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Agenda
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An intuitive introduction



An example “protein”
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Electron microscopy imaging

3D object

We collect data in 2D,
but we want 3D info!

2D projection




Further inconveniences

* Microscope imperfections introduce artefacts
— Contrast Transfer Function (CTF)

* Large amounts of noise




Single particle analysis

Embedded in ice: many unknown orientations

Combine all 2D projections into a 3D reconstruction



Projection matching
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3D reconstruction




lterative refinement




lterative refinement




Alignment

Or how to ‘match’ projections



Incomplete data problems

Part of the data was not observed experimentally
— Orientations
— Class assignments

Difficult to solve!
— |terative methods?

Complete data problem would be very easy to solve

(Another famous one: the phase problem in XRD)



Incomplete data problems

Observed data (X): images

Missing data (Y): orientations



Complete data problems

white Gaussian noise
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Observed data (X): images




Incomplete data problems

Observed data (X): images

Missing data (Y): orientations



Incomplete data problems

e Option 1: add Yto the model —

L(Y,0)=P(X|Y,0)

e Option 2: marginalize over Y —>-

L(©®) = P(X |©) = fP(X 'Y,0)P(Y|©O 1y

|

Probability of X,
regardless Y




The maxCC approach



Reference-based alighment

* Starts from some initial guess about the structure

Cross.-
correlation |:
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Iterate!
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The ML approach



Maximum likelihood

X Statistical model

. P(X,|4,0)

lllustrate PDF on the board



Do not assign discrete
orientations if the noise
in the data does not
allow this...

Sigworth, J. Struct. Biol., 1998



Incomplete data problems

e Option 1: add Y to the model

L(Y,0)=P(X|Y,0)

e Option 2: marginalize over Y

L(©®) = P(X |©) = fP(X 'Y,0)P(Y|©O 1y

|

Probability of X,
regardless Y



Incomplete data problems

In the limit of noiseless data the
Two techniques are equivalent!

Many software packages now use ML:

cryoSPARC, SPARX/SPHIRE, FREALIGN,
XMIPP, RELION

Read more? See Methods in Enzymology, 482 (2010)



Classification



The 2D multi-reference algorithm

estimates for K
2D objects

sampled rotations 360°

for each image, calculate all

P(imagel. |k, rot)

calculate new 2D average
as probability weighted
averages




Reference-free 2D class averaging
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Start from random angles:
no user input other than
number of classes!!
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3D alignment & classification



3D ML refinement

“Probability-weighted angular assignment”



Initial model \

* Expectation-Maximisation is a local optimizer!

— Gets stuck in nearest (local) minimum

 Bad model in -> bad model out!!!
— Much less of a problem with high-resolution data

* Stochastic methods may reach global minimum
— Stochastic Hill Climbing (SIMPLE)
— Stochastic Gradient Descent (cryoSPARC & RELION)



Structural heterogeneity




Multi-reference refinement




Multi-reference refinement




ML3D classification

“Probability-weighted angular assignment”



Prelim. ribosome reconstruction
91,114 particles; 9.9 A resolution

fragmented

(depicted at a
lower threshold)




Seed generation
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ML-derived classes

22,176 particles 27,416 particles 25,651 particles 15,871 particles
N— S . _J
e~ Y
no ratcheting; no EF-G; 3 tRNAs ratcheting,
differences: overall rotations EF-G, 1 tRNA

(Results coincided with a supervised classification) Scheres et al (2007) Nat. Meth.



Fourier-space formulation



Projection-slice theorem

3D specimen J
=

Different
images
2D Fourier A =
transforms
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Projection-slice theorem

3D

real space

inverse .
. Fourier
Fourier
transform
transform

Fourier space




Projection slice theorem

real space

Fourier space
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Data model

* Real-space
X;=CIE®P YV, +N,

e Convolute w/ CTF
* P,implements integrals
* N;describes white noise

Fourier space
X;=CTEP )V, + N,

Multiply w/ CTF
P, takes a slice
N.describes coloured noise



Coloured noise model

for each
Fourier pixel h
2D-Gaussian
in complex
plane

imaginary

CTF, [P,V ]

J
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Assuming independence of noise between all Fourier terms:
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exp /"\2
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resolution-dependent noise model!

Scheres et al. (2007) Structure



0.002

0.0015

0.001

0.0005

Coloured noise!l

(for different groups)

0 0.02 0.04 0.06 0.08

resolution (A1)



‘Optimal’ filtering

* Paula: low, high and band-pass filters may be
useful for denoising images for alignment

* By measuring power of noise and power of
signal at every frequency, an ‘optimal’ filter is
learnt automatically from the data
— No user-expertise required to tune filters!



Regularised Likelihood



Maximum-likelihood estimators

e The best one can do...
e ..in the limit of infinitely large data sets

* But my data set is limited in size, right?!
— Even with Krios, K3 & EPU!



The bad news

 The experimental data alone is not enough to
determine a unique solution!

* There are many noisy reconstructions that
describe the data equally well...

* Danger of incorrect interpretation...



The good news

* By incorporating external information, a different
problem may be solved for which a unique
solution does exist!

* Regularisation

* Conventional regularisation approaches

— Wiener filtering
— Low-pass filtering



A Bayesian view on regularization

- C P(X\@)P(@i )

P(X)

Likelihood * Prior

Posterior =
Evidence

Regularised likelihood optimisation



Likelihood

* Assume noise is Gaussian and independent

— In Fourier space

— with spectral power o?(v): coloured noise
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Prior

* Assume signal is Gaussian and independent
* In Fourier space
* Limited power t?(v): smoothness in real space!
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Expectation maximization

. CTF
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3D Wiener filter

E fr<">PT CTFZ LX.dg
e _ i=1 g
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 Calculates SSNR(v) (as a 3D function)

e Hand
* Hand

es uneven orientational distributio
es astigmatic CTFs &

* Corrects CTF & low-pa WITHOUT

* Optimal linear filter

ARBITRARINESS!



Recapitulating

* Alignment & classification are incomplete
problems

— Best dealt with by marginalisation (ML)
2D and 3D problems are very similar

* Fourier-space is most convenient
— CTF multiplication
— Slices instead of line integral projections
— Coloured noise-model

— Regularised Likelihood function -> ‘optimal’ filters
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