Experimental phasing is what you do if MR doesn’t work.
What is experimental phasing?

Experimental phasing methods depend on intensity differences.

These differences are caused by a marker substructure of certain elements.

MAD and **SAD** exploit the anomalous signal from one or more data sets from the same crystal.

SIR (special case: **RIP**) and **MIR** utilizes several heavy-atom soaked derivative crystals. They have to be isomorphous to be utilized.
Methods

- Single wavelength anomalous diffraction (SAD)
 - Native sulfur-based SAD (S-SAD)
- Multiple wavelength anomalous diffraction (MAD)
- Single isomorphous replacement (SIR)
 - Radiation-induced phasing (RIP)
- Single isomorphous replacement with anomalous scattering (SIRAS)
- Multiple isomorphous replacement with anomalous scattering (MIRAS)
Theory

STRUCTURE FACTORS
For each reflection, there is a structure factor F_{hkl}.

If we know the structure factors including their phases for all reflections, we can easily calculate the electron density map, and hence get the structure.
Structure factors

For each reflection, there is a structure factor F_{hkl}

= a wave

Amplitude = $|F_{hkl}|$

Phase = ϕ_{hkl}
Structure factors

Structure factor F_{hkl}

= a wave

= a complex number

- **Amplitude** = $|F_{hkl}|$
- $|F_{hkl}|^2 \sim I_{hkl}$ **Intensity**
- **Phase** = ϕ_{hkl}

cannot be measured... :-(
Structure factors

structure factor F_{hkl}

= a wave

= a complex number

Amplitude = $|F_{hkl}|$

$|F_{hkl}|^2 \sim I_{hkl}$ Intensity ✓

Phase = ϕ_{hkl}

cannot be measured... :-(

UNIVERSITY OF CAMBRIDGE
Structure factors

Amplitude = $|F_{hkl}|$

$|F_{hkl}|^2 \sim I_{hkl}$ Intensity ✓

Phase = ϕ_{hkl}

cannot be measured... :-(

PHASE PROBLEM

The central problem of crystallography
Theory

PATTERSON MAPS
Calculating a map - Patterson

Map

Amplitudes & phases

Intensities & phases = 0

Patterson map

What does it look like?
Calculating a map - Patterson

- Interatomic vectors
- No relative positions
- Handedness is not resolved.

$n^2 - n$ peaks in a Patterson map
Problem: Resolution (number of vectors)
ANOMALOUS SCATTERING

Theory
The anomalous signal

Each structure factor is composed of contributions f from each atom:
The anomalous signal

Friedel’s law: \[|F_{hkl}| = |F_{-h-k-l}| \quad \phi_{hkl} = -\phi_{-h-k-l} \]
The anomalous signal

But in reality, there is **anomalous scattering** due to resonance with electronic transitions in the atom:

\[f = f_0 + f' + if'' \]

- \(f' \) and \(f'' \) are observed near absorption edges of the atom’s element, and are \(\lambda \)-dependent.

- \(f \) depends solely on resolution.
 - Real component
 - Imaginary component
The anomalous signal

\[f = f_0 + f' + if'' \]

Fluorescence scan or http://skuld.bmsc.washington.edu
The anomalous signal

f'' breaks Friedel’s law:

$|F_{hkl}| \neq |F_{-h-k-l}|$

$\phi_{hkl} \neq -\phi_{-h-k-l}$

The intensities of Friedel pairs no longer have the same intensity!

This can be used for the absolute structure determination and for experimental phasing!
A Patterson map calculated from the anomalous differences only relates to vectors between anomalously scattering atoms:

Anomalous Patterson map

Even at low resolution, atoms can now be differentiated.
Patterson maps

ANOMALOUS

ISOMORPHOUS

Pictures courtesy of Phil Evans
SIR, MIR and RIP: Intensities differ by atoms missing/added.
These differences can be used for an ‘isomorphous’ Patterson.
Most heavy atoms do also scatter anomalously at common wavelengths.
How to...

SUBSTRUCTURE SEARCH IN SHELXD
Direct methods

• Phases of strong reflections are related (as a result of the non-random distribution of atoms.)
 • Triplett equations
 • Sayre equation
• Relations are relatively easy to resolve for few atoms.
• Usage of normalized structure factors (E values):

\[|E_{hkl}|^2 = \frac{|F_{hkl}|^2 / \varepsilon}{\langle |F_{hkl}|^2 / \varepsilon \rangle} \]

\[\varepsilon \text{ scale factor for proper treatment of special position reflections} \]
\[\langle |F_{hkl}|^2 / \varepsilon \rangle \]

mean per resolution shell
Substructure search

Finding the substructure of marker atoms

- Direct methods
- Patterson methods

Borrowed from small molecule crystallography

- These methods require separate atomic electron densities to locate atoms.
- They work here because the marker atoms have large interatomic distances.
- Disulfides become 'supersulfurs'.
Substructure search

- **Patterson seeding** means starting the search with atoms consistent with the anomalous/isomorphous Patterson maps.

- **Dual space direct methods** recycle and modify trial substructures by peak search in the electron density and refining phases in reciprocal space. Convergence is faster than in reciprocal space alone.
An overdetermined problem with noisy data...

Critical factors in substructure search:

- Resolution range highly affects the outcome
- Good data quality
- Intensity outliers are problematic
- Scaling (also anisotropic scaling) is needed

BEWARE: Handedness is not resolved at this stage! (Density modification differentiates later.)
How to...

PHASING THE REST (SHELXC)
We can combine all contributions from marker atoms into F_A and everything else into F_P.

$$\alpha = \varphi_T - \varphi_A$$

$$\varphi_A + \alpha = \varphi_T$$

F_P Protein contribution

F_A marker atom contribution

$F_T = F_P + F_A$
So, if we would know the anomalous scatterer positions (or heavy atom positions), we could calculate F_A:

$$
\alpha = \phi_T - \phi_A
$$

$$
\phi_A + \alpha = \phi_T
$$

If we could then get α, we could calculate ϕ_T and solve the phase problem!
From substructure to structure

Phasing equations

If we would have no errors...

\[
|F_{hkl}|^2 = |F_T|^2 + a |F_A|^2 + b |F_T||F_A| \cos\alpha + c |F_T||F_A| \sin\alpha
\]

\[
|F_{-h-k-l}|^2 = |F_T|^2 + a |F_A|^2 + b |F_T||F_A| \cos\alpha - c |F_T||F_A| \sin\alpha
\]

\[
a = \frac{f''^2 + f'^2}{f_0^2}
\]

\[
b = \frac{2f'}{f_0}
\]

\[
c = \frac{2f''}{f_0}
\]

F_T
Total structure factor

F_A
Marker substructure structure factor

\[
\alpha = \phi_T - \phi_A
\]
From substructure to structure

Phasing equations

\[|F_{hkl}|^2 = |F_T|^2 + a|F_A|^2 + b|F_T||F_A| \cos \alpha + c|F_T||F_A| \sin \alpha \]
\[|F_{-h-k-l}|^2 = |F_T|^2 + a|F_A|^2 + b|F_T||F_A| \cos \alpha - c|F_T||F_A| \sin \alpha \]

For each wavelength, we have different \(a, b, c\) and two observations. \(|F_A|, |F_T|\) and \(\alpha\) are unknown. So given good data from at least two wavelengths, the equation can be solved. This would be MAD then, and works best if the \(f^*\) differences and the sum of \(f^{**}\) values would be large!
Phasing equations

\[|F_{hkl}|^2 = |F_T|^2 + a|F_A|^2 + b|F_T||F_A|\cos\alpha + c|F_T||F_A|\sin\alpha \]

\[|F_{-h-k-l}|^2 = |F_T|^2 + a|F_A|^2 + b|F_T||F_A|\cos\alpha - c|F_T||F_A|\sin\alpha \]

In a SAD experiment, we have only two observables, as we measured only one wavelength. So we assume

\[|F_T| = 0.5 \left(|F_{hkl}| + |F_{-h-k-l}| \right) \]

and get

\[|F_{hkl}| - |F_{-h-k-l}| = c|F_A|\sin\alpha \]

This is sufficient for the substructure and estimation of \(\phi_T \)!
From substructure to structure

\[\text{Protein contribution} \]

\[\mathbf{F}_T \text{ (relates to } F_{hkl} \text{)} = \mathbf{F}_P + \mathbf{F}_A \]

\[\mathbf{F}_A = \mathbf{F}_A + \mathbf{F}_A' + \mathbf{F}_A'' \]

Anomalous scatterer contribution
From substructure to structure

This is what we know:
\[|F_{hkl}| \text{ and } |F_{-h-k-l}| \]
From substructure to structure

This is what we know:

$|F_{hkl}|$ and $|F_{-h-k-l}|$

$|F_{hkl}| \gg |F_{-h-k-l}|$
From substructure to structure

$|F_{hkl}| \gg |F_{-h-k-l}|$

F_{+A}^{\parallel} has to point in the same direction as $|F_{hkl}|$

F_{-A}^{\parallel} has to point in the opposite direction as $|F_{-h-k-l}|$

$\Rightarrow \alpha \text{ must be close to } 90^\circ$
If: $|F_{hkl}| \ll |F_{-h-k-l}|$

$\Rightarrow \alpha$ must be close to 270°!

Reflections with the largest anomalous differences must be closest to $\alpha = 90^\circ$ or $\alpha = 270^\circ$.

As you can easily see, estimation is rough.
From substructure to structure

$|F_{hkl}| \approx |F_{-h-k-l}|$

$F_+\text{“} \text{ and } F_-\text{“} \text{ must be very small or almost perpendicular to } F_{hkl} \text{ or } F_{-h-k-l}, \text{ respectively.}$

$\Rightarrow \alpha \text{ must be close to } 0^\circ \text{ or } 180^\circ$
• φ_T can now be computed from the phasing equations!

$$\varphi_A + \alpha = \varphi_T$$

Via Fourier synthesis, an initial map is gained.

• By σ_A coefficients and Sim weights the map is improved.

• But most important: **Density modification** is applied.
How to...

DENSITY MODIFICATION IN SHELXE
Especially SAD phases are still ambiguous as well as inaccurate. **Density modification** dramatically improves initial phases, electron density and resolves handedness!

- Based on areas filled by disordered solvent
- Solvent area is flattened or flipped
- NCS averaging can improve map quality
- High solvent content gives often better improvement
Most programs use a mask. SHELXE uses the sphere-of-influence method for density modification:

1. Draw a sphere around it.
2. Plot the electron density on the surface.
3. How much does it vary?

Is this an atomic position?

Not much: Flip density!

A lot: Sharpen density!
After several cycles, one of the two maps (one for each substructure enantiomer) looks 'like protein'.

The other has less connectivity and looks 'ragged'.

Example: Elastase

After density modification, the structure is solved!
Experimental phasing has led to initial phases.
Experimental phasing, for real

PRACTICALITIES
The main constituents of organic matter

Classic heavy-atoms

Gaseous inert heavy-atoms

Pictures courtesy of Airlie McCoy
(Significant) anomalous scatterers

The main constituents of organic matter are not anomalous scatterers

H
Li Be
Na Mg
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U

Useful anomalous scatterers at K absorption edges

Weak anomalous scatterers at long wavelength

Gaseous inert heavy-atoms

Seleno-methionine

Useful anomalous scatterers at long wavelength

Classic heavy-atoms – isomorphous signal & useful anomalous scattering at L absorption edges
Data collection

• High multiplicity is good.
• Radiation damage is often bad.
• Precise intensity measurements are good.
• Near to the absorption edge, the crystal absorbs most energy, therefore radiation damage is high.
• A fluorescence scan can prove the presence of anomalous scatterers in the crystal.
Data collection: MAD

• Collect **peak** with at least multiplicity = 4.
• Radiation damage? Stop and try SAD! Use a second crystal to collect high energy remote.
• No damage? Measure **high energy remote**.
• Last data set should be **inflection** – so f' is maximized.
• A **higher resolution data set** with lower redundancy may prove useful for density modification and for refinement.

\[f = f_0 + f' + if'' \]
Data collection: SAD

- Best wavelength right and not too close to peak
- Beware not to hit the „white line“ near the peak
- A bit away from peak, radiation damage will be less

SAD data measured at peak are often the result of a MAD experiment attempt!

\[f = f_0 + f' + i f'' \]
Data evaluation

• The general data quality should be good – multiplicity, completeness, R_{PIM} etc.
• If scaling was applied, check statistics.
• Check the mask; inner shell completeness?
• Data set files well distinguishable?
• If you have made a fluorescence scan, keep it.
• Is there an anomalous signal in the collected data?
 – Anomalous correlation within a data set: $CC_{anom}(1/2)$
 – $<d''/\sigma>$ and/or $<d'/\sigma>$
 – Anomalous correlation of data sets: CC_{anom}
Things you want to have an idea about

- Space group? (Twinning?)
- How many marker atoms do you expect?
- Substructure: Which elements/molecules?
- What could be the best resolution cut-off?
 (SHELXC assumes data resolution + 0.5Å)
- Could any marker atoms 'fuse' into bigger blobs of density because of resolution cut-off? Disulfides?
- Merging of data from different crystals/runs?
- Expected solvent content and residue numbers?
If you use SHELX...

SHELXC: α calculation, data analysis, file preparation

SHELXD: Substructure search

SHELXE: Density modification, tracing*

* A *traced structure is solved; CC (trace against native data) > 25% (for data < 2.5 Å)*

[ANODE: Validation]

Pipeline?

Other experimental phasing programs should be considered, in particular for ease of use or problem cases**.

[experimental data]

name_fa.hkl, name_fa.ins

name.hkl

name_fa.res

http://strucbio.biologie.uni-konstanz.de/ccp4wiki/index.php/Experimental_phasing
Wait a moment...

ANOMALOUS MAPS
If I can use the anomalous signal for a Patterson, can I also calculate a map from the anomalous signal?

Yes! And it can be used after phasing for atom type identification, radiation damage assessment *et cetera*. One possibility to get such a map quickly from SHELX type input is the program **ANODE**.
Anomalous density maps

at 2.8σ
Anomalous density maps at 3.5 σ PDB 3FGD
RIP density maps

at 5.5σ/-3.1σ

RIP density maps

at 4.8 σ / -3.1 σ

Final

SUMMARY
SUMMARY

• Experimental phasing methods use marker substructures of certain elements to solve the phase problem via the phasing equations. Patterson maps can help.

• **MAD** and **SAD** exploit the anomalous signal from one or more data sets from the same crystal.

• **SIR** and **MIR** utilizes several heavy-atom soaked derivative crystals. They have to be isomorphous to be utilized.

• Experimental phase solutions **do not define the enantiomorph**; after solution, the map that looks like protein has to be chosen!
I am grateful to George Sheldrick, Phil Evans, Randy Read and Airlie McCoy who freely shared with me their knowledge, ideas and material. I also want to thank the Read/Deane lab for their support!
• Bernhard Rupp, **Biomolecular Crystallography**: Principles, Practice, and Application to Structural Biology, 2004

LITERATURE

http://shelx.uni-ac.gwdg.de/SHELX/