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3. Calculate  “diffraction” (F’s) from 
proposed models 
Phases and amplitudes 

4. Compare and 
find best match 
Compare observed 
and calculated 
structure factors (F’s) 
with scoring function 5. Calculate electron density  

Using observed amplitudes and  
phases of selected model 

1. Collect diffraction data 
Need to find phases to calculate 
electron density 

2. Propose models 
For EP, heavy atoms 
For MR, positioned models 
For refinement, atoms 

6. Find differences 
Solve structure 

http://lysozyme.co.uk/results/lysozyme-ball-stick-stereo.php�


• What is the “best match” between the observed and 
calculated structure factors? 
• Need a scoring function for comparison 

• Modern programs use Maximum Likelihood 
• Phaser 
• SHARP 
• Refmac 
• Phenix.refine 
• Phenix.autosol 
• Solve/resolve 

Programs differ in the 
nature of the proposed 

model from which to 
calculate F’s and in other 

algorithmic details 

Maximum Likelihood 



 
 
Likelihood Function 

 
 
 

• This ML equation/function is the basis for ML 
molecular replacement and refinement software 

• Equations very similar to this are used in ML 
experimental phasing and density modification 

• The aim of this talk is to understand this 
fundamental equation 
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Concepts: 
• Maximum Likelihood 
• Independence 
• Log(Likelihood) 
• Bayes’ Theorem 
• Integrating out Variables 
• Central limit theorem 



Maximum Likelihood 



Probability 

A game of dice 
 
 
 
 
 
 
 
 

• Put four unbiased dice in a box 
• I select a die at random 
• How often will you guess correctly which die I selected? 



Probability 

Probability 
• In the game of dice you have 

a 1 in 4 chance of being right 

• If a large number of people 
guessed, one quarter would 
be right each time 

• If you play the game many 
times, you will be right a 
quarter of the time 



10 7 1 

Maximum likelihood 

A game of dice with data 

? 

 
 
 
 
 
 
 
 

• Put four unbiased dice in a box 
• I select a die at random 
• I roll the die and tell you the result of the roll 
• Which die did I most likely select? 



• The die obviously must have been the 10 sided die  
• What does “must” mean in probabilities? 

Maximum likelihood 

Roll a 10 

most likely 
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• The die could have been the 10 sided or the 8 sided die 
• Which die is most likely? 

Maximum likelihood 

Roll a 7 
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• Could have been rolled by any of the dice 
• The most likely die is the one with the highest probability of 

generating the data 

Maximum likelihood 

Roll a 1 
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Maximum likelihood 

Crystallography  
• Data are the FO in reciprocal space 

– or merged FO and ∆FO 
– or merged FO

+ and FO
− 

– or merged IO (or IO and ∆IO – or IO
+ and IO

−) 
– or unmerged IO’s 
– time of collection tO 

• Model is the structure in real space 
• Need to calculate the structure factor FC from the model in 

order to compare with data 
• “Solution” is the model with the FC with the highest likelihood 

of generating FO 

 



Independence  
and log-likelihood 



6 

Independence and log-likelihood 

A game of dice with more data 

 
 
 
 
 
 
 
 

• Put four unbiased dice in a box 
• I select a die at random 
• I roll that die three times and tell you the results 
• Which die did I most likely select? 

10 

? 

6 

6 



Independence and log-likelihood 

A game of dice with more data 

 
 
 
 
 
 
 

• What is the chance of throwing a 6 three times from a         
6-sided die?  

• The chance of throwing a 6, or any other number, the 
second, or third time is not influenced by the value of the 
first roll - they are independent 

 

6 

? 

6 

6 



Independence and log-likelihood 

Multiplying probabilities 

100 times 

( ) 1 1 1 1
6 6 6 2166,6,6; 6 0.0046296P = × × = =

( ) 100 786 100; 6 6 1.53064 10P − −× = = ×

( ) 1 1 1
6 6 366,6; 6 0.0277778P = × = =

( ) 1
66; 6 0.16666667P = =

• When probabilities are independent they multiply 

 



Independence and log-likelihood 

Computers and small numbers 
“Oh great one, what is the probability of throwing a 6 from a 

six sided die one billion times?” 

> SYSTEM-F-FLTOVF_F, arithmetic fault, 
floating overflow at PC=00006244,  
PSL=03C0 0020 %TRACE-F-TRACEBACK,  
symbolic stack dump follows  
module name  routine name  line  
OVERF  OVERF  104   
DPARA$MAIN  DPARA$MAIN  276  

You must 
be joking! 

Computers can not store numbers 
very close to zero 



log(likelihood) is not close to zero 

Independence and log-likelihood 

Computers and log(small numbers) 

• So the log(likelihood) solves 
the small number problem 

• But can we just switch to 
using the log(likelihood)? 

“Oh great one, what is the logarithm of the probability of 
throwing a 6 from a six sided die one billion times?” 

No worries 
mate 

> -778151250.4 



Independence and log-likelihood 

Optimisation and logarithms 

• Logarithmic functions are “monotonic” 
functions 
• i.e. they “preserve the given order” 
• If y1<y2 for all x1<x2 then log(x1)<log(x2) 

• The parameter values obtained 
optimising log(likelihood) are the same 
as those obtained optimising likelihood 
• Optimising log(likelihood) ≡ 

Optimising likelihood 

 
 

y = x 

y =log(x) 



• No, there is a shortcut to the 
log(total likelihood) when 
total likelihood is a product 
of likelihoods 
 

• If log(total likelihood) equals 
log(Π likelihoods) 

                 product 
• Then log(total likelihood) 

also equals     
Σlog(likelihoods) 

            sum 

Independence and log-likelihood 

Logarithms, products and sums 

But don’t I need to 
store the total 

likelihood before I 
take it’s logarithm? 



log(Πlikelihoods) = Σlog(likelihoods) 

Independence and log-likelihood 

Logarithms and independence 

( )( )
( ) ( )( )

( )1 1
6 6

log 3,3; 6

   log 3; 6 3; 6

   log
   log(0.0277)
   1.556

P

P P= ×

= ×
=
= −

( )( )
( )( ) ( )( )

( ) ( )1 1
6 6

log 3,3; 6

   log 3; 6 log 3; 6

   log log
   0.778 0.778
   1.556

P

P P= +

= +
= − −
= −



Independence and log-likelihood 

Minimising  

• Computer algorithms are 
designed to minimise 

• Therefore we optimise our 
parameters by minimising the 
-log(likelihood) 

 

I only know how 
to  minimise,  
not maximise 



Independence and log-likelihood 

Crystallography 
• ML algorithms assume reflections are independent 
• This is an approximation: reflections are not independent, 

due to the presence of solvent and any non-crystallographic 
symmetry 

• However, the approximation is very good 
• Total likelihood is the product of the reflection likelihoods 
• The algorithms actually calculate the log(likelihood) 
• Total log(likelihood) is the sum of the reflection 

log(likelihoods) 
• Maximum likelihood search and refinement algorithms 

minimise the −log(likelihood) 



Bayes’ Theorem 
and prior probability 



Bayes’ Theorem 

A game of dice with copies of a die 

 
 
 
 
 
 
 
 

• Put one 8-sided die and eight 10-sided dice in a box 
• I select a die at random 
• I roll the die and tell you the result of the roll 
• Which die did I most likely select? 

4 

? 



Bayes’ Theorem 

Prior probability and Bayes’ theorem 
• In this case the prior probability of selecting the 10-sided die 

dominates  the higher likelihood of throwing a 4 from the 8-
sided die than from the 10-sided die 

 Bayes’ Theorem 

 

• In experimental situations, P(data) is constant, and when 
comparing probabilities can be ignored 

 

     prior probability        likelihood 

 

( )
( )
( )

( )modelmodel;data data;model
data

(model;data) (model) (data;model)

PP P
P

P P P

= ×

= ×



( ) ( ) ( )

( ) ( ) ( )

8 1
9 10
8
90

1 1
9 8
1
72

10 ;4 10 4; 10

0.0888

8 ;4 8 4; 8

0.01388

P P P

P P P

=

= ×
=
=

=

= ×
=
=    

Bayes’ Theorem 

Roll a 4 

most likely 



Bayes’ Theorem  

Crystallography 

• Bayes’ Theorem is used in refinement 
 
• Prior probability from the chemistry i.e. knowledge of 

bond-lengths, bond-angles, planarity etc 
• Likelihood from the X-ray diffraction experiment 

• Also used in density modification 
• Fundamental principle in the method of “integrating 

out nuisance variables”… 

(model;data) (model) (data;model)P P P= ×



 
Integrating out  
nuisance variables 



Integrating out nuisance variables 

A game of dice with unknown dice 

 
 
 
 
 
 
 
 
 

• Put a 6-sided and an 8-sided die in a red box 
• I select a die at random and put it in a green box 

 

? 



 
 
 
 
 
 
 
 
 

• Put a 4-sided and 10-sided die in a blue box 
• I select a die at random and put it in the same green box as 

the first die (from the red box) 
 

? 

Integrating out nuisance variables 

A game of dice with unknown dice 



 
 
 
 
 
 
 
 
 

• I select a die at random from the green box, roll the die and 
tell you the result 

• Did the die come from the red box or the blue box? 

? 

3 

Integrating out nuisance variables 

A game of dice with unknown dice 



? 

Integrating out nuisance variables 

A game of dice with unknown dice 

 
 
 
 
 
 
 
 

• There are two dice in the box. One is either a 6 or an 8 sided 
die and the other is either a 4 or a 10 sided die 

• I select a die, roll, and tell you the result 
• Which of the two dice possibilities did I select? 

or or 

3 



( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1
6 2 8 2

1 1 1 1
4 2 10 2

6 or 8 ;3 6 ;3 8 ;3

3; 6 6 3; 8 8

× + ×     

0.14583

4 or 10 ;3 4 ;3 10 ;3

3; 4 4 3;10 10

× + ×     
0.175

P P P

P P P P

P P P

P P P P

= +

= × + ×

=

=

= +

= × + ×

=

=    most  likely

Integrating out nuisance variables 

Roll a 3 



• Probability for discrete probabilities 
 
 

• For continuous probability, sum becomes an integral 
 
 

• The unknown variable is called a nuisance variable 
• The removal of a nuisance variable from a probability 

distribution by integration is called integrating out the 
nuisance variable 

• Nuisance variables can be very useful! 

Integrating out nuisance variables 

Discrete and continuous probabilities 

1
(data;model) (data, ;model),   where 

n

i i
i

P P x a x b
=

= ≤ ≤∑

( ) ( )data;model data, ;model
b

a
P P x dx= ∫



Integrating out nuisance variables 

Crystallography 

• Data (for each reflection) is the observed structure 
factor amplitude |FO| 

• Model is the calculated structure factor FC  

• Clever bit: Probabilities are calculated in terms of the 
phased observed structure factor FO   (and the 
calculated structure factor FC) 

• The introduced phase difference is a nuisance variable 
• Probability of |FO| is then found by integrating out the 

“nuisance” (but very useful) phase  



Central limit theorem 



Central limit theorem 

The average of many games of dice 

 
 
 
 
 
 
 

• I have an unbiased 6-sided die  
• I roll the die 40 times and take the average of the values  
• I do this 10000 times, plotting the average values from each 

game on a histogram  
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Central limit theorem 

The average of many games of dice 

Histogram 

Build up a histogram of the average 40 throws of the dice  



Central limit theorem 

The average of many games of dice 
• The histogram is Gaussian (bell-shaped curve) with a mean 

at 3.5  

Bias of die Histogram 



Central limit theorem 

Linearly biased die 

 
 
 
 
 
 
 

• I have an “linearly” biased 6-sided die  
• I roll the die 40 times and take the average of the values  
• I do this 10000 times, plotting the average values from each 

game on a histogram  
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Central limit theorem 

Linearly biased die 
• The histogram is Gaussian with a mean at 4.3, and the 

variance (width) of the distribution is smaller  

Bias of die Histogram 



Central limit theorem 

Quadratically biased die 

 
 
 
 
 
 
 

• I have an “quadratically” biased 6-sided die  
• I roll the die 40 times and take the average of the values  
• I do this 10000 times, plotting the average values from each 

game on a histogram  
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Central limit theorem 

Quadratically biased die 
• The histogram is Gaussian with an even higher mean and 

smaller variance (width) 

Bias of die Histogram 



Central limit theorem 

Central limit theorem 

• No matter what the bias of the die, the histogram 
generated by the average of many rolls of the die is a 
Gaussian 

• This is true even when the bias if the die (from which the 
average is computed) is decidedly not Gaussian 

• This property is called the central limit theorem 
• Historically, the central limit theorem was called the “law of 

errors” 



Central limit theorem 

Crystallography 

• The atomic structure factor contributions to a given 
reflection FC are very complicated 

• However, the central limit theorem says that when you take 
the average of all these complicated structure factor 
contributions you get a Gaussian distribution 

• This is lucky, because it is easy to integrate out the phase 
from a Gaussian distribution 

• The result of the integration is the “Wilson” or “Rice” 
distributions, which are ubiquitous in maximum likelihood 
crystallography 



Central limit theorem 

Gaussians and random walks 

• 1D Gaussian 
 
 
 

“1D random walk” 
 
 

• 2D Gaussian 
 
 
 

“2D random walk” 
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• MAXIMUM LIKELIHOOD: the best model is the one that 
maximizes the probability of observing the data 

• INDEPENDENCE: probabilities multiply when the 
experimental data points are independent 

• LOG-LIKELIHOOD: used instead of the likelihood as it has a 
maximum at the same value as the likelihood but the 
numbers are not too small for computers to use 

• BAYES’ THEOREM: P(model;data) = prior × likelihood 

• INTEGRATING OUT PARAMETERS: removes nuisance 
variables in a joint probability distribution 

• CENTRAL LIMIT THEOREM: the distribution of the average is 
Gaussian, even when the distribution from which the 
average is drawn is not Gaussian 

Summary 



Maximum Likelihood 

• Recap: What is the “best match” between the 
observed and calculated structure factors? 

• Use probability as the scoring function 
• Probabilities account for errors/uncertainties 

• Can model the errors/uncertainties in the positions of                            
atoms and B-factors and occupancies 

• Use the method of Maximum Likelihood to select the 
best model for the calculation of the phases 



Likelihood Function 
 • The model consists of atoms with errors 

• The (phased) structure factors also have errors 
• Total likelihood for a reflection is a 2D Gaussian 

• Because central limit theorem applies  
• Integrate out observed phase from 2D Gaussian 

• Gives the likelihood for structure factor amplitude 
• “The phase problem” 

• Assume reflections are independent 
• Total likelihood = Πh likelihood 

• Use log(likelihood) 
• Total log(likelihood) = Σh log(likelihood) 
• Minimise the -log(likelihood) 

 
 



Three atoms 

• The total structure factor of three atoms for a 
reflection is the sum of the structure factors 

• The phase (0 to 360°) depends on the distance of 
the atoms between Bragg planes  

Bragg planes 
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3 



Atoms have errors 
(or there are uncertainties) 
 

Bragg planes 

1 
2 

3 

I 

R 

Bragg planes 

1 
2 

3 

I 

R 
1 

2 

3 
No errors 
Atomic positions  

known exactly 

What do the  
structure factors 

with errors  
look like? 

No errors 
Structure factors  

known exactly 

With errors 
Atomic scattering 
(positions/B-factors) 
not known exactly 



 
Structure factor for atom with errors 
 

df

x −x 3x −3x 2x −2x  0 

Br
ag

g 
pl

an
e 

What do the  
structure factors 

with errors  
look like? 

A boomerang! 

Only the error/uncertainty in the position 
perpendicular to the Bragg planes is 
relevant for any given structure factor 



Likelihood Function 
 • The model consists of atoms with errors 

• The (phased) structure factors also have errors 
• Total likelihood for a reflection is a 2D Gaussian 

• Because central limit theorem applies  
• Integrate out observed phase from 2D Gaussian 

• Gives the likelihood for structure factor amplitude 
• “The phase problem” 

• Assume reflections are independent 
• Total likelihood = Πh likelihood 

• Use log(likelihood) 
• Total log(likelihood) = Σh log(likelihood) 
• Minimise the -log(likelihood) 

 
 



 
Structure factor for a model with errors 
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gives 2D Gaussian by 
Central Limit Theorem 

Boomerangs 
independent errors 
(approximation) 
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2D Gaussian centred on DFc 
with width (variance)  σΔ² 



Likelihood Function 
 • The model consists of atoms with errors 

• The (phased) structure factors also have errors 
• Total likelihood for a reflection is a 2D Gaussian 

• Because central limit theorem applies  
• Integrate out observed phase from 2D Gaussian 

• Gives the likelihood for structure factor amplitude 
• “The phase problem” 

• Assume reflections are independent 
• Total likelihood = Πh likelihood 

• Use log(likelihood) 
• Total log(likelihood) = Σh log(likelihood) 
• Minimise the -log(likelihood) 

 
 



Likelihood 
 
• But we do not measure the phase of the observed 

structure factor! 
• Integrate out the phase to get the likelihood for the 

unphased structure factors  
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Likelihood Function 
 • The model consists of atoms with errors 

• The (phased) structure factors also have errors 
• Total likelihood for a reflection is a 2D Gaussian 

• Because central limit theorem applies  
• Integrate out observed phase from 2D Gaussian 

• Gives the likelihood for structure factor amplitude 
• “The phase problem” 

• Assume reflections are independent 
• Total likelihood = Πh likelihood 

• Use log(likelihood) 
• Total log(likelihood) = Σh log(likelihood) 
• Minimise the -log(likelihood) 

 
 



 
Likelihood Function 
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Likelihood per reflection  
P(data;model) 

Independence 
of the reflections 
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Experimental Phasing  
with 
Maximum Likelihood 



Heavy atoms derivative #1 

= 

FH1 

I 

R 

R 

Heavy atoms derivative #2 

= FPH2 

I 

Protein 

Fp 
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R 

FP  

Fp  

Protein 

Protein 

FPH1 

FH2 



Harker Diagram 

• The interference 
experiment can be 
represented on a Harker 
diagram 

• The phase ambiguity  for 
the native protein structure 
factor is shown as the 
intersection of two circles 
with centres displaced by FH 

Cirlce radius |FP| Cirlce radius |FPH| 

FH 

αP? 

αP? 



Harker Diagram 
 

FH1 

FH2 

αP 

• The interference 
experiment for a 
second derivative 
can be shown on 
the same Harker 
diagram 

• A second derivative 
breaks the phase 
ambiguity 



Reality… 
 • Some real Harker diagrams from the phasing of 

haemoglobin with 6 derivatives  
 
 
 
 
 

• Phase circles rarely cross exactly 
• Need a probabilistic approach to determining the 

phase 



Harker construction 

• Phasing of one refection 
using two derivatives 
with no errors 

• Phase determined with 
very high probability 



Harker construction 

• There are many  
sources of error 
• Data errors 
• Model errors 

• The errors are large 
• We are looking for the 

best phase 
• We therefore need a 

probability function 
 



Introducing.... the True F 

• Introduce a nuisance 
parameter, the “true F” 

• The “true F” is the component 
of scattering shared by the 
native and derivatives  
• The “left over” parts of the 

structure factors are independent 

• The “true F” is integrated out at 
the end of the analysis 
• Numerical integration 



Heavy atoms derivative #1 

= 
DFH1 

I 

R 

R 

Heavy atoms derivative #2 

= 
DFH2 

I 

Protein 

DFT  

I 

R 

DFT  

DFT  

Protein 

Protein 



DFH1 

I 
DFT  

( ; )O CP F F

2D Gaussian probability function 

• The 2D Gaussian is the 
probability of measuring an 
FO given FC = DFH  + DFT  

• Probability accounts for 
• Errors in FH, 

• Non-isomorphism 

• Measurement errors in FO 

• However, we measure |FO| 
not FO 

• Integrate out the phase to 
get a Rice function 

R 

FC  



 
Likelihood Function 
 

Likelihood per derivative 
P(data;model) 

Independence 
of the reflections 
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• Each circle has an error 
associated with it to give 
a distribution 

• The total likelihood is the 
volume under the curve 
of the product of the 
distributions 

Probabilistic Harker Diagram 



Probabilistic Harker Diagram 

• The final distribution is 
high only where all 
three circles overlap 



Refining Occupancy 
 
To refine the occupancy 
of a heavy atom, 
maximise the likelihood 
(area under the curve) 
 

Final refined value is the 
optimum for ALL 
reflections (movie shows 
ONE reflection) 
  



Other Phasing Statistics 
 
• They are non-likelihood measures of phasing  
• Heuristic formula that help judge phasing 

usable 0.9
excellent 6.0

difference sisomorphou
closure oflack   weightedprob.

<
<

=CullisR

    usable 5.0
       good 0.1

excellent 5.1

closure oflack   weightedprob.
amplitude anomalous

Power Phasing
 Anomalous

closure oflack   weightedprob.
amplitude atomheavy 

Power Phasing
sIsomorphou

 
>
>
>

=

=

Ann Cullis 

PHOTO 1956: MRC-LMB ARCHIVES 



Completion of sub-structure 
 

• Inclusion of minor sites improves the phases 
• Want the biggest “substructure” that can be found 

• Minor sites often not detectable from Patterson 
• For example, anomalously scattering intrinsic sulphurs 

• Compute derivative of log-likelihood with respect to 
heavy atom structure factor 
• FT gives a map – the “log-likelihood gradient map” 
• shows where likelihood function would like to see changes in 

anomalous scatterer model 
• But can’t do anything about it because there are no atoms 

there to change occupancy/B-factor of... 

 



Log-likelihood gradient maps 

• Gradient of likelihood function 
w.r.t. coordinates xyz indicates 
where the function wants new 
atoms added 

• Substructure completion is 
done by adding new atoms at 
these locations and then re-
refining 

• Repeat until convergence 

• Can also be used to 
confirm/identify anomalously 
scattering atoms 

 

New atoms 

Peaks in llg map 



Calculating Electron Density 
 
• ML function is good for refining the parameters, but 

what phase should be used in the electron density 
equation? 
• Have to pick one phase 

• We want the phase that gives the electron 
density with the lowest rms error 
• Parseval’s theorem relates the rms error in real space to 

the rms error in reciprocal space and vice versa 

• This phase (the “best phase”) is the probability-
weighted average of all the phases 
• It is not the “most probable phase” 



• Cut the centre out of a 
polystyrene foam plate 

• Balance the disk on your      
finger 
• The centre of mass is                at 

the centre 

• Now put 3 paperclips on       the 
edge of the disc 
• 2 together 
• 1 a distance away 

• The balancing point is          
between the 3 paperclips 
• Not on the 2 paperclips 

Most 
Probable 
Structure 

Factor 

Best 
Structure 

Factor  

1 
2 



• Fbest has a lower |F| 
amplitude than Fobs 

• The reduction in Fobs to give 
Fbest is expressed as the 
“figure of merit” (m) 
• 0<m <1: Fbest lies               

inside the Fobs circle 
• m=1 : Perfect phase 

information 
• m=0: No phase information 
• The higher the average value 

of the figure of merit, the 
better 



Phase probability 
 
• Each reflection really has a 

phase probability density 
function (PDF) rather than a 
single phase 

• This is a complicated 
mathematical function 
• Requires lots of memory 

• Four Hendrickson-Lattman 
coefficients (A,B,C,D) are used 
to store this PDF in a compact 
form  



Hendrickson-Lattman Coefficients 
 
• Each reflection has a (different) 

structure factor PDF 
• There is one set of (four) HL 

coefficients for each reflection 
• They are different for each 

reflection 

• These four parameters generate 
a curve that approximates the 
PDF for each reflection 

Eaton Lattman 

Wayne Hendrickson 



Hendrickson-Lattman Coefficients 
 

 
 

• Hendrickson Lattman (HL) coefficients can only 
(completely) describe a bi-modal distribution 
• Since the highest frequency is 2α  
• Most PDFs do not have more than two peaks 

• HL coefficients allow for easy combination of phase 
information from multiple sources 
• the combined PDF is formed simply by adding the A,B,C, 

and D from the two distributions 

( ) ( ) ( ) ( ) ( )[ ]exp cos sin cos 2 sin 2P A B C Dα α α α α∝ + + +



Hendrickson-Lattman Coefficients 
 

 PDF 
 HL approximation 

HL coefficients as a function of FH occupancy 



SAD Phasing  

Rice term 

• Primarily anomalous scattering 
• “tight” probability distribution 

FO
−

( )*Re −F

( )*Im −F

Expected difference 
between F+ and F−∗  



SAD Phasing  

2D-Gaussian Term 

• Primarily Normal scattering 
• “diffuse” probability distribution 

OF −

( )*Re −F

( )*Im −F

FH
−∗ 



SAD Phasing  
Rice & 2D-Gaussian Product  
Likelihood is proportional to the 
product of the two distributions 
(magenta) under the black 
circle 

( )*Im −F

( )*Re −F

OF −

FH
−∗ Expected difference 

between F+ and F−∗  



SAD Phasing 

Refining heavy atom occupancy 
To refine the occupancy 
of a heavy atom, 
maximise the SAD 
likelihood 

 

Final refined value is the 
optimum for ALL 
reflections (movie shows 
ONE reflection) 



SAD Phasing 

DNA Hexamer 
 
 



Software for Experimental Phasing 
 • SHARP 

• Maximum likelihood phasing 
• SAD/SIR/MIR/MAD/MIRAS 

• Solve 
• Maximum likelihood phasing – algorithms different from SHARP 
• SAD/SIR/MIR/MAD/MIRAS 
• Phenix 

• Phaser 
• SAD - Correlated maximum likelihood phasing 
• Easily used with partial MR models 
• CCP4/Phenix 

• Mlphare 
• Pseudo-maximum likelihood phasing 
• Not under active development 
• CCP4  

 



Further Reading 

• Liking Likelihood 
• Acta Cryst D60 2169 2004 

• Likelihood-Based Experimental Phasing 
• In “Evolving Methods for Macromolecular 

Crystallography”, proceedings of the 2005 Erice 
Crystallography School 

• Simple algorithm for a maximum likelihood SAD 
function 
• Acta Cryst D60 1220 2004 
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