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Integration and Scaling

Harry Powell

MRC LMB Crystallography Course
10th May 2013

This lecture provides an introduction to data processing of diffraction images 
obtained via the rotation method, which is the most widely used way of 
collecting data X-ray data from single crystals, both for macromolecules and 
small molecules.
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Preamble – rationale for the experiment

What are we doing, and why are we doing it?

Measuring intensities of diffraction spots to obtain structure 
factor amplitudes

(1)

(2)

Careful data collection and careful measurement of intensities 
can be used to recover the phases (which are otherwise lost)
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The intensity of each reflection is related to the “structure factor amplitude” by 
equation (1) above. “L” is the Lorentz factor (which will be discussed later, but 
depends on, among other things, the data collection method), and “p” is the 
polarisation factor, related to the method of monochromation and the X-ray 
source. Both L and p depend on the diffraction angle of each reflection. “K” is 
usually a constant for a given crystal in an experiment, and depends on the 
crystal size, beam intensity and a number of other fundamental constants; since it 
is the same for every reflection in a dataset, it is usually applied as an overall 
scale factor to the measurements. 
The “Structure Factor equation” (2) demonstrates why it is important to collect 
and measure the intensities as well as possible, since the electron density that 
gives us our structural model depends on the values we obtain for F.  The 
electron density at every point in the cell depends on the intensity of every single 
reflection. Any badly measured or missing reflection will affect the maps we 
calculate.
Note that we are working with X-ray waves, and each diffracted ray has both an 
amplitude and a phase. The structure factor equation uses the structure factors F, 
not just the amplitudes |F|, but the phase information is lost in the data collection 
process. However, careful data collection and processing can allow us to obtain 
the phase information, usually by analysis of small differences in |F| between 
related reflections, e.g. in anomalous dispersion experiments like SAD or MAD, 
or in the classic heavy atom methods.
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Optimization of Data Collection

Pre-process at least one image before starting the full data collection 
(preferably two at 90º to each other) to obtain:

•  Cell parameters, crystal orientation and putative Laue group
•  Estimate of mosaicity
•  Effective resolution limit }
•  Optimal crystal to detector distance } e.g. use BEST
•  Exposure time }
•  Strategy for data collection }

Remember! This is the last experimental stage - if you collect bad data now 
you are stuck with it. No data processing program can rescue the 
irredeemable!

Don't necessarily do what your PI or post-doc (or even the beamline 
scientist) says – think! At Diamond or ESRF use Edna

It is always worthwhile spending some time prior to the full data collection to 
determine sensible parameters for the data collection. For example;
• are you using the full area of the detector? 
• does useful diffraction go beyond the edge of the detector? Does it stop halfway 
to the edge?
• check for overloads - are there a lot? Are you using the full dynamic range of 
the detector? Consider a low and a high-resolution pass. You may need to 
increase or decrease the exposure time.
• is the rotation angle too big or too small? As a first approximation, aim at half 
the mosaic spread for CCD detectors, or 1/4 - 1/5 for unshuttered data collection 
with Pilatus. Instrument instabilities and detector “dead-time” limit the minimum 
rotation range and time per image.
• check that the predicted spots really coincide with their positions on the 
image(s); is your initial estimate of the mosaicity realistic?

Remember to use prior information! If you have experience of your particular 
sample or experimental setup, use your knowledge. If something looks odd, 
investigate it. 
Whatever integration program you are using, there will be an option (or an 
external program) which can calculate the optimum data collection strategy for 
you. 
Don’t just use a standard recipe for data collection; it is almost always possible to 
collect a better dataset with a little forethought. Avoid the “American method” 
(“shoot first, and ask questions later...”).
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First things first - look at the images

Questions:
• are there any spots on the image?
• has the detector been used efficiently? 
• do the spots look reasonable – split? large? above 

background?
• can you see separate lunes?
• is there a single lattice?
• should I throw the crystal away now and collect a 

dataset on another crystal instead?

Check two images at 90° to each other – some 
pathologies are not apparent from a single image.

There are automated procedures for processing diffraction images, but they are 
not much use if your images display some kind of pathology, e.g. the crystal is 
split, it only diffracts to low resolution, or the mosaic spread is so high that the 
lunes merge into each other, making it impossible to determine the indices of 
each reflection. 
Get into the habit of checking your images early; if you do this before starting the 
full data collection, or while still at the beamline, then you have the chance to 
collect data from a new, better crystal – after your return home it will not be quite 
as easy!
Sometimes the best decision is to throw the crystal away and not waste time on 
it. When difficulties are encountered in processing, they rarely occur with high-
quality crystals.
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Before starting to process

Use the program tools to mask backstop, cryostream, 
other shadows.

• Set resolution limit to about 0.2Å higher than visible 
spots.

• Make sure beam position is more-or-less correct.

• Make sure other parameters (distance, wavelength, 
rotation angle) are what you expect (do they 
correspond to what is in your notebook?).

Although integration programs can make good attempts at measuring spots that 
are partially masked by obstructions such as the backstop, backstop arm or the 
cryostream, these reflections can cause severe difficulties in scaling.
For example, if there are only two measurements of symmetry-related 
equivalents of a reflection, and one is weak and the other strong, the scaling 
program cannot tell if one is masked or the other contains a zinger. 
Usually, there is measurable intensity beyond the resolution limit visible to the 
eye; I find it is reasonable to integrate to about 0.2Å higher resolution.
The beam position is critical to successful indexing and further processing. It 
should be correct to less than half the minimum spot separation, or the calculated 
indices of the reflections could well be out by one or more, even if the cell is 
approximately correct.
Finally, make sure the parameters used by the program are what you expect, or 
remember from the data collection. Don't necessarily believe the information in 
the image headers - some beamline staff are less thorough in updating their set-
up files than others. 
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Overview - Data processing

May be divided into stages:

• Data reduction:
• Indexing (Bravais lattice)
• Parameter refinement 
• Integration

• Check symmetry (Laue group, maybe 
    space group)

• Scaling and merging
• merging partials to form complete reflections
• merging symmetry equivalents

• Truncation (analyse intensity distribution, 
    convert |F|2 to |F|)

Mosflm

Pointless

Scala/ 
Aimless

Ctruncate

CCP4

The process of converting the spots on a diffraction image to indexed and 
measured diffraction data that may be used in structural analysis consists of four 
basic parts, though in modern programs these tend to merge into a single 
workflow.
Measuring the intensity of spots on the images is “integration”. This can only be 
done well if the program knows the spot location, which is found approximately 
by indexing and then accurately by refinement of the crystal and detector 
parameters.
Once the measurements have been made, they are corrected for a variety of 
effects; purely geometrical effects are normally done by the integrating program 
– usually only Lorentz and polarisation effects. Other corrections, e.g. absorption 
by the crystal, differences between images (effective exposure, radiation damage, 
etc.) are either handled by the scaling and merging programs or by specialist 
programs devoted to particular aspects of the data.
Merging includes not only merging measurements of reflections that are 
equivalent by crystal symmetry, but also merging together the different 
components of reflections that are partially recorded over a number of adjacent 
images. This may be done either by the integration program (if it implements 3D 
profile fitting) or the scaling program (if the integration program performs a 2D 
analysis). Scaling attempts to put all of the observations onto a common scale, by 
accounting for errors and inconsistencies caused by the instrument or the crystal.
Truncation produces |F|s from these partially corrected  |F|2 measurements by 
taking account of expected statistical errors in measurement; analysing this 
process gives many of the diagnostics about twinning and also the Wilson 
statistics. 
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Indexing provides us with the information required to integrate the images in a 
dataset; the unit cell parameters and orientation of the crystal (in combination 
with known instrument parameters such as crystal to detector distance, 
wavelength of radiation, etc.) tell us where the diffraction spots occur on the 
detector for each image.
Further, the unit cell dimensions are used in many of the subsequent 
calculations in structure determination and refinement. Accurate values 
(obtained after refinement) will mean that the derived results have higher 
significance.
If we can determine the Bravais lattice, symmetry constraints can be applied in 
refinement to make the process more stable. Further, if we can determine the 
symmetry (or at least eliminate low symmetry solutions) we can run data 
collection strategy software and make sure we collect complete data with as 
small a rotation range as possible; in the case of crystals that suffer significantly 
from radiation damage this can be very important.
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Provides (approximations for )

• unit cell dimensions } combined in the 
• crystal orientation } “orientation matrix”
• (first estimate of the Bravais lattice)

Knowledge of these allows us to predict the position of the 
diffraction spots on the image.

Unit cell dimensions are used in structure solution, 
refinement, model building, analysis - so we need accurate 
values.

Indexing
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Indexing involves several distinct processes, the main ones of which are listed 
here. They start with "spot finding", or locating likely diffraction spots on the 
image or images (indexing tends to be more robust when information from 
several images separated in phi are used, rather than just from a single image).
The two-dimensional co-ordinates can be mapped (using the Ewald sphere 
construction) to scattering vectors that correspond to (approximate) 3D 
reciprocal lattice co-ordinates.  
Indexing itself within Mosflm uses a “real-space” method (i.e. the real space 
unit cell dimensions are obtained directly, rather than via the reciprocal space 
unit cell) using an FFT-based method suggested by Gérard Bricogne in 1986 
and implemented with a large set of 1D transforms  by Steller et al (1997). An 
alternative formulation using a single 3D transform is used in HKL. XDS uses a 
method based on “difference vectors”, which will not be discussed further here.
The initial cell obtained may not be the “reduced cell”, i.e. with angles closest to 
90º and the shortest cell edges, so “cell reduction” is performed next. At this 
point, the cell has triclinic symmetry; it can be transformed via a set of 
operations (listed in International Tables for Crystallography  Vol. A) to 44 
characteristic lattices (each of which corresponds to one of the 14 Bravais 
Lattices), and a distortion penalty calculated for each lattice. It is important to 
remember that the 44 solutions correspond to the single triclinic lattice obtained 
from indexing.
Having chosen a solution, the user should obtain an estimate of the mosaic 
spread of the crystal, prior to refinement. Mosflm uses an iterative integration 
routine to calculate a starting value.
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• Find spots on the image
• Convert 2D co-ordinates (image) to scattering vectors 

(corresponding to 3D RL co-ordinates)
• Index
• Cell reduction
• Apply Bravais lattice symmetry 
• Pick a putative solution
• (Estimate mosaic spread)

Note that indexing only gives an approximate solution; we 
hope it will be good enough to proceed.

Indexing – overview
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Here, D  is the crystal to detector distance, Xd  and Yd  are the spot co-ordinates 
relative to the beam centre on the image, and r is derived above (usually these 
are all in mm). In this calculation, s  is in dimensionless reciprocal lattice units 
and the radius of the Ewald sphere is unity. The reciprocal lattice obtained is 
somewhat distorted, partly because the beam centre and the crystal to detector 
distance may be incorrect, and the detector may not be planar and truly 
orthogonal to the X-ray beam. The normal procedure is to assume that the phi 
value for each spot is the mid-point of the rotation for this image; plainly, this 
will not be true for spots which appear early in the rotation or for those at the 
end. However, provided that the rotation range for each image is not too great, 
however, the error is acceptably small.
Remember that all the spots that are visible on the image correspond to 
reciprocal lattice points that are on the Ewald sphere at some point during this 
individual exposure.
Note that this relationship only holds when the detector is in the “symmetrical” 
setting, i.e. the two-theta swing angle is zero, and the beam is perpendicular to 
the detector; the two-theta swing can be accommodated by a simple 
modification to this formula, but other variations can be dealt with by a more 
complete description of the detector geometry (this will not be dealt with here). 
The reciprocal lattice produced must also be oriented to reflect the orientation of 
the crystal; this can be done by applying a simple rotation about the origin to 
each of the lattice points calculated 
Even in the simple case presented here (which is a very good approximation to 
the vast majority of actual cases), the importance of knowing the wavelength of 
radiation used, and of determining the beam centre and crystal to detector 
distance accurately is obvious.
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The 2D image co-ordinates of 
the spots can be converted to 
scattering vectors (that  
correspond to lattice points):

n.b. wavelength, crystal to 
detector distance and beam 
centre must all be known

s = ,D ! r&1
X d !r
Y d ! r -

r = + D 2 +X d
2 +Y d

2

Indexing
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Probably the most reliable method for auto-indexing is based on the Fourier 
transform of the calculated reciprocal space co-ordinates of the diffraction spots. 
For reciprocal lattice planes that have a simple relationship to each other, the 
projected vectors will also have a simple relationship. For example, the vectors 
corresponding to the 1kl, 2kl, 3kl planes will have lengths in the ratio 1:2:3 (see 
next slide). The projections which have more contributing planes will have 
more regularly spaced peaks, and so give rise to Fourier Transforms with peaks 
which are more distinct from the background.
It should be remembered that generally, the crystal will not be aligned with a 
reciprocal space axis parallel to the X-ray beam, so the chance of obtaining the 
above construction is small; by calculating the projections in many directions, 
we increase the chances greatly (to near certainty) that some of these projections 
will correspond to crystal axes.
The projections are actually calculated by computing the scalar (or dot) product 
of the distorted reciprocal lattice points (expressed as vectors from an origin) 
with the vector that describes the direction of the projection, then summing the 
dot products.
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If the scattering vectors 
calculated are projected 
along a real space axis 
direction (such as a, b or c) 
all the projected vectors for 
spots in the same reciprocal 
space plane will have the 
same length, as will all those 
spots in the next plane, etc. 

This will give a large peak in 
the Fourier transform.

Indexing
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For directions other than real space axes, the projected vectors will have 
different lengths, and will not (in general) give a large peak in the Fourier 
transform. The indexing in Mosflm calculates several hundred projections, 
regularly spaced around a hemisphere of reciprocal space and applies a Fast 
Fourier Transform (FFT) to each. Although in principle, we only need to find 
the 3 FFTs corresponding to the three principal cell axes, they may not all be 
present (e.g. if the crystal orientation does not allow it), or we may find vectors 
corresponding to edges in a non-reduced cell. In practice, 30 FFTs produced 
which have the largest peaks are selected to determine which can be combined 
to give a real space unit cell which accounts for the majority of the reflections.
The unit cell determined is reduced to give a primitive cell in a conventional 
setting, i.e. one which has its three inter-axial angles as close to orthogonal as 
possible and the three axial lengths as short as possible. Cell reduction does not 
change the unit cell volume, unless there is also a change in lattice centring.
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The first large peak in 
the Fourier transform 
corresponds to a real 
space cell edge length. 
In this case, ~67Å.

Provided that a single 
image samples enough 
of reciprocal space, we 
can get information 
about all three crystal 
axes from one image.

Indexing

scattering vectors projected along axis a

Fourier transform of scattering vectors
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Indexing only gives the geometry of the cell

Indexing gives us a basis solution that is triclinic.

Applying symmetry transformations to give the reduced bases allows 
us to see how well this triclinic solution fits the cell edges and angles 
of lattices with higher symmetry, e.g. monoclinic, orthorhombic etc.

Mosflm and XDS give all 44 solutions: each of these corresponds to 
one of the 14 Bravais lattices (each of which may occur several times 
as a result of different transformations); Denzo and HKL only give the 
“best” 14 Bravais lattice solutions which may not include the correct 
one.

The unit cell geometry may not be the correct crystal symmetry, but 
it usually is.

The space group is only a hypothesis until after your structure is 
deposited in the PDB

The cell dimensions derived from autoindexing usually give a good indication of 
the true symmetry of the crystal. For example, in the case that a!b!c, !!#!"!90, 
the crystal system is most probably triclinic, unless the indexing has failed. If 
a=b!c, !="=#=90, the crystal system may be tetragonal, but there are many 
examples where unit cells fit this but the true symmetry is orthorhombic or lower. 
However, probably more than 95% of the time, the crystal symmetry derived 
from the unit cell geometry will be correct. 
The practice of providing all 44 characteristic lattice solutions in Mosflm and 
XDS is to be preferred to that of Denzo/HKL; the latter only gives the “best 
guess”of each characteristic lattice as a choice. A small error in instrument 
parameters, or even in the choice of spots used for indexing, could easily give 
rise to the correct solution not being present in the list of results, even though the 
program has actually calculated it. 
The 44 characteristic lattices and the transformations from the basis triclinic 
solution that correspond to the reduced bases are tabulated in International Tables 
Volume A pp 750 - 755. Each characteristic lattice (or lattice character) is 
associated with a Bravais lattice, e.g. aP is primitive triclinic (“anorthic 
Primitive”), mC is C-centred monoclinic etc.
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Bravais lattice – from intensities

The true Bravais Lattice 
symmetry can only be 
determined by analysing the 
intensities of symmetry 
equivalent reflections – i.e. 
after integration.

example of C2221 with a = 
74.7Å, b = 129.2Å, c = 
184.3Å, which could be 
(incorrectly) indexed as 
hexagonal a = b = 74.7Å, c = 
184.3Å.

There are also two incorrect 
C-centred orthorhombic 
solutions 

This is an example provided to Phil Evans where the metric symmetry indicated 
that the crystal was hexagonal, but the merging statistics showed that it was C-
centred orthorhombic; the mm symmetry of the diffraction spots projected along 
the c* axis clearly illustrates this.
There are also two incorrect C-centred orthorhombic solutions at 120° to the 
correct solution, with identical cell parameters; again, it can be seen that the 
reflections that should have the same intensity by hexagonal symmetry do not 
match.
It is interesting to note that autoindexing gave variously the hexagonal or one of 
the three orthorhombic solutions, depending on the choice of spots used in 
indexing – or only a one in four chance of the correct answer. Differentiating 
between the four solutions and picking the correct one can only be done after 
integrating at least some images; iMosflm includes a task button in the 
Integration pane that runs Pointless to perform this analysis.
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Refining the parameters

Optimise the fit of observed to predicted spot positions, so 
that the measurement boxes can be placed accurately over 
the spots.

Specifically, improve estimates of:
• Crystal parameters
• Instrument parameters

Accurate cell dimensions are important because they are 
used in all subsequent stages of structure determination, 
refinement and analysis

Can be performed by either (or both):
• Positional refinement using spot co-ordinates
• Post-refinement using intensity measurements

Indexing is based on approximations, and the fit of observed spots to their 
calculated positions can be improved by refinement. These approximations 
include the phi position of the centroid of each reflection and various parameters 
like crystal to detector distance and detector mis-setting angles. Provided that 
there are sufficient usable data at high enough resolution, refinement not only 
gives better information about where on the detector the spots occur, but also 
gives better estimates of both the crystal and instrument parameters.
Most integration programs use a “positional refinement” based on the spot 
positions on the detector surface; this is simple to calculate, but care must be 
taken because several parameters are closely correlated (e.g. cell edges and 
crystal to detector distance), especially at low resolution. 
Mosflm combines positional refinement with another method, which is based on 
the relative intensities of the different parts of partial reflections across several 
images. Because this can only be done after the reflections have been integrated, 
it is called “post-refinement”. Using both methods together has distinct 
advantages over just using positional refinement, e.g. it is possible to de-couple 
the crystal parameter refinement from that of the crystal to detector distance, and 
it also gives (provided there are sufficient reflections for a stable refinement) 
more accurate cell parameters than those available from positional refinement.
Other processing packages delay post-refinement until a step following 
integration, and often combine it into the scaling and merging step.
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Positional refinement and post-refinement 

Positional refinement
• uses the spot positions on each image, so it can be 

done for each image without reference to the others. 
Both fully and partially recorded reflections can be 
used.

Post-refinement
• needs intensity measurements for spots which are 

spread across at least two images; we cannot use fully 
recorded reflections for this

• ∴ needs at least two adjacent images (and probably 
more for fine-phi slicing, where the mosaic spread is 
more than twice the rotation angle)

Positional refinement can be done on an image-by-image basis, since all the 
information required is present on each image; all integration programs allow 
this.
Post-refinement, on the other hand, can only be performed rigorously by using 
several adjacent images; the reflections used should not have missing parts. This 
is the reason why Mosflm needs to have several images included in each block 
for post-refinement, and also one why other programs leave this until the scaling 
and merging step, when they have data from the complete dataset.
It is necessary to be able to identify which reflections are fully recorded, and 
which are partially recorded for both post-refinement and integration (especially 
when post-refinement is performed by the integration program). 
It is possible to estimate the partiality of reflections which do have missing parts 
(and hence carry out post-refinement), if the total intensity of fully recorded 
equivalent reflections are available; this will not give results which are as robust, 
and is usually not necessary. This method is not used in Mosflm.
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Positional refinement

Minimises the discrepancy 
between observed and 
calculated (“predicted”) spot 
positions - 

We are trying to minimise the discrepancy between the observed and calculated 
spot co-ordinates on the detector (usually transformed to some virtual detector 
frame). 
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Positional refinement

Minimise -

n.b. 
• rotation of crystal about phi axis has no effect on this 

residual so can't be refined
• cell dimensions and other parameters (e.g. crystal to 

detector distance) may be strongly correlated
• can be used to refine unit cell dimensions, crystal to detector 

distance, Y scale, 2 of the 3 crystal mis-setting angles, 
detector mis-setting angles and the direct beam position

.1"%
i"1

n

wix ,X i
calc&X i

obs -2*wiy,Y i
calc&Y i

obs -2

(X, Y)obs and (X,Y)calc are the observed and calculated spot co-ordinates on the 
detector (usually transformed to some virtual detector frame). Pythagoras' 
Theorem shows why the rotation of the crystal around the phi axis has no effect 
here (the X and Y co-ordinates only have to lie on a circle with the beam position 
at the centre – where on the circle is not defined). The cell dimensions and crystal 
to detector distance are strongly correlated, particularly at low resolution, and it 
can be hard to refine both stably at the same time. Mosflm avoids this by not 
using positional refinement to refine the cell dimensions.
In practice, in Mosflm, the following parameters are optimised by positional 
refinement:

direct beam position
crystal to detector distance
Y-scale
tilt & twist of the detector
(tangential and radial offsets – spinning disc detectors only)

We also report the RMS residuals of spot positions based on refining these 
parameters, and these values give a good indication of how stable the refinement 
is. Other programs also refine the cell and other detector parameters, and may use 
techniques such as eigenvalue filtering to improve stability.
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Post-refinement or the “phi-centroid” 
method

Uses the intensities of reflections spread across multiple images 
to improve the estimates of crystal parameters.

 

If we have reflections that are spread across two or more images, we know that 
they are in the process of traversing the Ewald sphere. The relative intensities of 
the different parts is related closely to how close the reciprocal lattice point is to 
the Ewald sphere. We can use this knowledge to get more accurate information 
on the unit cell and other experimental parameters.
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Post-refinement

Minimise -

n.b. we need:
• a reasonable model of the intensities for this, so it can 

only be done after integration - hence “post-refinement”
• a model for the “rocking curve”
can be used to refine unit cell dimensions, 2 of the 3 
crystal mis-setting angles, and either the mosaicity or the 
beam divergence.

.2"%
i"1

n

wi # ,Ri
calc&Ri

obs-
d i $

2

The "rocking curve" describes how the intensity of a reflection varies with the 
crystal orientation. Mosflm uses a rocking curve based on a cosine function, but 
other (usually symmetrical) functions could be used, e.g. Gaussian, hyperbolic 
tangent or cubic. In practice, because we are only using the intensities of 
reflections split into a few parts, and we are only using strong reflections, the 
exact nature of the function does not seem to affect the calculations greatly. A 
good model for the rocking curve is most necessary where we have little direct 
information about it, i.e. for data collected with coarse phi slicing. For fine phi 
sliced data it is easier to derive it empirically from the intensities of the partials.
Rcalc - Robs are the calculated and observed distances of the phi centroid from the 
Ewald sphere, but may also be thought of as the calculated and observed 
partiality for each reflection.
It is not possible to refine detector parameters using post-refinement. In Mosflm, 
we refine the following via post-refinement: 

crystal “mis-setting” angles
crystal cell dimensions (a, b, c, ", $, %)
mosaicity or beam divergence

The radius of convergence of post-refinement is smaller than that for positional 
refinement, so the parameter to be optimised must be closer to its true value for 
the process to be stable and accurate. Post-refinement can routinely give cell 
dimensions that are accurate to within a few parts in 10,000 (e.g. 0.03Å error in a 
cell edge of 100Å). 
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Post-refinement

We can visualise this in the Ewald sphere construction, 
minimising the angular residual $. A suitable model for the 
rocking curve allows us to determine the “observed” 
position (P'). 

The Ewald sphere is a useful way to visualise the conditions required for 
diffraction. The crystal is at “0”, and the reciprocal lattice origin is at a distance 
1/& away, on the surface of the Ewald sphere. As the crystal is rotated, the 
reciprocal lattice rotates synchronously with it. A reciprocal lattice point is in the 
diffracting condition when it is on the Ewald sphere surface; with an ideal crystal 
with zero mosaicity and ideally monochromatic radiation, this would happen 
instantaneously (the surface of the Ewald sphere would have zero thickness and 
the reciprocal lattice points would have zero size). In practice, most crystals are 
not perfect, and the reciprocal lattice points have finite size. Also, the Ewald 
sphere surface has a finite thickness. Taken together, these mean that the 
reciprocal lattice points are crossing the Ewald sphere for a finite time so 
diffraction spots are seen through a small rotation range.
Post-refinement minimises the difference between the calculated and observed 
distances of reciprocal lattice points from the Ewald sphere, by minimising the 
angular residual #. 
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Integration itself

Two basic ways - 

• summation integration

simple, fast, okay for all except weak, overloaded or 
partially overlapping reflections

• profile fitting (only intended to improve weak spots)

can be sub-divided into 
• two-dimensional (2D) – builds up reflections from 

profiles on single images (but we can use spots on 
different images) 

• three-dimensional (3D) – builds up profiles across 
several adjacent images

Integration is performed once the crystal and instrument parameters have been 
optimised by refinement.
The main difference between two-dimensional and three-dimensional integration 
is that the profiles used for partials over several images for 2D integration are the 
same for each part of the reflection, whereas for 3D integration, the profile for 
different parts of the same reflection can change significantly. 
In principle, 3D profile fitting should give better results than 2D, but in practice 
the difference does not seem to be important, and other differences between 
programs (or even parts of the same program) tend to dominate.
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Measuring the intensity of a spot

Identify the 
background & 
spot regions, 
work out 
what the 
background 
level is 
around the 
spot, then 
assume it is 
the same 
under the 
spot.

The first part of integration is to work out where the diffraction spot is, and 
where it ends. The assumption is made that, in the region of the spot, the 
background is planar and may have a slope. The background plane and its slope 
are calculated from pixels in the neighbourhood of the spot, once the spot pixels 
have been determined.
Some programs optimise the spot region, whereas others rely on the user to do 
this. Generally, more modern programs will do this for the user.
It can be seen from this region around a diffraction spot, that although the 
intensity in the background is much lower than in the spot, it is not actually flat 
and level; this is due to a number of reasons (e.g. detector noise), but our concern 
is how best to take this variation into account when determining the background. 
If we take a statistically significant number of pixels, we can get a good estimate 
of the background level. 
Mosflm uses a rectangular mask, which is divided between an octagonal spot 
region and the background region. Before optimisation, the background area is 
chosen to be ~8x the size of the spot region, and then only the spot is optimised. 
If the spot region becomes larger, the overall measurements of the box are 
increased. If the background area drops to less than twice the spot size as a result 
of expansion of the spot region, the process halts and the user is prompted to 
intervene. This very rarely happens except with very large cells (which have 
many spots close together).
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Summation integration

• In the absence of background, just add the pixel counts in 
the spot region together - but there is (always) 
background!

• Need to define spot and background regions - we cannot 
measure background directly under the spots, so we 
calculate a local background plane and slope from nearby 
non-spot pixels

• Use this to subtract the background under the spots

• Weak spots may have their shoulders under the 
background, so that their measurement is impaired.

If the  background intensity is negligible, the program doesn't even need to be 
very accurate in its placement of the integration boxes when using summation 
integration, provided they enclose all the spot intensity.
In practice, however, there is always some background, so this needs to be taken 
into account. It is impossible to measure the background directly under the spot, 
but its intensity can be inferred by assuming it to be a sloping plane in the 
neighbourhood of the spot. If the plane is steeper than some threshold value (e.g. 
because the spot is near an ice-ring), Mosflm will issue a warning. 
With some newer detectors that have very low intrinsic noise levels and small 
point-spread functions, it is probably correct to integrate using summation 
integration (at least for the strong reflections), especially when the background is 
low. However, weak spots will still have their shoulders hidden by the 
background, and summation intensity will not measure their intensity optimally.

Seed skewness – a variant on summation integration

It is possible to analyse the intensity distribution of the background region pixels 
and use this to optimise both the shape and the size of the measurement box for 
each spot individually (by adding and/or subtracting pixels from the initial “seed” 
spot region) – this is done in the process known as “seed-skewness”. This 
improves the spot measurement indirectly by optimising the measurement of the 
background. It is a very computationally expensive process (since it has to be 
performed for every single spot), and so it is slow; none of the commonly used 
integration programs follow this approach.
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Integration by profile fitting

Based on the 
assumption that spots 
corresponding to fully 
recorded reflections in 
the same region of 
the detector (and on 
images nearby in phi) 
have similar profiles.

The spot shape on a detector (including its intensity profile) is a function of 
several physical factors – the cross-section and divergence  of the illuminating 
radiation, the size,  shape and mosaic spread of the crystal (and  its orientation 
relative to the beam), the direction the diffracted beams exit from the crystal, 
scatter from air in the beam path, the size and shape of the pixels on the detector, 
etc. 
For a given image (or short series of images) most of these may be assumed to be 
constant in the diffraction experiment (or nearly constant); the biggest change 
between nearby (fully recorded) spots is in the direction of the diffracted rays 
from the crystal, and if the angle between these rays is small, this major 
difference is also small, so the idea that spots close to each other on the detector 
(even on different images)  have similar profiles has some validity. However, if 
the physical spot size (determined by the cross-section of the diffracted rays) is 
similar to the pixel size on the detector, and the detector has a point-spread 
function that is small compared to the pixel size, this may not be true. There are 
other complicating factors which may occur to the reader!
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Profile fitting integration – standard profiles

Use a profile determined empirically from well-measured reflections to 
measure the intensity of weak reflections (whose shoulders disappear 
below the background), by fitting a learnt profile to the observed 
reflection:

 

•  requires accurate (sub-pixel) placement of the profile
•  reduces variance for weak reflections
•  should reduce random error (weak reflections)
•  may increase systematic error (strong reflections)

1      2      3      4     51      2      3      4     5

If the centre of each reflection on the detector is not calculated accurately, the 
profiles calculated using the spots will be broader than the true profile because 
the centres of the measured profiles will not coincide exactly. This can give rise 
to systematic errors that are largest for the strongest reflections, even for 
detectors with relatively large PSFs. Modern programs do locate the centres very 
accurately, so generally this is not a big problem, but it should be borne in mind 
when analysing results; in some circumstances it may be appropriate to use 
summation integration for the strongest reflections and profile fitting for the 
weaker ones. Mosflm records both measurements in the output MTZ reflection 
file, and Scala or Aimless can perform the appropriate combination.
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The profiles themselves vary from one part of each image to any other part - so 
the profiles on one side of an image can be very different to those on the other 
side. 
The profiles in one region of the detector will also vary between images, but 
from one image to the next the change is small.
In Mosflm, the standard profiles (from which all profiles are calculated) are 
developed from spots in different parts of the detector - for low resolution 
datasets the image is divided into a 3x3 array, for high resolution images it is 
divided into a 5x5 array (for circular detectors the profile fitting areas 
corresponding to the non-existent corners are not calculated, as in this example).
Further, the profiles are built up across several adjacent images - usually around 
10, since the profile will not change very much in this range.
The profile for each spot is calculated according to a weighted average of the 
standard profiles in the four (sometimes 3) closest regions, according to where 
in the region the spot occurs. 
Other programs use different methods for calculating the individual spot 
profiles - e.g. Denzo (HKL) uses a “profile fitting radius” to determine which 
spots on the same image should be used for each spot profile.
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Profiles vary

• in different areas 
of the same 
image

• between images 
(but not much 
from one image 
to the next)
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Other improvements offered by profile fitting

• Click to add an outline

identify zingers measure overloads

Because profile fitting is based on the idea of spots having essentially the same 
shape, it can be used to identify outliers such as cosmic ray collisions with the 
detector or radioactive events in the detector – these will not have the same 
profile. 
“Zingers” are named after a Canadian statistician who studied the statistics of 
outliers.
Overloaded spots can also be identified (typically they have flat tops, and on 
some detectors “bleed” into the background), and since the expected profile is 
known,  their intensity can be estimated - but it is better to collect data with the 
correct exposure and avoid the problem. 
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Analysing the results of integration

Check graphs - they should vary smoothly without obvious 
discontinuities.

• Large changes in parameters may indicate problems with 
the crystal or instrument.

• Look at any images corresponding to discontinuities in the 
graphs.

• I/'(I) at (high resolution limit-~0.2Å) should be ≳1

• Check any warnings issued by the program; it may be best 
to re-process after following the advice given (all warnings 
given by Mosflm are accompanied by suggestions on how to 
improve the processing).

Before going on to scaling the data, it is sensible to check that the integration has 
not thrown up any errors. In particular, examine any graphs that the integrating 
program has produced. They should all vary smoothly from image to image, 
without any sharp discontinuities.
If there are discontinuities in the graphs, they often occur around the same 
images for different graphs. Look at any images in the region of the 
discontinuities and see if there is anything obviously wrong with them.
In the case that all the graphs look good until a certain point in the dataset, then 
the processing deteriorates, it is often an indication that too high a symmetry has 
been imposed on the integration, and the program cannot refine detector and/or 
crystal values sufficiently to keep the integration boxes well centred on the spots.
If the graphs corresponding to  I/'(I) fall gradually to lower values towards the 
end of the dataset, it is usually an indication that the crystal is exhibiting 
radiation damage. 
As a first check that the data have been integrated to their resolution limit, I make 
sure that the average I/'(I) for the outermost but one resolution bin is at least 1; I 
usually find, particularly with fine phi-sliced data where there are no fully 
recorded reflections, that there is significant intensity (after scaling and merging) 
to around 0.2Å better than the results of integration itself suggest.
Mosflm will often issue several warnings at the end of processing. Each of these 
is accompanied by one or more suggestions (in the main “mosflm.lp” log file) to 
improve the data processing.
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Click to add title

• Click to add an outline

This is an example of data processing in Mosflm where things seem to have been 
okay except for the last few images. There is a dip in the mosaic spread and the 
mis-setting angles have jumped around image 75. Also, the I/sig(I) of the fully 
recorded reflections has jumped from 0 to ~30 - 50 for a couple of images 
(because the mosaic spread for these images is lower than the rotation angle, 
there are actually spots identified as fulls rather than partials – all other images 
only have partials). 
In this case it seems that there is something “odd” about the images around 
image 75 – it is worthwhile looking at the images near here to see if there is any 
obvious reason for this problem.
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Scaling and merging

Scaling and merging the data is the next step following 
integration. It is important because:

• It attempts to put all observations on a common scale

• It provides the main diagnostics of data quality and whether 
the data collection is satisfactory

Because of this diagnostic role, it is important that data are 
scaled as soon as possible after collection, or during collection, 
preferably while the crystal is still on the camera.

It is important to remember that integration does not provide the best diagnostics 
regarding integration; these are better obtained from scaling, merging and the 
analysis provided by the conversion from “intensities” to structure factors.
Note that none of the integration programs currently in use output raw intensities 
by default; all the “intensities” have been modified in some way (e.g. by applying 
corrections for the Lorentz factor and for polarisation of the X-ray beam) and are 
at least part-way to being more correctly termed “squared structure factor 
amplitudes”, |F2| values.
In CCP4, the reflection file produced by Mosflm (or other integration programs) 
is best processed through 
(1) Pointless; sorts the reflection data, analyses the Laue symmetry, and can also 
re-index multiple datasets to a common reference);
(2) Scala or Aimless (I currently recommend using Aimless, which includes many 
improvements not available in Scala); scales the intensities of equivalent 
reflections, merges measurements of partials, merges symmetry equivalent 
measurements into a single value and calculates the relevant statistics; 
(3) Truncate or Ctruncate; converts the intensities into structure factor 
amplitudes (|F|) and analyses the distribution of |F| values to give information on 
B-factor, twinning, etc.. 

iMosflm includes a button in its Integration pane to run Pointless, Scala and 
Ctruncate (using a simple default set of directives) to give an indication of data 
quality before leaving the integration process.
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Once we have decided that the scaling and merging have proceeded without too 
much incident, we can start to look at the output more closely to make sure that 
the dataset itself is of sufficient quality to proceed. As with integration, if 
serious problems are encountered, it is always worth asking if it is worthwhile 
struggling to use a bad dataset (and get the best out of it), or if it should be 
discarded and a new dataset collected on a new crystal.
A further question is “are the data any good for the experiment we want to 
perform?”, e.g. we don't need atomic resolution data for a SAD experiment, and 
we don't need an anomalous signal for refinement. Therefore, concentrate on 
those diagnostics that are relevant. 
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Reflections  are on different scales  

… because of factors related to 
• the incident beam and the camera
• the crystal and the diffracted beam
• the detector

Some corrections are known from the diffraction geometry (e.g. 
Lorentz and polarisation corrections, and are applied by the 
integration program), but others can only be determined from the 
data

Scaling models should if possible parameterise the experiment - so 
different experiments may require different models

Understanding the effect of these factors allows a sensible design of 
correction and an understanding of what can go wrong
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The incident beam is assumed to be constant on the crystal during each 
image, or at least varying smoothly and slowly with respect to the exposure 
time. If there are large changes in the beam intensity on a time-scale similar 
to that of the exposure time, then this will give rise to low-quality data.
If the crystal is smaller than the X-ray beam, then the illuminated volume 
will remain constant provided the crystal is well-centred and does not precess 
out of the beam – but the overall background on the images due to air scatter 
will be larger than necessary. 
If the beam is smaller than the crystal, then the illuminated volume will, in 
general, change with (. The effects of this are indistinguishable from those 
caused by absorption of the primary beam by the crystal.
Variations in rotation speed and shutter synchronisation are disastrous, since 
they break the fundamental assumptions of the the data collection process; 
we assume that the crystal rotation speed is constant, and adjacent images 
abut exactly in (. Shutter synchronisation errors lead to positive partial bias, 
unlike the usual negative partial bias (largely caused by an error in 
mosaicity).
Shutterless data collection with a constant crystal rotation speed (e.g. with a 
fast readout detector like a Pilatus) avoids shutter synchronisation errors, but 
does give small gaps in the data, corresponding to the readout time of the 
detector. This implies there is a minimum exposure time per image even for 
this method. If the rotation speed varies, problems could still arise.
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(a) variable incident beam intensity

(b) changes in illuminated volume of crystal

(c) absorption in primary beam by crystal: indistinguishable from 
(b)

(d) variations in rotation speed and shutter synchronisation. 
Shutter synchronisation errors lead to partial bias which may 
be positive, unlike the usual negative bias.

“Shutterless” data collection (e.g. with Pilatus detector) avoids 
synchronisation errors, but very small rotation angles can still 
cause problems with machine instabilities with similar periods to 
the exposure time.

… incident beam and the camera 
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Scala and Aimless can apply an absorption correction based on spherical 
harmonics which attempts to model the differences in the secondary (or 
diffracted beam) from a spherical crystal. This can be important at longer 
wavelengths and for larger crystals.
It may not be possible to correct for radiation damage if it is severe and 
results in a non-isomorphous structure; images in datasets strongly affected 
by radiation damage should probably not be treated together as belonging to 
the same crystal. In some cases, “zero dose extrapolation” may help to rescue 
a dataset.
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(e) Absorption in secondary beam - serious at long wavelength 
(including CuK!)

(f) radiation damage - serious on high brilliance sources. Not 
easily correctable unless small as the structure is changing

Maybe extrapolate back to zero time? (but this needs high 
multiplicity)

The relative B-factor is largely a correction for the average 
radiation damage

… crystal and the diffracted beam
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Most detectors have been calibrated with a “flood field”, i.e. an even 
illumination with X-rays (often from a small sphere of 55Fe, commonly 
written as Fe-55). However, both CCD and pixel array detectors like the 
Pilatus behave differently in the corners of the modules when detecting 
sharper diffraction maxima. Some of the scaling programs correct for this 
effect.
“Active masks” which flag defective pixels are provided by detector 
manufacturers, which should allow the integration programs to identify this 
when processing, before the scaling step.
It can be difficult to tell in scaling why there are bad regions on a detector - it 
is best to tell the integration program about shadows, etc. so that the scaling 
program does not need to correct for them.
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The detector should be calibrated properly for spatial 
distortion and sensitivity of response, and should be 
stable. If this is not true, problems are difficult to detect 
from the diffraction data.

• for example, there are known problems in the corners of 
detector modules, both for CCDs and Pilatus

• Calibration should flag defective pixels (hot or cold) and 
dead (or otherwise unreliable) regions between the tiles.

• The user should tell the integration program about 
shadows from the beamstop, beamstop support or 
cryocooler because it's easier than telling the scaling 
program!

... the detector
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Scaling

We try to make symmetry related and duplicate 
measurements of a reflection equal by modelling the 
diffraction experiment, principally as a function of the 
incident and the diffracted beam directions in the crystal.

Scaling attempts to make the data internally consistent, 
by minimising the differences between the individual 
observations I and the weighted mean of all the 
symmetry-related equivalents of reflection I.

However, systematic errors that are the same for 
symmetry-related reflections will remain.

The X-ray data collection is the process of converting structure factor amplitudes 
to intensities on the images

                                                    experiment
                          |F|      ----------------------------------->         I
                                          lots of effects (“errors”)

Essentially, scaling can be viewed as inverting the experiment to obtain the 
squared structure factor amplitudes (the square rooting is performed in the 
subsequent truncating step)

                                         model of experiment
                          I      ----------------------------------->         |F2|
                                      parametrise experiment

Scaling (done correctly) will apply and refine a suitably parametrised model.
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Merging

Once the observations are on a common scale we 
• merge the individual parts of partially recorded 

reflections into complete reflections
• merge symmetry related reflections into unique 

observations, e.g.
• monoclinic - (h k l) and (h k l)
• orthorhombic - (h k l), (h k l), (h k l) and (h k l)
• etc.
• Friedel pairs (or mates) - (h k l) and (h k l)

• Caution! 
• Do not merge Friedel pairs in any anomalous 

experiment 
• Some programs (e.g. SHELXC/D/E) prefer unmerged 

equivalents in their data

The symmetry related reflections that are merged together are those that are 
related by rotations characteristic of the Bravais lattice symmetry, not by 
reflections or inversions.
Remember that any anomalous experiment will be trying to make use of Bijvoet 
pairs - which are Friedel mates in the presence of an anomalous scatterer - so 
they have to be kept separate in the merging step. 

Note that merging is performed as a separate step for 2D integration programs 
like Mosflm. For 3D programs like XDS, the merging of partials to form full 
reflections is done as part of the integration step. 
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Questions about the data

• What is the overall quality of the dataset?
• How does it compare to other datasets for this 

project?
• How complete are the data?
• What is the multiplicity?

• What is the real resolution? Maybe reject high 
resolution data?

• Are there bad batches? Individual images or groups?
• Is the whole dataset bad? Throw it away?
• Extent of radiation damage? Exclude the later parts?
• Is the outlier detection working well?
• Is there any apparent anomalous signal?
• Are the data twinned?

While a quick scan of “table 1” can give us an idea of the answers to most of  
these questions, it is no substitute for reading through (at least the tables in) the 
extensive log files produced by the scaling programs.
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Annotated log in web browser (i)

“Table 1”

The traditional measures of quality of a dataset are the merging R-factors; after 
scaling, the remaining differences between observations can be analysed to give 
an indication of data quality, e.g.

traditional, but increases with multiplicity even if the data improves

“redundancy independent R-factor” but larger than Rmerge

“precision-indicating R-factor”
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Annotated log in web browser (ii)

• Click to add an outline

However, the correlation coefficients CC1/2 and CC* are more statistically 
meaningful than merging R-factors

CC1/2 - “Pearson correlation coefficient between random half-datasets” - 

CC* - Correlation coefficient of our measurements with the true intensities

These give a better estimate of true resolution, and show if weak data has real 
information content

3X , Y"cov ,X ,Y -
4X 4Y

"E
#, X &1X -,Y &1Y -$

4 X 4Y

CC *"+ 2CC1 !2

1*CC1 !2
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Truncation

• Analyses scaled & merged data according to an 
expected physical model

• gives statistics on intensity distribution - e.g. 
• Wilson statistics
• twinning analyses

• outputs |F| values for use in subsequent CCP4 
programs

While scaling tries to make the data internally consistent (so that symmetry 
related equivalents are put onto a common scale), truncation attempts to fit the 
overall distribution of intensities to what we expect for our crystal.
The deviations from our expected model can be analysed to indicate the overall 
isotropic B-factor for our structure, and also for crystal pathologies such as 
twinning.
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Wilson plot

• Plot of 

• For a structure with randomly distributed atoms is a 
straight line with a slope -2B

• Gives an estimate of the “isotropic temperature factor” 
of the structure

• Protein crystals do not have randomly distributed atoms

ln
I hkl

%
i
, f i

0-2
vs

sin2/
02

The data is divided into resolution bins;

I = average intensity of reflections in each bin 
fi

0 = atomic scattering factor squared for each atom “i” 

sin2%/&2 is simply a convenient way of expressing the resolution which would 
make the Wilson plot a straight line if the crystal was composed of equal 
randomly distributed atoms - which is almost the case for small molecule 
crystals, but not for macromolecules like proteins or nucleic acids.
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Intensity statistics - Wilson B factor

Average intensity falls off with 
increasing resolution and is 
associated with disordered 
atoms. More disorder gives a 
faster fall-off with intensity, a 
steeper slope and a larger 
Wilson B.

For the purpose of looking at 
crystal pathologies, we can 
ignore the variation with 
resolution, so we can use 
“normalised” intensities which 
are independent of resolution

Wilson statistics were developed by Arthur Wilson and reported in Nature in 
1942.
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Twinning

• Multiple crystal components related by geometrical 
operations (the twin operators)

• Can give rise to odd intensity distributions e.g. too few 
strong reflections

• Can be seen in 
• cumulative intensity plots
• plots of I� �n/ I� n  and E� � �n/ E� n  against �

resolution -  “moments”

As can be seen here, if we have two lattices that are superimposed over each 
other, the probability that a strong reflection from one lattice will be 
superimposed over an equally strong reflection from the other is small - so in a 
merohedrally twinned crystal like this with two roughly equal components, there 
will be fewer very strong reflections than we expect (and also fewer very weak 
reflections). The cumulative intensity distribution plot will become more 
sigmoidal, but the plots of moments are more diagnostic.

The “E”s referred to above are the normalised values for F ( ~√I), taking into 
account the B-factor.
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Finally 

 Remember - 
• Don't expect software to correct for a badly performed 

experiment

• Take the time to look at your images and the results of 
integration and scaling

• Scaling and merging provide the best statistics on the 
quality of your data 


