Super-Resolution Microscopy

Jonathan Howe

Spatial Resolution of Biological Imaging Techniques

Optical Resolution Limit:
~200-250 nm

Image from Zeiss Website
Diffraction Limited Imaging

Point Source
e.g. Single
Fluorophore (~1 nm)

Lens

Image of Point Source – Point Spread Function (PSF)
XY plane
XZ plane

Airy Pattern

PSF Image from PSF Generator (BIG, EPFL). Resolution Criteria Image from Sedlin, Journal of Physics, 2017

Diffraction Limited Imaging

Point Source
e.g. Single
Fluorophore (~1 nm)

Lens

Image of Point Source – Point Spread Function (PSF)
XY plane
XZ plane

Airy Pattern

Lateral (XY) Resolution = PSF_{FWHM} = 200-250 nm

Axial (Z) resolution is typically 2-3 times worse i.e. 500-700 nm.

PSF Image from PSF Generator (BIG, EPFL). Resolution Criteria Image from Sedlin, Journal of Physics, 2017
Lateral (XY) Resolution Limit

At best λ is 400-500 nm

$n \sin \alpha = \text{NA (Numerical Aperture)} = 1$

Therefore,

$d \ (\text{lateral [XY] resolution}) = \frac{\lambda}{2} = 200-250$ nm

Images from Wikipedia, University of Texas Website and Hell, Nature Methods, 2009.
Super-resolution Microscopy Techniques

- **Structured Illumination Microscopy (SIM)**. Sample is excited with patterned illumination, which highlights different objects at different times.

- **Stimulated Emission Depletion (STED) Microscopy**. Targeted PSF engineering effectively shrinks illumination spot.

- **Localisation Microscopy (LM)** e.g. PALM and STORM. Fluorophores are randomly activated, imaged and bleached. Localisation of the fluorophores builds up a super-resolution image over time.

Structured Illumination Microscopy (SIM)

- The patterned illumination light and high frequency structures in the sample interfere with each other to form a third pattern (moiré fringes) that have a lower spatial frequency and can therefore be captured by the objective lens.

- The interdependency of the 3 patterns is used to compute the unknown super-resolution information in the sample.

- Acquiring raw images with patterned excitation at 3 (2D) or 5 (3D) phases and 3-5 orientations and processing all acquired images using computer algorithms, a super-resolution image can be generated (2-fold improvement in XYZ resolution). 9-25 images per Z plane - bleaching!

XY resolution: 100-130 nm
Z resolution: 250-350 nm

Images from Nikon website.
Zeiss Elyra S.1

- 4 lasers (50 mW 405 nm, 100 mW 488 nm, 100 mW 561 nm, 150 mW 640 nm).
- 100x 1.46 NA oil objective.
- 63x 1.4 NA oil objective.
- 60x 1.2 NA water objective.
- PCo-edge sCMOS camera capable of 100 fps.
- 5 gratings (23 µm, 28 µm, 34 µm, 42 µm and 51 µm).
- Up to 4 colours in one sample is realistically possible.
- Resolution improvement is limited by wavelength of label. Blue/green dyes better than red/far red – Also true for diffraction-limited imaging!

Image from Wikipedia.
2-Colour SIM Example: Actin and Mitochondria

- Bovine Pulmonary Artery Endothelial (BPAE) Cells.
 - Alexa Fluor 488 Phalloidin (Actin).
 - MitoTracker Red (Mitochondria).

3/4-Colour SIM: Microdomains of Autophagy Markers

- HeLaS infected with Salmonella:
 - mCherry-Salmonella (Blue).
 - Galectin8 (Alexa 488, Green).
 - ATG13a (Alexa 647, Red).

- HeLaS infected with Salmonella:
 - Galectin8 (Alexa 488, Green).
 - NDP52 (Pacific Blue, Red).
 - Wipi2 (Alexa 647, White).
 - mCherry Salmonella (Blue).
Super-resolution Microscopy Techniques

- Structured Illumination Microscopy (SIM). Sample is excited with patterned illumination, which highlights different objects at different times.

- Localisation Microscopy (LM) e.g. PALM and STORM. Fluorophores are randomly activated, imaged and bleached. Localisation of the fluorophores builds up a super-resolution image over time.

Stimulated Emission Depletion (STED) Microscopy

Light Amplification by Stimulated Emission of Radiation (LASER)

Stimulated Emission Depletion (STED) Microscopy

- Resolution increases as the intensity of the STED beam is turned up.
- \(I = \text{STED laser power} \).
- \(I_s = \text{Saturation intensity (STED power needed to quench emission by 50\% - fluorophore specific)} \).

\[
d = \frac{\lambda}{2\text{NA}} \sqrt{1 + \frac{I}{I_s}}
\]

XY resolution >10 nm (25-80 nm typical)
Z resolution same as confocal

Multiple excitations and STED depletions before the imaging spot arrives! Photobleaching?

Stimulated Emission Depletion (STED) Microscopy

- The STED image is built up by raster scanning the super-resolution central spot. Because it is much smaller than a regular confocal spot the image pixels must also be smaller.
Improving Axial (Z) Resolution - 3D STED

• With an alternatively shaped STED beam, additional axially-shifted intensity lobes can be created that quench the axial extension of the PSF as well.

Harke et al., Nano Letters, 2008

Leica TCS SP8 STED 3X

• Essentially just a standard Leica TCS SP8 confocal plus a few extra bits:
 + Tuneable pulsed supercontinuum “white light” laser (470-670 nm).
 + High power 592 nm, 660 nm and 775 nm STED lasers.
 + 3D STED alignment unit.
 + Gated detectors.
• Scan time scales with frame size as with confocal.
• However, pixel density must be higher (20 nm pixels) to capture super-resolution information.
• Therefore, scan time is considerably slower (~16-fold).
• Resonant scanner.
1-Colour STED Example (Microtubules)

- HeLa Cells.
 - Primary Ab: Rat Anti-Alpha Tubulin.
 - Secondary Ab: Anti-Rat-Oregon Green 488.

![Confocal STED Merge](image)
1-Colour STED Example (Microtubules)

- HeLa Cells.
 - Primary Ab: Rat Anti-Alpha Tubulin.
 - Secondary Ab: Anti-Rat-Oregon Green 488.
2-Colour STED: Example 1 (Primary Neurons)

- Primary Rat Hippocampal Neuron Culture (Jake Watson – Greger lab).
 - Primary Abs: Rabbit Anti-GluA1R + Mouse Anti-PSD95.
 - Secondary Abs: Anti-Rabbit-Alexa 488 + Anti-Mouse-Alexa 568.
2-Colour STED: Example 2 (More Primary Neurons)

- Primary Rat Hippocampal Neuron Culture.
 - PSD95 (Alexa 488, Green)
 - Bassoon (Alexa 568, Red)

3-Colour STED: Example (Recycling Endosomes)

Sophie Brusegern (Formally of Seaman Lab, CIMR)
3-Colour STED: Example (Recycling Endosomes)

Sophie Bruesegem (Formally of Seaman Lab, CIMR)

Super-resolution Microscopy Techniques

- Structured Illumination Microscopy (SIM). Sample is excited with patterned illumination, which highlights different objects at different times.

- Localisation Microscopy (LM) e.g. PALM and STORM. Fluorophores are randomly activated, imaged and bleached. Localisation of the fluorophores builds up a super-resolution image over time.
Localisation Microscopy (LM)

An image taken by a camera contains several noise factors including photon noise, the effect of pixelation and fluorescent background.

Localisation precision scales as the inverse square root of the number of collected photons.

\[
\sigma_f = \sqrt{\frac{S^2}{N} + \frac{a^2/12}{N} + \frac{8\pi s^2}{a^2 N^2}}
\]

- N = number of photons collected
- a = pixel size
- b = background
- s = SD of the PSF

\[
\text{FWHM}_{\text{LOCALISATION}} = \frac{\text{FWHM}}{\sqrt{N}}
\]

Localisation Microscopy (LM)

![Diagram of localisation microscopy](image)

- **Diffraction Limited Spot**
- **133 nm Effective Pixel Size in Object Space**
- **30 nm In Silico**

FWHM_{LOCALISATION} = \text{FWHM}/\sqrt{N}

Photoactivation Localisation Microscopy (PALM)

- Optical highlighter fluorescent proteins used as switchable probes. 2 useful types for PALM:
- Photoactivatable fluorescent proteins:
 - Initially non-fluorescent (dark) and can be switched on by illumination at a specified wavelength e.g. PAGFP, PATagRFP and PAmCherry.
- Photoconvertible fluorescent proteins:
 - Emission spectra can be shifted (usually to longer wavelength) by illumination at a specified wavelength e.g. Kaede, Eos and Dendra (all green-to-red).

Image modified from Olympus website.
STochastic Optical Reconstruction Microscopy (STORM)

- A large number of commercially available fluorophores can be used as photoswitches in the presence of millimolar concentrations of reducing thiols e.g. β-ME, MEA or GSH (live cells).

- The triplet state is reduced by the thiol to form a long-lived intermediate radical anion (off state). The fluorescent state of the fluorophore is recovered through oxidation by molecular oxygen, which is facilitated by irradiation with purple/blue light.

- Carbocyanine dyes (Cy5, 5,5, 7, Alexa 647) are far more easily oxidised and therefore an enzymatic oxygen scavenging system is required to prolong lifetime in the off state (glucose oxidase and catalase).

![ON state](image1) ![OFF state](image2)

Van de Linde et al., Chem. Biol., 2013

Nikon N-STORM

- TIRF illuminator attached to a Nikon Ti inverted microscope body.

- 4 lasers (30 mW 405 nm, 90 mW 488 nm, 90 mW 561 nm, 170 mW 647 nm).

- 100x 1.49 NA TIRF objective.

- 60x 1.27 NA water objective.

- Andor iXon3 897 EMCCD camera capable of up to 35 fps.

- Perfect Focus System (PFS) to reduce Z-drift during acquisitions, which can take up to 1 hour.

- XY-drift correction in software by cross-correlation.

- Cylindrical lens in detection path allows 3D position mapping over 1 μm range.
Total Internal Reflection Fluorescence (TIRF) Microscopy

TIRFM Image from Nikon website.

1-Colour STORM: Example 1 (Caveolae)

• HeLa Cells.
 − Primary Ab: Rabbit Anti-Cavin1.
 − Secondary Ab: Anti-Rabbit-Alexa Fluor 647.
1-Colour STORM: Example 1 (Caveolae)

- HeLa Cells.
 - Primary Ab: Rabbit Anti-Cavin1.
 - Secondary Ab: Anti-Rabbit-Alexa Fluor 647.
1-Colour STORM: Example 2 (Microtubules)

- HeLa Cells.
 - Primary Ab: Rat Anti-Alpha Tubulin.
 - Secondary Ab: Anti-Rat-Alexa Fluor 647.
1-Colour STORM: Example 2 (Microtubules)

- HeLa Cells.
 - Primary Ab: Rat Anti-Alpha Tubulin.
 - Secondary Ab: Anti-Rat-Alexa Fluor 647.

2-Colour STORM Example (Radiation-Induced Damage)

- HeLa cells
 - RPA (CF 568, Green).
 - Rad51 (Alexa 647, Magenta).
Label Size and Labelling Density.

- Photon number limits the precision of single molecule localisation and signal-to-noise for all super-resolution techniques.
- The resolution of the final image also depends on labelling density.
- The physical size of the label can limit the achievable resolution.
- Ideally, we would like to label proteins with the specificity of a genetic fusion but with the signal intensity of organic fluorophores!

Comparison of Super-resolution Methods

<table>
<thead>
<tr>
<th></th>
<th>SIM</th>
<th>STED</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>Wide-field EMCCD/sCMOS camera</td>
<td>Scanning PMT/APD</td>
<td>Wide-field EMCCD/sCMOS camera</td>
</tr>
<tr>
<td>Lateral (XY) Resolution (nm)</td>
<td>100-130</td>
<td>25-80</td>
<td>25-40</td>
</tr>
<tr>
<td>Axial (Z) Resolution (nm)</td>
<td>250-350</td>
<td>125</td>
<td>50</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>ms-sec</td>
<td>ms-min</td>
<td>s-min</td>
</tr>
<tr>
<td>Multiplexing</td>
<td>4 colours, regular fluorophores</td>
<td>3 colours, restricted by number of STED lasers</td>
<td>2/3 colours, not trivial</td>
</tr>
<tr>
<td>Postprocessing</td>
<td>Yes, 9-25 raw images per z-plane, risk of artefacts</td>
<td>No</td>
<td>Yes, 1000+ images per z-plane</td>
</tr>
</tbody>
</table>

- Always image through no. 1.5 (170 μm) cover glasses, ideally low tolerance (± 5 μm).
- If possible use phenol red-free culture medium.
- Use high refractive index mounting media e.g. Prolong Diamond or 2,2’-thiodiethanol (TDE). Ideally with antifade compounds to limit bleaching.
- If immunostaining, consider increasing antibody concentrations to ensure high labelling density. Also, increase number and duration of washes to reduce non-specific labelling.
Acknowledgements

- Light Microscopy Facility
 - Nick Barry
 - Jérôme Boulanger
 - Ben Sutcliffe
 - James Manton
- Ágnes Föglein (Formally of Randow Lab).
- Jake Watson (Greger Lab).
- Sophie Bruesegem (Formally of Seaman Lab, CIMR)
- Kalina Haas (Formally of Venkitaraman Lab, MRC Cancer Unit)