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•  Classifica7on	
–  Mul7-reference	alignment	in	2D	
–  and	in	3D	

•  Fourier-space	formula7on	
–  Regularised	likelihood	op7misa7on	
–  CTF	correc7on	



An	intui7ve	introduc7on	



An	example	“protein”	
Jan	



Experimental	setup	
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Electron	microscopy	imaging	

3D	object	

2D	projec7on	

e-	

	We	collect	data	in	2D,		
	but	we	want	3D	info!	



Further	inconveniences	

•  Microscope	imperfec7ons	introduce	artefacts	
– Contrast	Transfer	Func7on	(CTF)	

•  Large	amounts	of	noise	



Single	par7cle	analysis	
•  Embedded	in	ice:	many	unknown	orienta7ons	

•  Combine	all	2D	projec7ons	into	a	3D	reconstruc7on	



Projec7on	matching	

Ini7al	3D	model	



Projec7on	matching	

maxCC	

compare	 with	all	
projec7ons	



3D	reconstruc7on	



Itera7ve	refinement	



Itera7ve	refinement	



Alignment	

Or	how	to	‘match’	projec7ons	



Incomplete	data	problems	

•  Part	of	the	data	was	not	observed	experimentally	
–  Orienta7ons	
–  Class	assignments	

•  Difficult	to	solve!	
–  Itera7ve	methods?	

•  Complete	data	problem	would	be	very	easy	to	solve	

•  (Another	famous	one:	the	phase	problem	in	XRD)	
	



Incomplete	data	problems	

Missing	data	(Y):	orienta7ons	
Observed	data	(X):	images	

Not	easy	



Complete	data	problems	
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Observed	data	(X):	images	

Easy!	



Incomplete	data	problems	

Missing	data	(Y):	orienta7ons	
Observed	data	(X):	images	

Not	easy	



Incomplete	data	problems	

•  Op7on	1:	add	Y	to	the	model	
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Maximum		
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/	least-squares	

Maximum		
Likelihood	

( ) ( ) φdYPYXPXPL
Y
∫ ΘΘ=Θ=Θ |,|)|()(

Probability	of	X,		
regardless	Y	

•  Op7on	2:	marginalize	over	Y	



The	maxCC	approach	



Reference-based	alignment	
•  Starts	from	some	ini7al	guess	about	the	structure	
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rota7on	best!		

Illustrate	CCF	on	the	board	
	



Align	and	average	

CC	 avg	align	

Iterate!	



Align	and	average	

CC	 avg	align	

Iterate!	



The	ML	approach	



Xi 

Maximum	likelihood	
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Illustrate	PDF	on	the	board	
	



Xi 

Maximum	likelihood	
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Do	not	assign	discrete	
orienta7ons	if	the	noise	
in	the	data	does	not	

allow	this...	

Sigworth,	J.	Struct.	Biol.,	1998	



Incomplete	data	problems	

•  Op7on	1:	add	Y	to	the	model	

( ) ( )Θ=Θ ,|, YXPYL

Maximum		
cross-correla7on	

Maximum		
Likelihood	

( ) ( ) φdYPYXPXPL
Y
∫ ΘΘ=Θ=Θ |,|)|()(

Probability	of	X,		
regardless	Y	

•  Op7on	2:	marginalize	over	Y	



Incomplete	data	problems	
Maximum		

cross-correla7on	

Maximum		
Likelihood	

In	the	limit	of	noiseless	data	the		
Two	techniques	are	equivalent!	

Read	more?	See	Methods	in	Enzymology,	482	(2010)	

Many	sohware	packages	now	use	ML:	
cryoSPARC,	SPARX/SPHIRE,	FREALIGN,	

XMIPP,	RELION	



Classifica7on	



The	2D	mul7-reference	algorithm	

es7mates	for	K		
2D	objects	

( )rot,|image kP i

for	each	image,	calculate	all	

k=1	 k=2	

sampled	rota7ons	360°	

calculate	new	2D	average	
as	probability	weighted	
averages	



Reference-free	2D	class	averaging	

Start	from	random	angles:	
no	user	input	other	than	
number	of	classes!!	

Extremely	powerful	
to	clean	&	assess	

your	data	 Scheres	et	al	(2005)	J.Mol.Biol.	



3D	alignment	&	classifica7on	



3D	ML	refinement	

“Probability-weighted	angular	assignment”	

Do	not	make	
hard	decisions		
if	the	noise		
impedes	this	



Ini7al	model	

•  Expecta7on-Maximisa7on	is	a	local	op7mizer!	
– Gets	stuck	in	nearest	(local)	minimum	

•  Bad	model	in	->	bad	model	out!!!	
– Much	less	of	a	problem	with	high-resolu7on	data	

•  Stochas7c	methods	may	reach	global	minimum	
–  Stochas7c	Hill	Climbing	(SIMPLE)	
–  Stochas7c	Gradient	Descent	(cryoSPARC	&	RELION)	



Structural	heterogeneity	

complex!	



Mul7-reference	refinement	



Mul7-reference	refinement	



ML3D	classifica7on	

“Probability-weighted	angular	assignment”	



Prelim.	ribosome	reconstruc7on	
91,114	par7cles;	9.9	Å	resolu7on	

fragmented	

blurred	

(depicted	at	a		
lower	threshold)	



Seed	genera7on	

80	Å	
filter	

4	random	subsets;	1	iter	ML	



ML-derived	classes	

no	ratche7ng;	no	EF-G;	3	tRNAs	
differences:	overall	rota7ons	

ratche7ng,		
EF-G,	1	tRNA	

(Results	coincided	with	a	supervised	classifica7on)	 Scheres	et	al	(2007)	Nat.	Meth.	



Fourier-space	formula7on	



Projec7on-slice	theorem	



Projec7on-slice	theorem	



Projec7on	slice	theorem	



Data	model	

•  Real-space	

•  Convolute	w/	CTF	
•  Pφ	implements	integrals	
•  Ni	describes	white	noise	

•  Fourier	space	

•  Mul7ply	w/	CTF	
•  Pφ	takes	a	slice	
•  Ni	describes	coloured	noise	

Xi =CTFi ⊗PϕVk + Ni Xi =CTFiPϕVk + Ni



Coloured	noise	model	
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Assuming	independence	of	noise	between	all	Fourier	terms:	

resolu7on-dependent	noise	model!	

Scheres	et	al.	(2007)	Structure	



Coloured	noise!!	

resolu7on	(Å-1)	

σ2	

(for	different	groups)	



‘Op7mal’	filtering	

•  Paula:	low,	high	and	band-pass	filters	may	be	
useful	for	denoising	images	for	alignment	

•  By	measuring	power	of	noise	and	power	of	
signal	at	every	frequency,	an	‘op7mal’	filter	is	
learnt	automa7cally	from	the	data		
– No	user-exper7se	required	to	tune	filters!	



Regularised	Likelihood	



Maximum-likelihood	es7mators	

•  The	best	one	can	do…		
•  …in	the	limit	of	infinitely	large	data	sets	

•  But	my	data	set	is	limited	in	size,	right?!	
– Even	with	Krios,	K3	&	EPU!	



The	bad	news	
•  The	experimental	data	alone	is	not	enough	to	
determine	a	unique	solu7on!	

•  There	are	many	noisy	reconstruc7ons	that	
describe	the	data	equally	well…	

•  Danger	of	incorrect	interpreta7on…	



The	good	news	

•  By	incorpora7ng	external	informa7on,	a	different	
problem	may	be	solved	for	which	a	unique	
solu7on	does	exist!	

•  Regularisa7on	
	
•  Conven7onal	regularisa7on	approaches	
– Wiener	filtering	
–  Low-pass	filtering	



A	Bayesian	view	on	regulariza7on	
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Regularised	likelihood	op7misa7on	



Likelihood	

•  Assume	noise	is	Gaussian	and	independent		
–  in	Fourier	space	
– with	spectral	power	σ2(υ):	coloured	noise	
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•  Assume	signal	is	Gaussian	and	independent		
•  in	Fourier	space	
•  Limited	power	τ2(υ):	smoothness	in	real	space!	



Expecta7on	maximiza7on	
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power	of	signal	from	the	data	

Wiener	(op7mal)	filter	for	CTF-
corrected	3D	reconstruc7on	/		
2D	class	averages	

Es7mate	resolu7on-dependent	
power	of	noise	from	the	data	



3D	Wiener	filter	

)(2
1

)(2

2
T)(

1
)(2

T)(

)1(

1CTF

CTF

n

N

i
n

i

in
i

N

i
in

i

in
i

n

d

dX
V

τ
φ

σ

φ
σ

φ
φφ

φ
φφ

+Γ

Γ

=

∑∫

∑∫

=

=+

P

P

• 	Calculates	SSNR(υ)	(as	a	3D	func7on)	
• 	Handles	uneven	orienta7onal	distribu7on	
• 	Handles	as7gma7c	CTFs	&	CTF	envelopes		
• 	Corrects	CTF	&	low-pass	filters	
• 	OpKmal	linear	filter	

WITHOUT	
ARBITRARINESS!	



Recapitula7ng	
•  Alignment	&	classifica7on	are	incomplete	
problems	
–  Best	dealt	with	by	marginalisa7on	(ML)	

•  2D	and	3D	problems	are	very	similar	

•  Fourier-space	is	most	convenient	
–  CTF	mul7plica7on	
–  Slices	instead	of	line	integral	projec7ons	
–  Coloured	noise-model	
–  Regularised	Likelihood	func7on	->	‘op7mal’	filters	



Further	Reading	
•  Penczek,	Fundamentals	of	Three-Dimensional	Reconstruc7on	from	Projec7ons,	

Methods	in	Enzymology,	,	482	(2010)	p	1	

•  Penczek,	Image	restora7on	in	cryo-electron	microscopy,	Methods	in	Enzymology,	,	
482	(2010)	p	35	

•  Sigworth,	Doerschuk,	Carazo	&	Scheres,	An	Introduc7on	to	Maximum-Likelihood	
Methods	in	Cryo-EM,	Methods	in	Enzymology,	482	(2010)	p	263	

•  Scheres,	Classifica7on	of	Structural	Heterogeneity	by	Maximum-Likelihood	
Methods,	Methods	in	Enzymology,	482	(2010)	p	295	

•  Scheres,	Processing	of	Structurally	Heterogeneous	Cryo-EM	Data	in	RELION,	
Methods	in	Enzymology,	579	(2016)	p	125	

•  www2.mrc-lmb.cam.ac.uk/relion		(tutorial	&	Wiki	pages)	


