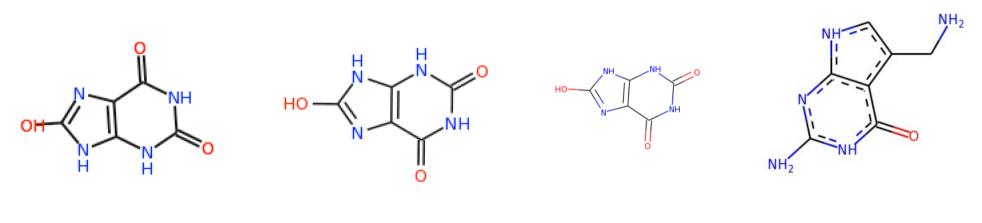
Coot Updates

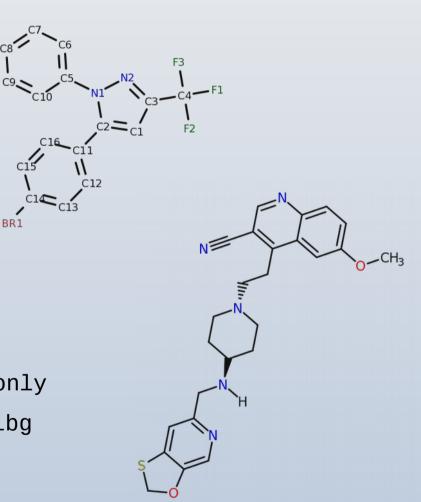

Paul Emsley Sept 2016

Coot 0.8.4 Released

- Patterson from intensities
- Fill-partial-residue uses Backrub-rotamers
- Sequence dialog is now dynamically updated
- "Outliers Only" in Ramachanran Plot
- Improved lighting
 - solid objects look better
- Trans-torsion restraints
 - now in mini-rsr too
- PDBx 4-char H names
 - tracking mmdb2
- COD Atom types synced with Acedrg

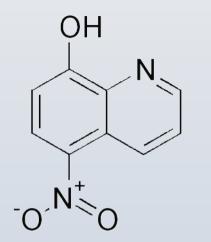
Coot Updates 0.8.4

- Better PDBx dict \rightarrow RDKit-mol when FLEVing
 - one code path had missing ring info
- Lidia CPK atom colouring
- Lidia "Flip" and "Rotate" molecule functions added
- Lidia Improved letter placement

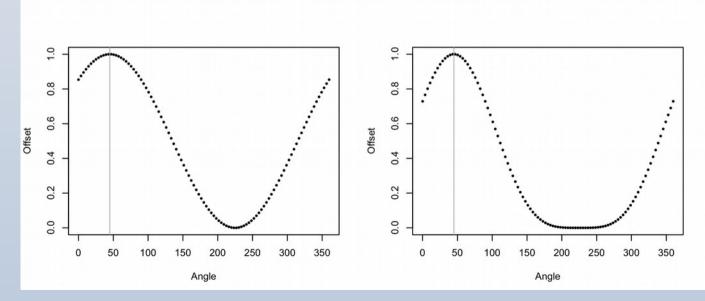

Old Coot

New Coot

RDKit

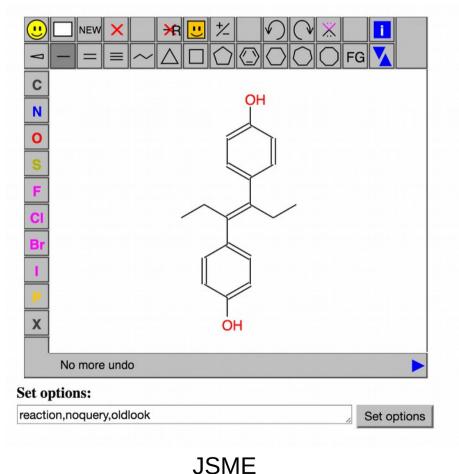

Coot Updates 0.8.7: Lidia

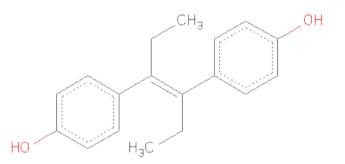
- Atom Name Mode
- Canvas scaling
- Editing improvements
 - bond dragging
- CH₃ superatoms
- Embedded python
 - network functions ("Fetch Molecule")
 - QED
- Now configure works with -with-lidia-only
 - compiles utils, geometry, lidia-core, lbg
 - 38 other directories not compiled



More Lidia Updates

• Typesetting nitros:

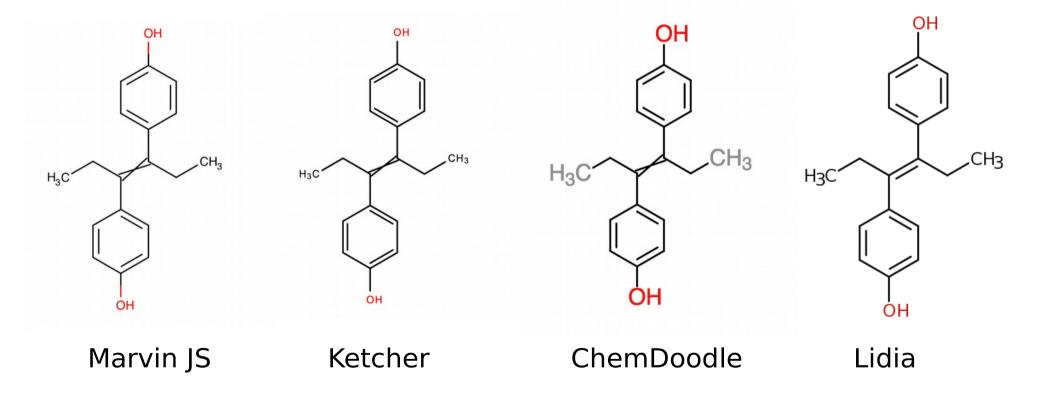

This image from Wikipedia



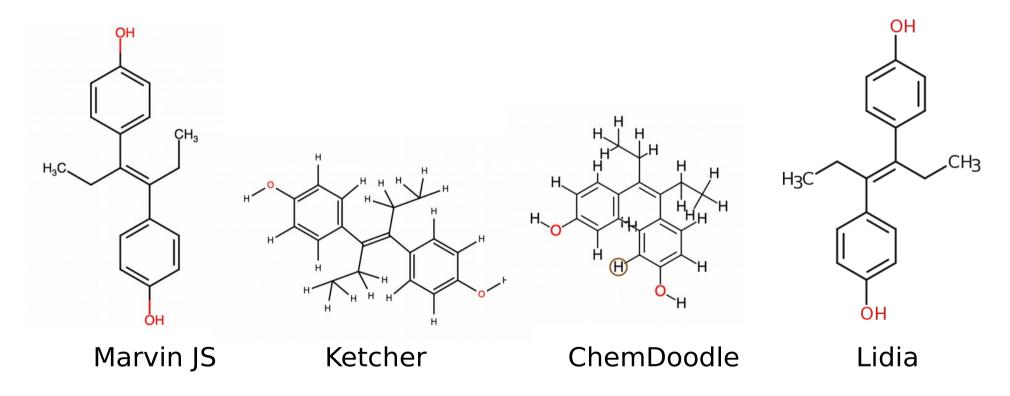
Note: canvas Y axis is "inverted"

Chemical Diagram Examples

diethylstilbestrol: DES, DB00255



PDBe

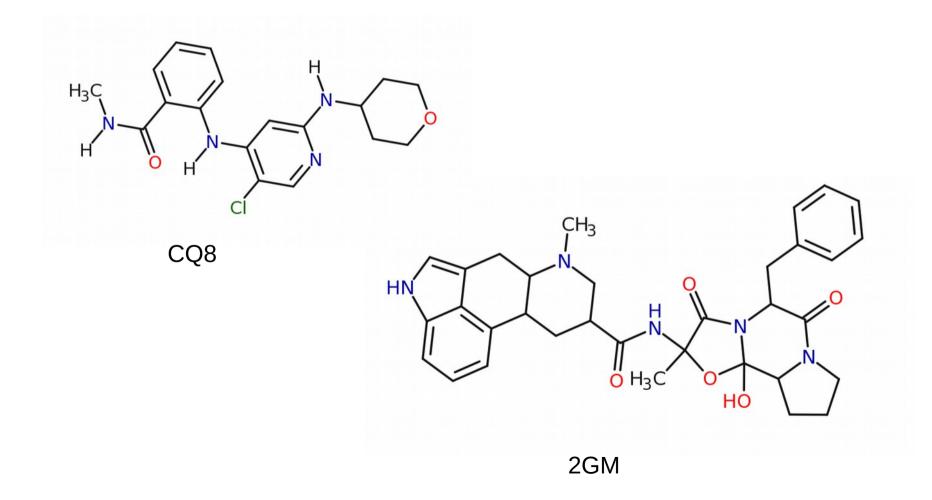

Chemical Diagram Examples

diethylstilbestrol: DES, DB00255 Mol File from DrugBank (MarvinSketch output) Alkene double bond: cis or trans (either)

Chemical Diagram Examples

diethylstilbestrol: DES, DB00255 Mol File from PDBeChem (after $3D \rightarrow 2D$)

What Can Lidia Do?


- Run Acedrg, Pyrogen, prodrg
- Import from molecule name
- Drag and drop
- Remove Hydrogen atoms
- QED/"Lipinski" descriptors
- Clean up
- Import from CCD, Refmac monomer library comp_id
- Output SMILES, mol, png, pdf, svg

What Can't Lidia Do?

- Multiple molecules
- Reactions
- Add Hydrogen atoms
- Represent unresolved chirality

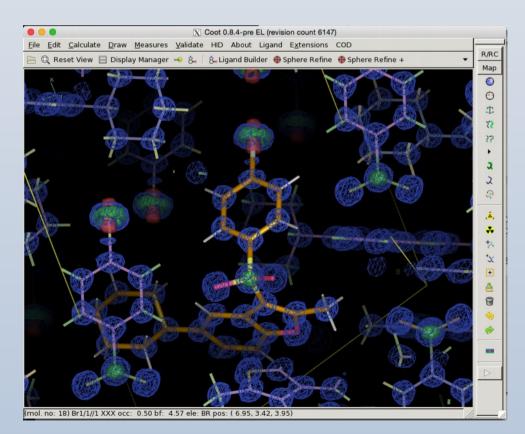
Lidia: Chemical Diagrams: CCD \rightarrow 2D

• OK, not flawless

Chirality Conversion

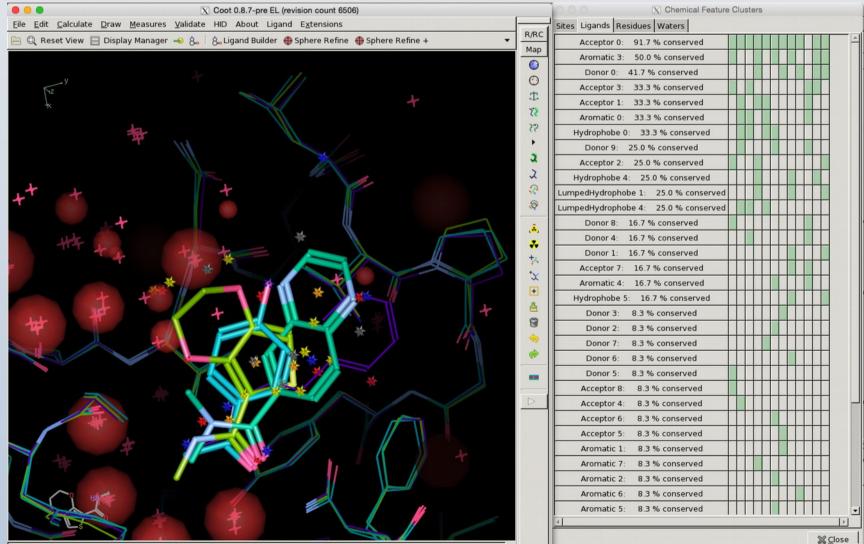
- Encoded in SMILES strings with @, @@
- Encoded in mmCIF wwPDB as R,S stereocentres
- Encoded in mmCIF as signed volume of local neighbours
- Encoded by wedge bonds in MOL file
- Encoded by inference from 3D coordinates
- Stored as mmdb Residues object
- Stored as parsed dictionary object
- Stored as molfile parsed object
- Stored as CIP-based CW, CCW Chirality attribute in RDKit

Pyrogen Updates


- tautomer mode returned a list of SMILES strings
- tautomer results were different when the input was pdbx CCD cif and when the input was the SMILES from the CCD cif
 - the SMILES string generated more kekulizable results
 - 1 *vs*. 24 (for 8HX)
 - now generate the same results
 - call the tautomer enumeration with a molecule that does not contain hydrogen atoms

Pyrogen Updates

- Pyrogen no longer inherits the monomer group from a matching dictionary
 - e.g. BrC1=CC=CN2C1=NC=C2N[C@@H](S(=O)(C3=CN=CS3)=O)F
 - matched a TRP and was called L-peptide despite no N, CA, C, O, H equivalents


Coot Updates [continued]

- Add Alt-Confs to Ligand via torsion-angle selection
- [demo]
- Now has maps from COD (calc sfs)

Coot Updates [continued]

- Chemical Feature Clustering
 - needs SciPy

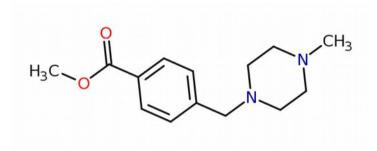
(mol. no: 1) 009/1/A/2001 2LY occ: 0.82 bf: 42.07 ele: 0 pos: (10.71,40.72,29.43)

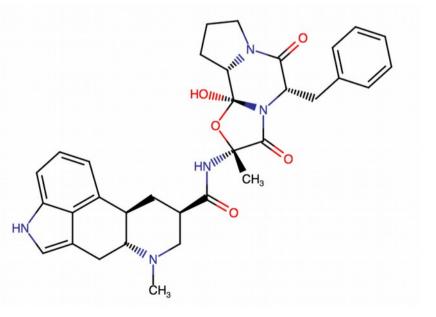
Coot Updates

• Release in the next week

RCSB SDF files still broken

- Atom names in caps are wrong
 - probably
- PDBe files also
- comp_id SDF files do not contain atom names
 - Accession code-based model ligand SDF files *do* contain atoms


(blank)


The Ligand Fitting Challenge

Problem Set 1: Autumn Equinox 2016

Ligand Fitting Challenge: Inputs

- mmCIF model, a SMILES string and Fobs mtz
- Problem 1:
 - Bromodomain
 - Resolution: 2.1 Å, poor density for piperazine
 - confusing missing waters
 - WONKA examples dataset
- Problem 2:
 - GPCR
 - Ligand: ergotamine derivative
 - DB00320
 - Resolution 2.8 Å
 - Chiral protonated N6
 - Is ergotamine in the PDB?
 - how do I transfer the atom names?

Ligand Fitting Challenges

- Inside the CCP4 world these problems need intervention and thought
 - Can the correct fitting be automated using other tools?
- Given a ligand SMILES, how do I find out to which ligand (about which the PDB already knows) it is most similar?

- Change the atom names of my new ligand to match that

 If I edit a ligand, how can I impose the same/similar atom names to the original ligand? (A ligand about which PDBeChem may not already know) Judit

Paul E

Paul R.

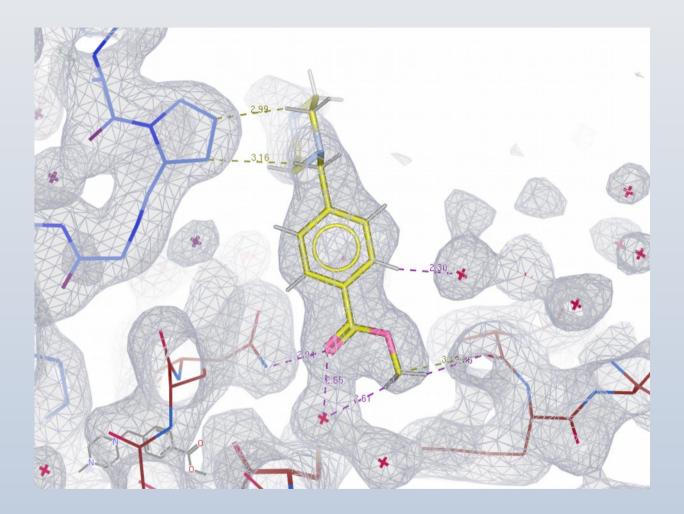
Ben

All: Reflections, Action Points

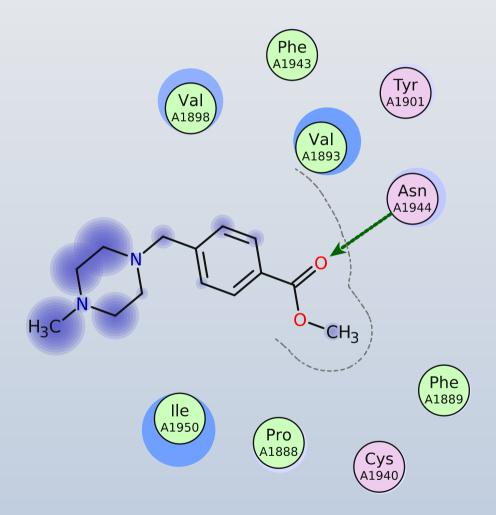
How I did it...

- Acedrg
 - for SMILES \rightarrow extract string \rightarrow dictionary
- Coot
 - Refmac to make the map
 - Find Unmodelled blobs
 - Read Acedrg dictionary
 - Find Ligands (which fails)
 - Add waters
 - Find Ligands (which ~ works) flip and symmetry shuffle
 - Merge Molecules
 - Refine with Refmac
 - Hydrogenate
 - FLEV

Didn't work for problem-2, Fcalcs already

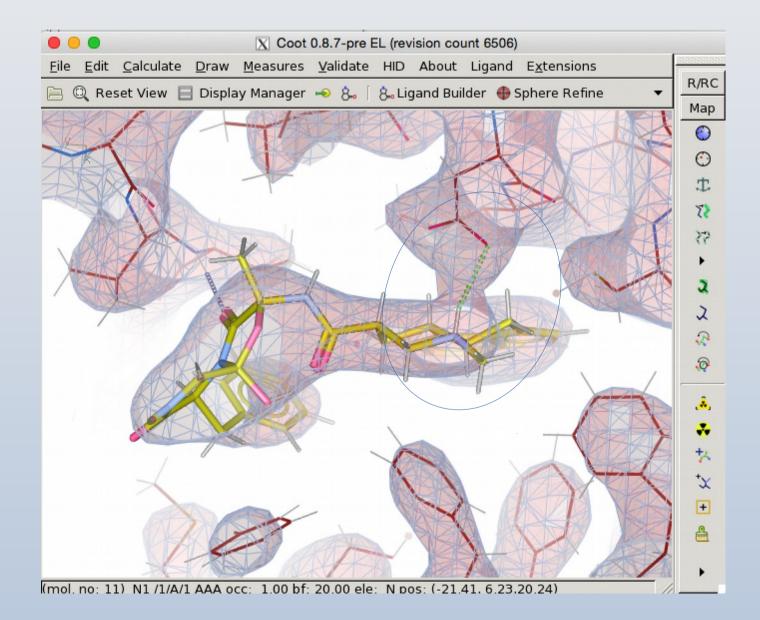

Extra Work for 2GM

- An analysis of the 2GM ligand with the pocket shows a missing NH⁺ "hydrogen bond" to COO⁻ from an ASP
- How do we add it?
 - I edited the SMILES string
 - I didn't know which N was which so I charged each of them
 - (with a bit more thought I could have worked it out)
 - Reran Acedrg, fit the ligand again
 - Wrong Chirality!
 - Edit Restraints \rightarrow Chirals \rightarrow N1 \rightarrow negative
 - Rerefine

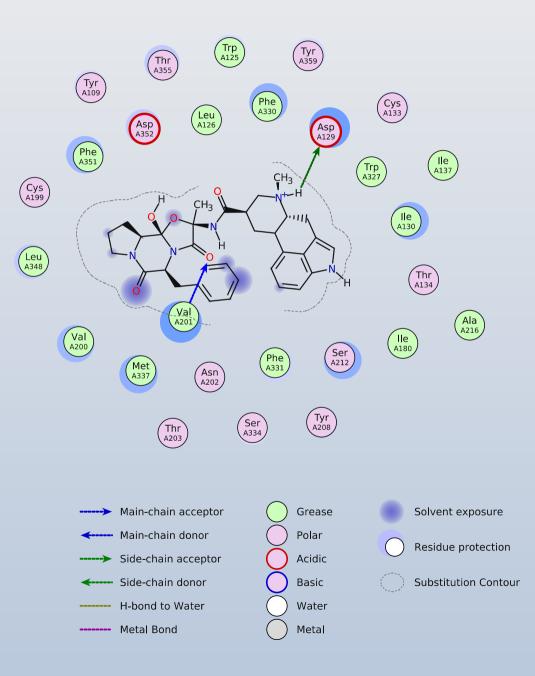

Extra Work for Atom Names

- PDBeChem
 - http://www.ebi.ac.uk/pdbe-srv/pdbechem/
 - Paste the SMILES string → JSME
 "Search" → comp id (2GM) → Download
 The wrong search for us in the general case
- \$ pyrogen -Mn --comp_id AAA -R 2GM.cif problem-2.smi Graph match atom names
- \$ acedrg -m AAA-pyrogen.cif
- This is atypical though
 - non-trivial to generate a SMILES string/MOL for a matching substructure
 - pyrogen fails to parse PDBe's 2GM.cif :-(

Problem-1: Density Fit



Problem-1: FLEVed



svg (png was problematic)

Problem-2: Density Fit

Problem-2 FLEVed

Ligand Fitting Trials

- Outcomes
- Action Points

(What needs to be fixed)

Acedrg-related Issues

•••

Coot-related Issues

- "Ligand Expert" should be the default
- Ligand fitting Top-N-Solutions should have some GUI exposure
- Can you improve the ligand fitting algorithm so that 54V can be fit into 5cub without intervention?
 - JED-Flip is useful to recover a from incorrect solution
- Nice to Have: Better user-experience at conformer generation stage
 - (visual feedback don't freeze)
- Enable SRS searching in Lidia
- Coot can't "Ligand \rightarrow 2D" Acedrg output
- SMILES \rightarrow 2D fails to preserve chirality consistent with Acedrg output
- Acedrg, pyrogen and prodrg are the $2D \rightarrow 3D$ engines behind lidia "Apply"
 - perhaps the default output type should be a mmCIF rather than a MOL file

- 1) Raise awareness/visibility of the *Coot*/pyrogen route to geometry libraries and ligand conformers
- 2) Strip out home-spun RDKit code from our current 'Make Ligand" pipeline,
 - now that similar code is already exploited within ACEDRG for generating conformers

from PE

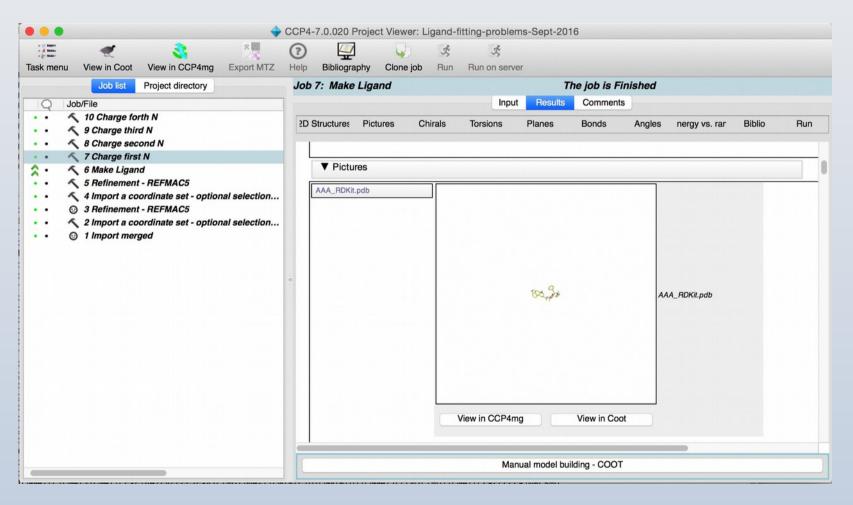
Make Ligand

- It's often easier to navigate to a file containing the SMILES than paste a string
- So give me that option
 - Nice to have: Drag & Drop
- Get the three-letter-code/comp-id or molecule name from the text after the SMILES string in the .smi file

• Refinement

There's no point in showing a graph for R-factors if there are no points to plot (NCYCLES 0)

from PE


NCHCHOHCHHHCOH

• XYZOUT.pdb contained:

ATOM	4958	Ν	THR A 3		-15.025	6.827	18.821	1.00	76.91
ATOM	4959	CA	THR A 3		-16.403	6.441	18.433	1.00	74.48
ATOM	4960	HA	THR A 3		-16.883	6.086	19.210	1.00	74.48
ATOM	4961	СВ	THR A 3		-17.270	7.641	17.965	1.00	79.21
ATOM	4962	HB	THR A 3		-18.160	7.322	17.748	1.00	79.21
ATOM	4963	0G1	THR A 3		-16.699	8.197	16.784	1.00	86.68
ATOM	4964	HG1	THR A 3		-17.149	8.833	16.527	0.00	86.68
ATOM	4965	CG2	THR A 3		-17.451	8.726	19.019	1.00	72.64
ATOM	4966	HG2	THR A 3		-17.881	8.360	19.796	1.00	72.64
ATOM	4967	HG2	THR A 3		-17.995	9.436	18.670	1.00	72.64
ATOM	4968	HG2	THR A 3		-16.597	9.083	19.273	1.00	72.64
ATOM	4969	С	THR A 3		-16.306	5.384	17.329	1.00	76.33
ATOM	4970	0	THR A 3		-16.981	4.358	17.399	1.00	75.48
ATOM	4971	Н	THR A 3	355	-14.644	7.757	18.719	1.00	76.91

- Coot didn't like that (hydrogen atom names)
 - exploded on refinement

from PE

The "Pictures" image is too small to be useful