

Science News

from research organizations

Building better brains: A bioengineered upgrade for organoids

Date: May 31, 2017**Source:** Institute of Molecular Biotechnology (IMBA)**Summary:** Scientists, for the first time, have combined organoids with bioengineering. Using small microfilaments, they show improved tissue architecture that mimics human brain development more accurately and allows more targeted studies of brain development and its malfunctions.**Share:** [f](#) [t](#) [G+](#) [P](#) [in](#) [Email](#)**FULL STORY**

Scientists for the first time combine organoids with bioengineering. Using small microfilaments, they show improved tissue architecture that mimics human brain development more accurately and allows more targeted studies of brain development and its malfunctions, as reported in the current issue of *Nature Biotechnology*.

A few years ago, Jürgen Knoblich and his team at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have pioneered brain organoid technology. They developed a method for cultivating three-dimensional brain-like structures, so called cerebral organoids, in a dish. This discovery has tremendous potential as it could revolutionize drug discovery and disease research. Their lab grown organ-models mimic early human brain development in a surprisingly precise way, allowing for targeted analysis of human neuropsychiatric disorders, that are otherwise not possible. Using this cutting-edge methodology, research teams around the world have already revealed new secrets of human brain formation and its defects that can lead to microcephaly, epilepsy or autism.

In a new study published in *Nature Biotechnology*, scientists from Cambridge and Vienna present a new method that combines the organoid method with bioengineering. The researchers use special polymer fibers made of a material called PLGA to generate a floating scaffold that was then covered with human cells. By using this ground-breaking combination of engineering and stem cell culture, the scientists are able to form more elongated organoids that more closely resemble the shape of an actual human embryo. By doing so, the organoids become more consistent and re-

Most Popular*this week***HEALTH & MEDICINE**

'Mono' Virus Linked to Seven Serious Diseases

Novel Antioxidant Makes Old Blood Vessels Seem Young Again

Consuming More Than Five Drinks a Week Could Shorten Your Life

MIND & BRAIN

Digital Addiction Increases Loneliness, Anxiety and Depression

Men Willing to Punish More Than Women to Get Ahead

Sitting Is Bad for Your Brain -- Not Just Your Metabolism or Heart

LIVING & WELL

Synthetic Cancer Indicator: An Artificial Mole as an Early Warning System

Elevation in Buildings Can Affect the Decisions We Make

Night Owls Have Higher Risk of Dying Sooner

Strange & Offbeat**HEALTH & MEDICINE**

Did Last Ice Age Affect Breastfeeding in Native Americans?

producible.

"This study is one of the first attempts to combine organoids with bioengineering. Our new method takes advantage of and combines the unique strengths of each approach, namely the intrinsic self-organization of organoids and the reproducibility afforded by bioengineering. We make use of small microfilaments to guide the shape of the organoids without driving tissue identity," explains Madeline Lancaster, group leader at MRC Laboratory of Molecular Biology in Cambridge and first author of the paper.

This guided self-organization allows engineered cerebral organoids, or enCORs, to more reproducibly form cerebral cortical tissue but maintain the tissue complexity and overall size that comes about when the tissues are still allowed to develop according to intrinsic developmental programs. As a result, enCORs also develop later tissue architecture that more faithfully models the organization seen in an actual developing brain.

Jürgen Knoblich, deputy scientific director of IMBA and last author on the paper, elucidates the implications of the novel technology: "An important hallmark of the bioengineered organoids is their increased surface to volume ratio. Neurons 'have more space' and can properly migrate and position themselves in a layer that in an actual developing brain would later become the grey matter. Because of their improved tissue architecture, enCORs can allow for the study of a broader array of neurological diseases where neuronal positioning is thought to be affected, including lissencephaly (smooth brain), epilepsy, and even autism and schizophrenia."

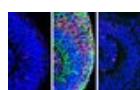
Story Source:

Materials provided by **Institute of Molecular Biotechnology (IMBA)**. Note: Content may be edited for style and length.

Journal Reference:

1. Madeline A Lancaster, Nina S Corsini, Simone Wolfinger, E Hilary Gustafson, Alex W Phillips, Thomas R Burkard, Tomoki Otani, Frederick J Livesey, Juergen A Knoblich. **Guided self-organization and cortical plate formation in human brain organoids.** *Nature Biotechnology*, 2017; DOI: 10.1038/nbt.3906

Cite This Page:


MLA

APA

Chicago

Institute of Molecular Biotechnology (IMBA). "Building better brains: A bioengineered upgrade for organoids." ScienceDaily. ScienceDaily, 31 May 2017. <www.sciencedaily.com/releases/2017/05/170531133925.htm>.

RELATED STORIES

Better Mini Brains Could Help Scientists Identify Treatments for Zika-Related Brain Damage

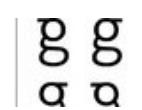
Oct. 10, 2017 — Researchers have developed an improved technique for creating simplified human brain tissue from stem cells. Because these so-called 'mini brain organoids' mimic human brains in how they ...

3-D Human 'Mini-Brains' Shed New Light on Genetic Underpinnings of Major Mental Illness

Natural Selection Gave a Freediving People in Southeast Asia Bigger Spleens

MIND & BRAIN

Students Learn Italian Playing Assassin's Creed Video Game


Machine-Learning System Processes Sounds Like Humans Do

Imagining an Object Can Change How We Hear Sounds Later

LIVING & WELL

'Everything-Repellent' Coating Could Kidproof Phones, Homes

A Letter We've Seen Millions of Times, Yet Can't Write

Which Piece Resembles Your Color Perception for #theDress Image?