Introduction
Introduction

Early human evolution and the skulls of Dmanisi

Significance magazine (December 2013) Royal Statistical Society
Viking sagas: Six degrees of Icelandic separation
Social networks from the Viking era
Introduction

Have London’s roads become more dangerous for cyclists?
Contents

• Set Notation
• Intro to Probability Theory
• Random Variables
• Probability Mass Functions
• Common Discrete Distributions
Set Notation

A set is a collection of objects, written using curly brackets {}.

If A is the set of all outcomes, then:

\[A = \{\text{heads, tails}\} \]

\[A = \{\text{one, two, three, four, five, six}\} \]

A set does not have to comprise the full number of outcomes.

E.g. if A is the set of dice outcomes no higher than three, then:

\[A = \{\text{one, two, three}\} \]
Set Notation

If A and B are sets, then:

- A' Complement – everything but A
- $A \cup B$ Union (or)
- $A \cap B$ Intersection (and)
- $A \setminus B$ Not
- \emptyset Empty Set
Set Notation

Venn Diagram:

- **A**
 - one
 - two, three
 - four
 - five
- **B**
 - six
Set Notation

Venn Diagram:

$A = \{\text{two, three, four, five}\}$
Set Notation

Venn Diagram:

\[B = \{ \text{four, five, six} \} \]
Set Notation

Venn Diagram:

$A \cap B = \{\text{four, five}\}$
Set Notation

Venn Diagram:

\[A \cup B = \{\text{two, three, four, five, six}\} \]
Set Notation

Venn Diagram:

\[(A \cup B)' = \{ \text{one} \} \]
Set Notation

Venn Diagram:

\[A \setminus B = \{\text{two, three}\} \]
Set Notation

Venn Diagram:

\[(A \setminus B)′ = \{\text{one, four, five, six}\}\]
To consider Probabilities, we need:

1. Sample space: Ω

2. Event space: \mathcal{F}

3. Probability measure: P
To consider Probabilities, we need:

1. Sample space: Ω – the set of all possible outcomes

$\Omega = \{\text{heads, tails}\}$

$\Omega = \{\text{one, two, three, four, five, six}\}$
To consider Probabilities, we need:

2. Event space: \mathcal{F} – the set of all possible events

\[\Omega = \{\text{heads, tails}\} \]
\[\mathcal{F} = \{\{\text{heads, tails}\}, \{\text{heads}\}, \{\text{tails}\}, \emptyset\} \]
To consider Probabilities, we need:

3. Probability measure: P

$$P : \mathcal{F} \rightarrow [0,1]$$

P must satisfy two axioms:

$$P(\Omega) = 1$$ Probability of any outcome is 1 (100% chance)

$$P(\bigcup A_i) = \sum_i P(A_i)$$ If and only if A_1, A_2, \ldots are disjoint
To consider Probabilities, we need:

3. Probability measure: P \[P: \mathcal{F} \rightarrow [0,1] \]

P must satisfy two axioms:

$P(\Omega) = 1$ \hspace{1cm} Probability of any outcome is 1 (100% chance)

$P(\bigcup A_i) = \sum_i P(A_i)$ \hspace{1cm} If and only if A_1, A_2, \ldots are disjoint

$P(\{one, two\}) = P(\{one\}) + P(\{two\})$

\[
\frac{1}{3} = \frac{1}{6} + \frac{1}{6}
\]
Probability Theory

To consider Probabilities, we need:

1. Sample space: Ω
2. Event space: \mathcal{F}
3. Probability measure: P

As such, a *Probability Space* is the triple: (Ω, \mathcal{F}, P)
Probability Theory

To consider Probabilities, we need:

The triple: \((\Omega, \mathcal{F}, P)\)

i.e. we need to know:
1. The set of potential outcomes;
2. The set of potential events that may occur; and
3. The probabilities associated with occurrence of those events.
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[P(A') = 1 - P(A) \]

\[A = \{\text{one, two}\} \]
\[A' = \{\text{three, four, five, six}\} \]

\[P(A) = \frac{1}{3} \]
\[P(A') = \frac{2}{3} \]
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
Notable properties of a Probability Space (Ω, \mathcal{F}, P):

\[P(A') = 1 - P(A) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

\[
A = \{\text{one, two}\} \quad P(A) = \frac{1}{3}
\]

\[
B = \{\text{two, three}\} \quad P(B) = \frac{1}{3}
\]

\[
A \cup B = \{\text{one, two, three}\} \quad P(A \cup B) = \frac{1}{2}
\]

\[
A \cap B = \{\text{two}\} \quad P(A \cap B) = \frac{1}{6}
\]
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[P(A') = 1 - P(A) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

If \(A \subseteq B \) then \(P(A) \leq P(B) \) and \(P(B \setminus A) = P(B) - P(A) \)
Notable properties of a Probability Space (Ω, \mathcal{F}, P):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

If $A \subseteq B$ then $P(A) \leq P(B)$ and $P(B \setminus A) = P(B) - P(A)$
Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

If \(A \subseteq B\) then \(P(A) \leq P(B)\) and \(P(B \setminus A) = P(B) - P(A)\)
Notable properties of a Probability Space (Ω, \mathcal{F}, P):

\[P(A') = 1 - P(A) \]
\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

If $A \subseteq B$ then $P(A) \leq P(B)$ and $P(B \setminus A) = P(B) - P(A)$
Probability Theory

Notable properties of a Probability Space \((\Omega, \mathcal{F}, P)\):

\[
P(A') = 1 - P(A)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]

If \(A \subseteq B\) then \(P(A) \leq P(B)\) and \(P(B \setminus A) = P(B) - P(A)\)

\[
A = \{\text{one, two}\} \quad P(A) = \frac{1}{3}
\]

\[
B = \{\text{one, two, three}\} \quad P(B) = \frac{1}{2}
\]

\[
B \setminus A = \{\text{three}\} \quad P(B \setminus A) = \frac{1}{6}
\]
Probability Theory

Notable properties of a Probability Space (Ω, \mathcal{F}, P):

\[P(A') = 1 - P(A) \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

If $A \subseteq B$ then $P(A) \leq P(B)$ and $P(B \setminus A) = P(B) - P(A)$

\[P(\emptyset) = 0 \]
Probability Theory

So where’s this all going? These examples are trivial!
Probability Theory

So where’s this all going? These examples are trivial!

Suppose there are three bags, B_1, B_2 and B_3, each of which contain a number of coloured balls:

- B_1 – 2 red and 4 white
- B_2 – 1 red and 2 white
- B_3 – 5 red and 4 white

A ball is randomly removed from one the bags. The bags were selected with probability:

- $P(B_1) = 1/3$
- $P(B_2) = 5/12$
- $P(B_3) = 1/4$

What is the probability that the ball came from B_1, given it is red?
Probability Theory

Conditional probability: \[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]

Partition Theorem: \[P(A) = \sum_i P(A \cap B_i) \quad \text{If the } B_i \text{ partition } A \]

Bayes’ Theorem: \[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]
Random Variables

A Random Variable is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by P
Random Variables

A Random Variable is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by P

Formally, a Random Variable is a function:

$$X : \Omega \rightarrow \mathbb{R}$$
Random Variables

A *Random Variable* is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by P

Formally, a Random Variable is a function:

$$X : \Omega \rightarrow \mathbb{R}$$

Probability that the random variable X adopts a particular value x:

$$P(\{w \in \Omega : X(w) = x\})$$
Random Variables

A Random Variable is an object whose value is determined by chance, i.e., random events.

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by P.

Formally, a Random Variable is a function:

$$X : \Omega \rightarrow \mathbb{R}$$

Probability that the random variable X adopts a particular value x:

$$P(\{w \in \Omega : X(w) = x\})$$

Shorthand: $P(X = x)$
Random Variables

Example:

If the result is *heads* then \(WIN - X \) takes the value 1
If the result is *tails* then \(LOSE - X \) takes the value 0

\[\Omega = \{ heads, tails \} \]
\[X : \Omega \rightarrow \{0, 1\} \]

\[
P(X = x) = \begin{cases}
P(\{heads\}) & x = 1 \\
\ P(\{tails\}) & x = 0
\end{cases}
\]

\[
P(X = x) = \frac{1}{2} \quad x \in \{0, 1\}
\]
Random Variables

Example:

\[\Omega = \{\text{one, two, three, four, five, six}\} \]

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

\[X : \Omega \rightarrow \{-10, 0, 20\} \]
Random Variables

Example:

\[\Omega = \{ \text{one, two, three, four, five, six} \} \]

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

\[X : \Omega \to \{-10, 0, 20\} \]

\[
P(X = x) = \begin{cases}
 P(\{\text{six}\}) = 1/6 & x = 20 \\
 P(\{\text{four, five}\}) = 1/3 & x = 0 \\
 P(\{\text{one, two, three}\}) = 1/2 & x = -10
\end{cases}
\]

Note – we are considering the probabilities of events in \(\mathcal{F} \)
Probability Mass Functions

Given a random variable:

\[X : \Omega \rightarrow A \]

The *Probability Mass Function* is defined as:

\[p_X(x) = P(X = x) \]

Only for discrete random variables
Probability Mass Functions

Example:
Win £20 on a six, nothing on four/five, lose £10 on one/two/three

\[
p_X(x) = \begin{cases}
 P(\{\text{six}\}) = \frac{1}{6} & x = 20 \\
 P(\{\text{four, five}\}) = \frac{1}{3} & x = 0 \\
 P(\{\text{one, two, three}\}) = \frac{1}{2} & x = -10
\end{cases}
\]
Probability Mass Functions

Notable properties of Probability Mass Functions:

\[p_X(x) \geq 0 \]

\[\sum_{x \in A} p_X(x) = 1 \]
Probability Mass Functions

Notable properties of Probability Mass Functions:

$$p_X(x) \geq 0$$

$$\sum_{x \in A} p_X(x) = 1$$

Interesting note:
If \(p() \) is some function that has the above two properties, then it is the mass function of some random variable…
Probability Mass Functions

For a random variable $X : \Omega \rightarrow A$

Mean: $E(X) = \sum_{x \in A} xp_X(x)$
Probability Mass Functions

For a random variable \(X : \Omega \rightarrow A \)

Mean: \(E(X) = \sum_{x \in A} xp_X(x) \)
Probability Mass Functions

For a random variable \(X : \Omega \to A \)

Mean: \(E(X) = \sum_{x \in A} xp_X(x) \)

Compare with:

\[
\frac{1}{n} \sum_{i=1}^{n} x_i
\]
Probability Mass Functions

For a random variable \(X : \Omega \to A \)

Mean: \(E(X) = \sum_{x \in A} x \cdot p_X(x) \)

Median: any \(m \) such that:
\[
\sum_{x \leq m} p_X(x) \geq 1/2 \quad \text{and} \quad \sum_{x \geq m} p_X(x) \geq 1/2
\]
Probability Mass Functions

For a random variable \(X : \Omega \rightarrow A \)

Mean: \(E(X) = \sum_{x \in A} xp_X(x) \)

Median: any \(m \) such that: \(\sum_{x \leq m} p_X(x) \geq 1/2 \) and \(\sum_{x \geq m} p_X(x) \geq 1/2 \)

Mode: \(\arg\max_x (p_X(x)) \) : most likely value
Common Discrete Distributions
The **Bernoulli** Distribution: \(X \sim \text{Bern}(p) \)

\(p \): success probability

\(X : \Omega \rightarrow \{0,1\} \)

\[
p_x(x) = \begin{cases}
 p & x = 1 \\
 1 - p & x = 0
\end{cases}
\]
Common Discrete Distributions

The **Bernoulli** Distribution: \(X \sim \text{Bern}(p) \)

\(p \) : success probability

\[
X : \Omega \rightarrow \{0,1\}
\]

\[
p_X(x) = \begin{cases}
 p & x = 1 \\
 1 - p & x = 0
\end{cases}
\]

Example:

\[
X : \{\text{heads, tails}\} \rightarrow \{0,1\}
\]

\[
p_X(x) = \frac{1}{2} \quad x \in \{0,1\}
\]

Therefore \(X \sim \text{Bern}(1/2) \)
The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \) \hspace{1cm} E(X) = np

- \(n \): number of independent trials
- \(p \): success probability

\[
p_X(x) = \binom{n}{x} p^x (1 - p)^{n-x}
\]

\(X : \Omega \rightarrow \{0,1,\ldots,n\} \)
Common Discrete Distributions

The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \) \quad E(X) = np

\(n \) : number of independent trials
\(p \) : success probability

\(X : \Omega \rightarrow \{0,1,\ldots,n\} \)

\[
p_X(x) = \binom{n}{x} p^x (1 - p)^{n-x}
\]

\(p_X(x) \) : probability of getting \(x \) successes out of \(n \) trials

\(p^x \) : probability of \(x \) successes

\((1 - p)^{n-x} \) : probability of \((n-x)\) failures

\[
\binom{n}{x} = \frac{n!}{x!(n-x)!}
\]

: number of ways to achieve \(x \) successes and \((n-x)\) failures

(Binomial coefficient)
Common Discrete Distributions

The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \quad E(X) = np \)

\(n \): number of independent trials

\(p \): success probability

\[X : \Omega \rightarrow \{0,1,\ldots,n\} \]

\[p_X(x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

\(n = 1 : \quad p_X(x) = p^x (1 - p)^{1-x} = \begin{cases}
 p & x = 1 \\
 1 - p & x = 0
\end{cases} \]

\(X \sim \text{Bin}(1, p) \quad \Leftrightarrow \quad X \sim \text{Bern}(p) \)
The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \quad E(X) = np \)

- \(n \) : number of independent trials
- \(p \) : success probability

\[p_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \]

![Graph showing the binomial distribution for \(n = 10 \) and \(p = 0.5 \).](image-url)
Common Discrete Distributions

The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \) \hspace{1cm} \(E(X) = np \)

- \(n \): number of independent trials
- \(p \): success probability

\[p_X(x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

\(n = 100 \)
\(p = 0.5 \)
The **Binomial** Distribution: \(X \sim \text{Bin}(n, p) \) \(\quad E(X) = np \)

- \(n \): number of independent trials
- \(p \): success probability

\[p_X(x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

![Graph](image)

\(n = 100 \)
\(p = 0.8 \)
Common Discrete Distributions

Example:

Number of heads in \(n \) fair coin toss trials

\[
X : \Omega \to \{0, 1, \ldots, n\}
\]

\(n = 2 \) \quad \Omega = \{heads : heads, heads : tails, tails : heads, tails : tails\}

In general: \(|\Omega| = 2^n \)
Common Discrete Distributions

Example:

Number of heads in n fair coin toss trials

$$X : \Omega \rightarrow \{0, 1, \ldots, n\}$$

$n = 2 \quad \Omega = \{heads : heads, heads : tails, tails : heads, tails : tails\}$

In general: $|\Omega| = 2^n$

Notice: $X \sim \text{Bin}(n, 1/2)$

$$p_X(x) = \binom{n}{x} 0.5^n \quad E(X) = n/2$$
The **Poisson** Distribution: \(X \sim Pois(\lambda) \quad E(X) = \lambda \)

Used to model the number of occurrences of an event that occur within a particular interval of time and/or space

\(\lambda \): average number of counts (controls rarity of events)

\(X : \Omega \rightarrow \{0,1,\ldots\} \)

\[p_X(x) = \frac{\lambda^x e^{-\lambda}}{x!} \]
Common Discrete Distributions

The Poisson Distribution:

- Want to know the distribution of the number of occurrences of an event \(\Rightarrow \) Binomial?

- However, don’t know how many trials are performed – could be infinite!

- But we do know the average rate of occurrence: \(E(X) = \lambda \)

\[
X \sim \text{Bin}(n, p) \quad \Rightarrow \quad E(X) = np
\]

\[
\Rightarrow \quad \lambda = np
\]

\[
\Rightarrow \quad p = \frac{\lambda}{n}
\]
Common Discrete Distributions

Binomial: \[p_X(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

\[p = \frac{\lambda}{n} \Rightarrow p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n} \right)^x \left(1 - \frac{\lambda}{n} \right)^{n-x} \]
Common Discrete Distributions

Binomial:

\[
p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}
\]

\[
p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}
\]

\[
p_X(x) = \frac{\lambda^x}{x!} \frac{n!}{n^x(n-x)!} \left(1 - \frac{\lambda}{n}\right)^n
\]
Common Discrete Distributions

Binomial:

\[p_X(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

\[p = \frac{\lambda}{n} \quad \Rightarrow \quad p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n} \right)^x \left(1 - \frac{\lambda}{n} \right)^{n-x} \]

\[p_X(x) = \frac{\lambda^x}{x!} \frac{n!}{n^x(n-x)!} \left(\frac{1 - \lambda}{n} \right)^n \left(\frac{\lambda}{n} \right)^{n-x} \]

as \(n \to \infty \)
Common Discrete Distributions

Binomial:

\[p_x(x) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x} \]

\[p = \frac{\lambda}{n} \quad \Rightarrow \quad p_x(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n} \right)^x \left(1 - \frac{\lambda}{n} \right)^{n-x} \]

\[p_x(x) = \frac{\lambda^x}{x!} \frac{n!}{n^x(n-x)!} \left(\frac{1 - \lambda}{n} \right)^n \quad \text{as} \quad n \to \infty \]

\[p_x(x) = \text{Lim}_{n \to \infty} \left(\frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n} \right)^n \right) \]
Common Discrete Distributions

Binomial:

\[p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \]

\[p = \frac{\lambda}{n} \quad \Rightarrow \quad p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n} \right)^x \left(1 - \frac{\lambda}{n} \right)^{n-x} \]

\[p_X(x) = \frac{\lambda^x}{x!} \frac{n!}{n^x(n-x)!} \left(\frac{1 - \lambda}{n} \right)^n \]

\[p_X(x) = \lim_{n \to \infty} \left(\frac{\lambda^x}{x!} \left(\frac{1 - \lambda}{n} \right)^n \right) = \frac{\lambda^x}{x!} e^{-\lambda} \]
Common Discrete Distributions

The Poisson distribution is the Binomial distribution as \(n \to \infty \)

If \(X_n \sim \text{Bin}(n, p) \) then \(X_n \xrightarrow{d} \text{Pois}(np) \)

If \(n \) is large and \(p \) is small then the Binomial distribution can be approximated using the Poisson distribution

This is referred to as the:

- “Poisson Limit Theorem”
- “Poisson Approximation to the Binomial”
- “Law of Rare Events”

\(\lambda: \text{fixed } \quad n \to \infty \quad \Rightarrow \quad p \to 0 \)

Poisson is often more computationally convenient than Binomial
Countless books + online resources!

Probability theory and distributions:

General comprehensive introduction to (almost) everything mathematics (including a bit of probability theory):

• Garrity (2002) All the mathematics you missed: but need to know for graduate school. Cambridge University Press.