follow the results of the extensive previous studies of this issue (55) and assume the 
initial stresses to be directed only along the monolayer plane and to be isotropic in 
this plane . We take the distribution of through the monolayer 
thickness to be similar to the stress profile found by computer simulations (56). The 
parameters of this distribution, have to be specified based on the relationship between 

and the monolayer spontaneous curvature in the initial state   determined at 
the neutral surface,  

)(000 zLyyxx σσσ == )(0 zLσ

)(0 zLσ 0
sJ

∫∫ −⋅−−⋅−=
h

N
ST

xxzz
ST

h

NLS dzzzdzzzzJ
0

2
2

2

0

00 )()1(2/)()(
λ
λλσ ,   (C1) 

where the integration is performed over the monolayer thickness. The initial stress 
profile we use corresponds to the monolayer spontaneous curvature of 

characterizing the most abundant lipid DOPC (57).  10 nm 1.0 −−=SJ
We took into account the initial inter-monolayer stress profile, , by 

computing deformation of the whole bilayer in the case of laterally coupled 
monolayers. According to our results, , practically, does not change the bilayer 
conformation and, consequently, the inclusion spontaneous curvature (Fig. C1). This 
is expected since the effects of a non-vanishing on the shapes of the two 
monolayers mutually compensate and do not affect the bilayer shape. At the same 
time, the energetic penalty of the inclusion insertion is sensitive to . Fig.C2 
represents the elastic energy density per unit length on the cylindrical inclusion for the 
case of laterally coupled monolayers with and without . According to these 
results, the initial stress profile noticeably alters the energetic penalty of the inclusion 
insertion.  

)(0 zLσ

)(0 xLσ

)(0 zLσ

)(0 zLσ

)(0 zLσ
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Appendix D 
 
 Sensitivity of the results to the value of the system parameters.  
 

We explored the sensitivity of the computed membrane curvature induced by 
the inclusions and the energy penalty of the inclusion insertion to the value of the 
monolayer transverse shear modulus which is not known with a good accuracy and of 
the lipid bilayer thickness which varies for different cell membranes.  

Fig. D1 shows that the inclusion spontaneous curvature incς  is practically 
independent of the specific value of xzxzλ  as long as the latter remains within a 
reasonable range. 

Figs. D2 and D3 illustrate the sensitivity of the results obtained for the case of 
coupled monolayers to the monolayer thickness h  and the transverse shear 
modulus xzxzλ . Dependence of incς  of the parameters is similar to that obtained for the 
uncoupled monolayers. The energy penalty is weakly sensitive to the values of but 
varies considerably with 

h
xzxzλ . 

Fig. D4 shows the dependence of the effective spontaneous curvature of the 
inclusion on the inclusion radius for both laterally uncoupled (Fig. D4a) and coupled 
(Fig. D4b) monolayers. The sensitivity of these results to the inclusion radius is weak 
for a reasonable range of the inclusion size. 
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Figure legends 
 

Fig. 1. Schematic representation of lipid monolayer bending (lipid molecules shown 
in light blue) by insertion of a cylindrical inclusion  (shown in dark blue), where L is 
the half distance between the inclusions, h  is the monolayer thickness, and  is the 
inclusion radius. (a) The monolayer is flat before the inclusion insertion; (b) the 
monolayer bends as a result of inclusion insertion.  

r

 
Fig.  2. Different cases of monolayer coupling within a bilayer. (a) Laterally 
uncoupled monolayers. The inclusions (rectangles) are inserted only into a small 
fragment of a large membrane. The two monolayers of the fragment can 
independently exchange lipids with the monolayers of the surrounding membrane 
which plays a role of lipid reservoir (the exchange is indicated by the arrows). (b) 
Laterally coupled monolayers. The inclusions are inserted across the whole area of a 
closed membrane. The effects of slow trans-monolayer flip-flop of lipids are 
neglected.  
 
Fig. 3. Qualitative essence of the mechanism of membrane bending by small 
cylindrical inclusions. The case of laterally coupled monolayers. (a) A shallow 
inclusion insertion expands the upper layer of the membrane (left). Partial relaxation 
of the generated stresses results in positive curvature ( ) (right). (b) Deeper 
insertion produces an expansion of the upper monolayer (left), which due to the lateral 
coupling generates stresses in the lower monolayer leading to positive membrane 
curvature (right). (c) Insertion in the bilayer mid plane generates symmetrically 
distributed stresses, causing an overall membrane expansion but no curvature. (d) 
Insertion into the lower monolayer expands the lower part of the membrane, hence 
generating negative curvature (

0J >

0J < ). 
 
Fig.  4. Qualitative essence of the mechanism of membrane bending by small 
cylindrical inclusions. The case of laterally uncoupled monolayers. (a) A shallow 
inclusion insertion expands the upper part of the upper monolayer (left), which 
generates a positive curvature of the upper monolayer leading to positive curvature of 
the whole membrane ( ) (right). (b) Deeper insertion produces a bare expansion 
of the upper monolayer, which, due to the monolayer uncoupling, does not generate 
curvature. (c) Insertions in the lower portion of the upper monolayer (left) induces 
negative membrane curvature (

0J >

0J < ). 
 
Fig.  5. A typical conformation of a membrane with cylindrical inclusions (dark blue). 
(a) The case of laterally uncoupled monolayers (where the second monolayer is not 
considered to influence the ability to bend). The membrane shape corresponds to the 
preferred shape of the upper monolayer containing the inclusions as if the lower 
monolayer (depictured in gray) would not resist bending and just fit the upper one. (b)  
The case of laterally uncoupled monolayers. The membrane shape is determined by 
the interplay of the tendency of the upper monolayer to adopt the conformation 
presented in (a) and the resistance of the lower monolayer to bend. (c) The case of 
laterally coupled monolayers. The shear strain (dimensionless) in the monolayers is 
represented as a logarithmic color scale.  
 
Fig.  6. Monolayer spontaneous curvature plotted as a function of the inclusion area 
fraction for a 0.8 nm depth of insertion.  
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Fig.  7. Spontaneous curvature for an inclusion plotted as a function of the position of 
the center of the inclusion for (a) uncoupled, and (b) coupled monolayers. Cartoons of 
the bilayer are shown for different insertion depths. 
 
 Fig. 8. Sensitivity of the effective spontaneous curvature of the inclusion, incς , to the 
monolayer thickness. (a) incς  as a function of the position of the center of the 
inclusion for different values of the monolayer thicknesses h  , where h can either be 
1.8, 2.0 or 2.2nm. (b) incς  as a function of the monolayer thickness  for the insertion 
depth of 0.8nm. 

h

 
 
Fig.  9. Energetic penalty per unit length of the inclusion plotted as a function of the 
depth of the insertion for coupled monolayers. 
 
Fig. 10. The range of α -helix area fractions required to form cylindrical membrane 
tubes of diameter 35-50 nm, plotted as a function of the position of the center of the 
inclusion, for uncoupled (red) and coupled (gray) monolayers. The maximal possible 
area fractions of α -helices for endophilin and amphiphysin are represented by 
straight lines. 
  
Fig. C1. The effective spontaneous curvature of inclusion as a function of the position 
of the center of the inclusion in the case of coupled monolayers (a) without any lateral 
stress profile and (b) with a lateral stress profile accounting for a monolayer 
spontaneous curvature in the initial state 0 10.1sJ nm−= − . 
 
Fig. C2. The energy penalty of the inclusion insertion per inclusion unit length as a 
function of the position of the center of the inclusion in the case of coupled 
monolayers (a) without any lateral stress profile and (b) with a lateral stress profile 
accounting for a monolayer spontaneous curvature in the initial state 0 10.1sJ nm−= − ,. 
 
Fig. D1. Sensitivity of the effective spontaneous curvature of the inclusion, incς , to the 
specific value of the transverse shear modulus xzxzλ .  
 
Fig. D2. Sensitivity of the effective spontaneous curvature to (a) the monolayer 
thickness and (b) the transverse shear modulus for the case of coupled monolayers. 

 
Fig. D3. Sensitivity of the energy penalty of the inclusion insertion per inclusion unit 
length in the case of coupled monolayers to (a) the monolayer thickness  and (b) the 
transverse shear modulus

h
xzxzλ .  

 
Fig. D4. Sensitivity of the effective spontaneous curvature to the inclusion radius for 
the cases of (a) uncoupled monolayers, and (b) coupled monolayers. 
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