Introduction to X-ray diffraction

Introduction to X-ray diffraction

- Waves
- Diffraction
- Structure factors
- Reciprocal space
- http://www-structmed.cimr.cam.ac.uk/Course

Describing waves

Wave as function of time

Describing waves

Wave as function of position in space

$$A\cos(2\pi x/\lambda) = A\cos(-2\pi x/\lambda)$$

Describing waves

Wave as function of time and space

Wave as vector (or complex number)

- Wave is x-component of rotating vector
- Initial rotation gives initial phase shift

Adding waves as vectors

- Adding waves is equivalent to adding vectors
 - easier than trigonometry

$$A\cos(\alpha+\varphi_1)+B\cos(\alpha+\varphi_2)$$

Interaction between X-rays and matter

- X-rays interact with electrons
 - classical view: fluctuating electric field accelerates charged particles, leading to emission of electromagnetic radiation
 - intensity proportional to (charge/mass)²
 - proton is 2000 times as massive as electron
- Think of electrons scattering X-rays in all directions
 - waves from different electrons interfere

Diffraction: waves in phase

- When do waves add up in phase?
 - when they have exactly the same pathlength
 - scattered from plane where angle of incidence equals angle of reflection

Diffraction: waves in phase

- When do waves add up in phase?
 - when their pathlengths differ by a multiple of the wavelength
 - Bragg's law: $\lambda = 2d \sin \theta$

Reciprocal space in Bragg's law

Bragg planes are closer at higher angles

$$\lambda = 2d \sin \theta$$
$$\sin \theta / \lambda = 1/2d$$
$$d = \lambda / (2\sin \theta)$$

Interference changes with scattering angle

- Add up waves scattered from two electrons
 - out of phase for low angle, nearly in phase for high

Reciprocal space: the diffraction vector

- Diffraction vector
 - perpendicular to Bragg plane
 - length is reciprocal of distance between planes

Diffraction from one electron

- Define diffraction from one electron at origin as wave with amplitude 1e and phase of zero
- Diffraction from any point on any Bragg plane also has phase of zero (modulo 2π)

Diffraction from one electron

- Phase depends on position relative to Bragg planes
 - **s** is diffraction vector (measured in reciprocal Å)
 - r is position of electron (in Å)
 - fraction of interplanar distance is $\mathbf{s} \cdot \mathbf{r} = |\mathbf{r}| \cos \phi / d$
 - phase is 2πs·r
 - wave is $\exp(2\pi i \mathbf{s} \cdot \mathbf{r})$
 - wavelength is d for fixed s!

Diffraction from more than one electron

- Add waves from different electrons
 - total amplitude depends on interference effects
 - gives information on relative positions

$$\mathbf{F}(\mathbf{s}) = \sum_{j} \exp(2\pi i \mathbf{s} \cdot \mathbf{r}_{j})$$

For continuous electron density, replace sum by integral

$$\mathbf{F}(\mathbf{s}) = \int_{space} \rho(\mathbf{r}) \exp(2\pi i \mathbf{s} \cdot \mathbf{r}) d\mathbf{r}$$

Structure factors and Fourier transforms

 The structure factor is the Fourier transform of the electron density

$$\mathbf{F}(\mathbf{s}) = \int_{space} \rho(\mathbf{r}) \exp(2\pi i \mathbf{s} \cdot \mathbf{r}) d\mathbf{r}$$

- Fourier transforms can be inverted
 - electron density equation turns structure factors back into electron density

When do we see diffraction from a crystal?

- When the Bragg planes pass through the same points in all unit cells
 - Bragg planes separated by integral fractions of cell edge
 - describe by Miller indices hkl

(100)

 $(3 \ 0 \ 0)$

Bragg planes dividing more than one cell edge

 $(1\ 1\ 0)$

(2 1 0)

(1 - 1 0)

Bragg's law for crystal diffraction

- Diffraction is only seen for planes defined by Miller indices
- Real lattice becomes reciprocal lattice
 - e.g h00 reflections separated by inverse of distance between **bc** planes

of distance between **BC** planes
$$\lambda = 2d \sin \theta$$

$$\sin \theta / \lambda = 1/2d$$

$$d = \lambda / (2\sin \theta)$$

$$\sin 2\theta \approx \Delta x / f$$

$$2\sin \theta \approx \Delta x / f, d \approx \lambda (f / \Delta x)$$

Structure factor equation for crystal

- Use h (Miller indices hkl) instead of s to describe diffraction vector
- Use x (fractional coordinates xyz) instead of r to describe position in real space
- It turns out that $\mathbf{s} \cdot \mathbf{r}$ is equal to $\mathbf{h} \cdot \mathbf{x} (hx + ky + lz)$
 - see web page for details

$$\mathbf{F}(\mathbf{h}) = \int_{cell} \rho(\mathbf{x}) \exp(2\pi i \mathbf{h} \cdot \mathbf{x}) d\mathbf{x}$$

Structure factors and electron density

- Turn structure factors back into electron density by inverting Fourier transform
 - same equation, opposite sign in exponential
 - normalisation factor of 1/V

$$\mathbf{F}(\mathbf{h}) = \int_{cell} \rho(\mathbf{x}) \exp(2\pi i \mathbf{h} \cdot \mathbf{x}) d\mathbf{x}$$

$$\rho(\mathbf{x}) = \frac{1}{V} \sum_{\mathbf{h}} \mathbf{F}(\mathbf{h}) \exp(-2\pi i \mathbf{h} \cdot \mathbf{x})$$

Structure factor equation with atoms

- Define structure factor for atom at origin as f
- Moving an electron from origin to x changes its phase by 2πh·x
 - same applies to atom
- Structure factor equation can then be defined as sum over atoms

$$\mathbf{F}(\mathbf{h}) = \sum_{j} f_{j} \exp(2\pi i \mathbf{h} \cdot \mathbf{x}_{j})$$

The Ewald sphere

- Useful construction to visualise reciprocal space
 - which Bragg planes are in the diffracting condition

Rotating real and reciprocal space

- Reciprocal space rotates with real space
 - but origin of reciprocal lattice is edge of Ewald sphere!

Rotating reciprocal space for a crystal

www-structmed.cimr.cam.ac.uk/Course/Basic_diffraction/

data_animation.html

