Insight on Research


Link Between Ribosome Maturation and Cancer

A group of collaborative researchers, led by Alan Warren’s group at the LMB, have discovered a surprising link between human ribosome maturation and cancer.
The team identified the conserved mechanism that underlies a critical step in the maturation of ribosomes and showed that this step is defective in an inherited form of bone marrow failure that is associated with significant leukemia predisposition (Shwachman-Diamond syndrome, SDS).

More…

Published

LMB scientists reconstruct ‘Nature’s first enzyme’.

The origin of life is one of the great, unsolved mysteries of biology. In a quest to improve understanding of how life might have originally emerged, a group of LMB scientists have managed to construct an enzyme that can mimic how the first forms of life may have arisen and begun to evolve – before DNA came along.

More…

Published

A small molecule to correct protein folding defects.

The deposition of misfolded proteins is a central characteristic of many devastating diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral sclerosis and prion diseases. In principle, improving the cells’ ability to deal with misfolded proteins should reduce the pathology in these diverse neurodegenerative diseases.

More…

Published

First X-ray crystal structure of dynein motor domain

The first X-ray crystal structure of the motor domain of cytoplasmic dynein, a protein that uses the cellular energy from ATP to walk along microtubule tracks that run throughout the cell, has been solved.
Cytoplasmic dynein moves numerous cargos around the cell including proteins and RNAs that set up the cell polarity, membraneous organelles, aggregated proteins that are toxic unless collected and disposed of, and even whole nuclei.

More…

Published

Propagation of mutant SOD1 misfolding.

Amyotrophic lateral sclerosis (ALS) is caused by the progressive dysfunction of specific nerve cells that control muscle movement. It belongs to a group of devastating neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s and prion diseases. Each disease is caused by the progressive accumulation of specific proteins in an aberrant, misfolded shape. The formation of the protein deposits is somehow toxic to nerve cells but why and how they initially form is unclear.

More…

Published

Breakthrough in Fanconi Anaemia research.

A group led by KJ Patel from the LMB, together with collaborators at the Wellcome Trust Sanger Institute and CRUK Cambridge Research Institute (CRI), have developed the first model for the human genetic illness Fanconi Anaemia (FA). This genetic condition results in abnormal development, bone marrow failure and a huge lifetime risk of developing cancer. At present the only long-term treatment for FA is bone marrow transplantation.

More…

Published

Understanding how hormones activate G protein-coupled receptors.

In a recent issue of Nature, the groups of Chris Tate and Andrew Leslie in the LMB’s Structural Studies Division, in collaboration with Gebhard Schertler now at the Paul Scherrer Institut, Switzerland, have reported the determination of the structures of the β1 adrenergic receptor (β1AR), a GPCR, when bound to four different clinically relevant agonists.

More…

Published

Bizarre love triangle: first amoebal sex-determining system discovered

The social amoeba Dictyostelium discoideum is used widely in the laboratory as a convenient ‘model organism’ to help discover, among other things, how cells move, and how they fight bacterial infection. In the soil under your feet and in forest leaf litter, where it normally lives, this organism also goes through an enigmatic sexual cycle.

More…

Published

LMB scientists redefine how our immune system responds to viruses

Landmark research led by Dr Leo James from the LMB’s PNAC Division has discovered that antibodies can fight viruses from within infected cells. This finding transforms the previous scientific understanding of our immunity to viral diseases like the common cold, ‘winter vomiting’ and gastroenteritis. It also gives scientists a different set of rules that pave the way to the next generation of antiviral drugs.

More…

Published