

A little history...

Joseph John Thomson 1906 Nobel Prize for Physics "in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases"

Francis William Aston 1922 Nobel Prize for Chemistry "for his discovery, by means of his mass spectrograph, of isotopes, in a large number of non-radioactive elements, and for his enunciation of the whole-number rule"

Wolfgang Paul 1989 Nobel Prize for Physics "for the development of the ion trap technique" John Bennet Fenn 2002 Nobel Prize for Chemistry "for the development of soft desorption ionisation methods (ESI) for mass spectrometric analyses of biological macromolecules" Koichi Tanaka 2002 Nobel Prize for Chemistry "for the development of soft desorption ionisation methods (MALDI) for mass spectrometric analyses of biological more menu level.

16/04/19

	Surfactant Buffer and Salt	Mw	MALDI	MALD	ESI	ESI
		(a/mol)	(mM)	(wt.%)	(mM)	(wt.%)
	TRIS	121	100	1.0	N.C	N.C
	HEPES	238	100	2.4	N.C	N.C
	BICINE	163	50	0.8	N.C	N.C
	Urea	60	500	3.0	N.C	N.C
	Guanidine, HCI	96	250	2.4	N.C	N.C
	Dithiothreitol	154	500	7.7	N.C	N.C
	Glycerol	92	130	1.2	N.C	N.C
	N-Octyl-β-glucopyranoside	292	3.4	0.1	3.1	0.1
	n-Octyl sucrose	468	N.C	N.C	2.1	0.1
	n-Dodecyl sucrose	524	N.C	N.C	1.9	0.1
	n-Dodecyl maltoside	511	N.C	N.C	2.0	0.1
	Cctyl thioglucoside	308	N.C	N.C	3.2	0.1
	n-Hexyl glucoside	264	N.C	N.C	3.8	0.1
	n-Dodecyl glucoside	348	N.C	N.C	2.9	0.1
	PEG1000	1000	N.C	N.C	N.C	N.C
	PEG 2000	2000	0.5	0.1	N.C	N.C
	Triton X-100	628	1.6	0.1	N.C	N.C
	NP-40	603	1.7	0.1	N.C	N.C
	Zwittergent 3-16	392	2.6	0.1	N.C	N.C
	Tween 20	1228	N.C	N.C	0.81	0.1
	Thesit	583	N.C	N.C	<1.7	<0.1
	SDS	288	0.35	0.01	N.C	N.C
	LDAO	229	4.4	1.0	<4.4	<0.1
	CTAB	284	N.C	N.C	<3.5	<0.1
	CHAPS	615	0.16	0.01	1.6	0.1
	Sodium Cholate	431	N.C	N.C	2.3	0.1
	Sodium Taurocholate	538	N.C	N.C	<1.9	<0.1
	Sodium Azide	65	15	0.1	3.1	0.02
	NH ₄ HCO ₃	79	50	0.4	50	1
	NaCl	58	50	0.29	N.C	N.C
	Sodium Acetate	82	50	0.41	50	1
4/19	NaHPO ₄	120	10	0.12	N.C	N.C
	TFA	114	N.C	N.C	4.4	0.05

