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Crystals 
A crystal is a solid in which the constituent atoms, molecules, or ions are packed in a regularly 
ordered, repeating pattern extending in all three spatial dimensions. 

(Wikipedia) 



Crystals and Lattices 
Lattice: An infinite array of points arranged so that the environment of any point is 
identical to the environment of any other point. 
 

In 3D, there are three distances and three inter-axial angles: a, b, c, α, β, γ. 
These crystal axes define a “unit cell” that forms the basic building block 
of the crystal.  
By convention, the unit cell is chosen to have the smallest possible volume, while 
ensuring that the crystallographic axes show off the lattice symmetry. α, β, γ are 
chosen to be obtuse, but as close to 90o as possible.	



 

The lattice shows translational symmetry. 

If we take a group of atoms (a molecule) and associate it (in the same way) with every lattice point, this will 
generate an ideal crystal of those atoms (molecules). 

We can define a basic repeat unit of the lattice. In 2D, this is two distances and the angle between them.	





4-fold 
90°	



Not 8-fold	


45°	



Rotational Symmetry 

An n-fold rotational symmetry implies that if a rotation of 360/n degrees is applied, 
the transformed object is identical to the original. 

	





Not all rotational symmetries are allowed in a crystal	


The only rotational symmetries possible in a crystal lattice are 2, 3, 4 and 6, because 
it is not possible to fill space with other symmetries.	



Note this restriction does not apply to molecular symmetry, for example C-reactive 
protein has 5-fold symmetry, GroEL has 7-fold etc	



(I am excluding “quasi-crystals” which can show 5-fold symmetry, discovered by Dan Schechtman in 1982, 
Nobel prize in Chemistry 2011)	





Combining rotational and lattice symmetries	


The translational symmetry of the lattice generates additional rotational symmetry 
elements.	



	



The lattice translation symmetry coupled with one 2-fold symmetry axis (black dots) 
generates three additional 2-fold axes.	



The asymmetric unit (shaded duck) is the smallest unit 
of structure that can generate the whole crystal after 
application of the crystal symmetry.	





Other types of symmetry operation are reflection and inversion. 	



mirror symmetry 

Other crystallographic symmetry elements	



Because  macromolecules (protein and nucleic acid) are chiral, macromolecular 
crystals cannot contain these symmetry elements*.	


* Ignoring crystals of racemic mixtures	





The seven crystal systems	


The seven crystal systems are defined according to the rotational symmetry present, 
and the rotational symmetry imposes restrictions on the unit cell parameters.	



Crystal System  Minimum Symmetry*  Constraints on unit cell 

Triclinic   None     None 

Monoclinic  One 2-fold   (along b)	

 	

 	

α = γ = 90 

Orthorhombic  Three 2-folds (along a,b,c)   α = β = γ = 90 

Trigonal   3-fold (along c)    a = b ; α = β = 90 ;  γ = 120 

Tetragonal 4-fold (along c)    a = b ; α = β = γ = 90 

Hexagonal 6-fold (along c)    a = b ; α = β = 90 ;  γ = 120 

Cubic   Four 3-fold axes    a = b = c ; α = β =  γ = 90 
  (along body diagonal) 

 

* For chiral molecules. For non-chiral molecules, a mirror plane can replace the 2-fold axis in the monoclinic 
system or two mirror planes can replace two of the three 2-folds in orthorhombic system. 

The axis that is in the direction of the characteristic symmetry axis (if any) is called the 
unique axis. There are unique axes for monoclinic, trigonal, tetragonal and hexagonal 
systems. 



The 32 crystallographic point groups	


Rotations, inversions and reflections (mirror planes) are examples of Point Group symmetry, because they 
leave the position of one point unchanged (origin, centre of mass). 	



There are a limited number of ways in which the symmetry operations that are applicable to a lattice can be 
combined, giving the 32 crystallographic point groups.	



2 denotes a 2-fold 
rotation followed by 
an inversion.	



_	



(The u axis bisects the 
x and y axes)	





Bravais Lattices	


Lattices in which the lattice points lie only at the vertices of the unit cell are Primitive 
lattices (P).	



In some cases, it is conventional to define the unit cell so that there are, in addition, 
lattice points at the centre of:	



•   One face (C)  (the face opposite the c axis)	



•   All faces (F)	



•   The unit cell (I, body centred)	



This is done so that the unit cell axes remain parallel to symmetry axes.	



A rhombohedral cell (R) is possible for trigonal crystals. Because it is easier to 
visualise, such cells are normally treated in an equivalent hexagonal setting (space 
groups R3 and R32 are handled as H3 and H32).	



	





Choice of unit cell - centered lattices	



a	



b !

We could choose an oblique set of unit cell vectors... 

a!

b!

…but orthogonal vectors better reflect the symmetry. 

We define a centered unit cell, which is orthogonal and has an additional lattice point 
at 1/2a, 1/2b.  



a!

b!

b!

a!
	



Not all lattices have centred cells 
 

For example, a tetragonal lattice with a C-face centered unit cell can be reduced to primitive unit 
cell without losing symmetry. 



The 14 Bravais lattices	
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Space Groups	



	


•   A point group describes the symmetry of a finite object	



•   A lattice defines the translational symmetry	



•   Combining point group and Bravais lattice symmetries generates space group 
symmetry (but additional symmetry elements involving a translation need to be 
considered).	



•   The space group is a complete description of the symmetry of an (ideal) crystal. 
(Ideal implies infinite !)	



•   Knowing the space group, and the contents of the asymmetric unit, defines the 
positions of all atoms in the crystal.	



•   There are a total of 230 different space groups (first derived in nineteenth century), of 
which only 65 are possible for chiral molecules.	



	





Symmetry elements involving a translation 

When considering an ideal crystal (infinite) we need to consider rotation 
and reflection operations that include a translation. 

Screw axes: involve a rotation and translation 

Glide planes: involve reflection and translation … not applicable to 
chiral molecules. 

 



A screw axis describes the following operation: first, rotate clockwise about an axis, 
then translate along this axis (think of a spiral staircase). 
 
The rotation is expressed as for pure rotation axes, i.e., 1, 2, 3, 4, 6-fold. 
The translation is expressed in fractions of the lattice translation parallel to the screw 
axis (read “2 sub 1”, “4 sub 1” and so on): 

21 

41 

t 

t!

translation of 1/2t  per rotation 

translation of 1/4 

Screw axes 



42 
 

t!

translation of 2/4 = 1/2 

A 42 axis is also a 2 axis. 
 
(62 is also 2 and a 32  ; 64 is also 2 and 31 ;  63 is also 3 and 21). 

A 31 axis corresponds to a right-handed helix, whereas 32 corresponds to a left-
handed helix (the two helices are enantiomorphous). 
 
The same applies to the pairs 41 and 43, 61 and 65, and 62 and 64. 





This is what a space group entry in the International Tables looks like: 

Focus on the most important parts: 



Space group name and number Crystal system 

Space group diagram, origin, 
asymmetric unit 

Equivalent positions 
Reflection 
conditions 



Let’s look at these items in more detail: 

The space group symbol consists of a capital letter indicating the unit cell centering 
(P, C, I, F or R), followed by the symmetry along one (triclinic and monoclinic) or 
three directions (all other crystal systems). The definition of these directions in the 
seven crystal systems is the same as for the crystallographic point groups.  
 
 
 
 

A few examples: 
P2  monoclinic, primitive, 2-fold axis along b 
C2221  orthorhombic, C–centered, 2-fold axes along a and b, 21 along c 
I4122  tetragonal, body-centered, 41 screw axis along c, 2-fold axis along a (and b), 

 2-fold axis along the ab diagonal 
P321  trigonal, primitive, 3-fold axis along c, 2-fold axis along a (and b) 

The crystal system can be triclinic, monoclinic, orthorhombic, tetragonal, trigonal, 
hexagonal, or cubic. 
 
 



The space group diagrams use graphical symbols to indicate symmetry elements. The 
definition of the origin (if constrained by symmetry) is given below the diagram. This 
is followed by the definition of the asymmetric unit.  

0 a 

c 



The list of equivalent positions refers to symmetry-related sites in the unit cell. The 
maximum number of sites generated by the space group symmetry are called the 
general equivalent positions. Their number is equal to the number of asymmetric 
units in the unit cell. 
 
In space group P2, the entry for the equivalent positions is: 
 
2    e  1  (1) x,y,z    (2) x, y, z 
 
1  d  2  ½,y,½ 
1    c  2  ½,y,0 
1  b  2  0,y,½, 
1    a  2  0,y,0 
 
---  ---  ---  --- 
 
There are two general equivalent positions in the unit cell, which are related by the 2-
fold axis along b.  
 
In addition, there are special positions, which require an object of symmetry 2 (e.g., a 
symmetric dimer). 

+	



+	



+	



a	



c	





In a space group with a centered unit cell, the equivalent positions generated by the 
centering operation are given first, followed by those generated by rotation and/or 
screw axes. 
 
In space group C2, for example, the entry for the general equivalent positions is: 
 

     (0,0,0)+        (1/2,1/2,0)+ 
 
4  c  1  (1) x,y,z  (2) x, y, z 
 

Finally, the reflection conditions list classes of reflections that are absent from the 
diffraction pattern (ie have zero intensity) due to space group symmetry. These are known as 
systematic absences. 	





To illustrate the combination of a rotation axis and a centered unit cell, 
let’s build up the equivalent positions from scratch. 



1) Apply unit cell translations a, c, and a+c 

2) Apply 2-fold axis parallel to b at origin and symmetry-
equivalents 

3) Apply C-centering (translation by 1/2a, 1/2b) 



The combination of these symmetry elements generates additional 
symmetry elements, including 21 screw axes. 



These two space groups form an enantiomorphous pair, i.e., they are mirror 
images of each other. Other enantiomorphous pairs are P3121 and P3221, P61 
and P65, P62 and P64, and so on. P42, P42212, P63 etc. do not have 
enantiomorphs. 



By looking at the points generated by the 4-fold screw axes, we can see that 
the two space groups have a different hand. 

1 1 

2 

2 

3 3 

4 

4 

Clockwise (c is up)              Counterclockwise 



Content of the asymmetric unit 

There can be any number of molecules (N) in the asymmetric unit. If N > 1, there is non-
crystallographic symmetry (NCS). NCS elements are not subject to the same restrictions 
as crystallographic symmetry elements (any rotational symmetry  is possible, translations 
do not have to be fractions of the unit cell). 
 
In the case of oligomeric proteins of identical subunits, the symmetry axes of an oligomer 
frequently coincide with space group axes, such that only a fraction of the oligomer 
occupies the asymmetric unit. 
 
Examples: A dimeric protein (symmetry 2) could crystallise in space group P2 with only one subunit 
in the asymmetric unit, or a hexameric protein (symmetry 32) could crystallise in P2 with three 
subunits in the asymmetric unit. 
 
Non-crystallographic symmetry is present in about one third of all protein crystals. 



Of the 65 possible chiral space groups some are much more 
common than others within the Protein Data Bank: 

P212121  24% 
P21   13% 
C2   9.0% 
P3221  6.4% 
P21212  6.1% 
P43212  4.9% 
C2221 4.7% 
P3121  3.9% 
P41212  2.9% 
P1   2.6% 

I222   2.2% 
P6122  2.0% 
R3   1.5% 
R32   1.3% 
P61   1.2% 
P42212  1.0% 
P6   1.0% 
P213   1.0% 
P41   0.8% 
P6522  0.8% 

Spacegroup frequencies	



(sample size of 9481 chiral space groups – but many mutants) 



How is the symmetry determined ? 

•    Crystal morphology 

•   Physical properties (eg optical properties in polarised light)	



•   The diffraction pattern 

      (POINTLESS) 
	





The spots in a diffraction pattern are arranged on a lattice – the reciprocal lattice.	


In the simplest case (all unit cell angles 90°) the reciprocal cell axes, denoted a*, b*, c* 
are parallel to a, b, c and their lengths are 1/a, 1/b, 1/c.	


Each reciprocal lattice point represents a set of (Bragg) planes in the real space lattice, 
and when the intensity of the scattering is represented in the reciprocal lattice points 
this gives the weighted reciprocal lattice. 	



An oscillation photograph gives 
a distorted view of the weighted 
reciprocal lattice	



A precession photograph gives an 
undistorted view of the weighted 
reciprocal lattice	





Symmetry of the diffraction pattern	



The symmetry of the reciprocal lattice is the same as the symmetry of the 
real space lattice.	



Diffraction patterns provide a (distorted) view of the reciprocal lattice, 
and the positions of spots in the diffraction pattern can be used to work 
out the dimensions of the reciprocal unit cell (and the real unit cell).	



It is important to distinguish between the symmetry of the lattice, which 
is the symmetry of the reciprocal lattice points, and the symmetry of the 
diffraction pattern which is both the arrangement of the spots (reciprocal 
lattice points) and their intensities.	



In addition, in the absence of anomalous scattering, Friedel’s law holds:	



	

 	

 	

I(hkl) =  I(hkl)	



Which means that the diffraction pattern has a centre of symmetry 
(inversion centre).	



- -	

-	





Laue symmetry	



Because of Friedel’s Law, the diffraction pattern will have higher 
symmetry than the crystal. In addition, the diffraction pattern cannot 
have translational symmetry, because it has a defined origin (the 
reciprocal lattice point with indices 0,0,0.	



To derive the Laue symmetry from the space group symmetry:	



•   Remove the lattice centring symbol (C, F, I, R)	



•   Remove the translational symmetry component of screw axes	



•   Add a centre of symmetry	



In this way the 230 space groups are reduced to the 11 Laue groups.	



It is the Laue group symmetry that is determined from the symmetry of 
the diffraction pattern.	





The 11 Laue groups 

System    Laue group  Examples of space groups 
 
Triclinic    1   P1 
Monoclinic   2/m   P2, P21, C2, C21 
Orthorhombic   mmm   P212121, C2221, I222… 
Tetragonal   4/m   P4, P41, P42, P43, I4, I41 

   4/mmm   P4212, P4322… 
Trigonal    3   P3, P31, P32, R3 

   3/m   P321, P3121, R32… 
Hexagonal   6/m   P61, P62, P63, P64, P65 

   6/mmm   P622, P6122… 
Cubic    m3   P32, I32.. 

   m3m   P432, P4132, I432, F432... 

The symmetry of the diffraction pattern (Laue symmetry) does not uniquely determine 
the space group of the crystal (unless it is triclinic). 



Systematic absences 

Systematic absences (extinctions) are classes of reflections (hkl) that have zero 
amplitude. They result from symmetry operations with a translation component. In 
crystals of chiral compounds (ie macromolecular), these are the unit cell centering 
operations (C, F, I, R) and screw axes. 
 
Without deriving the structure factor equations (which is the most rigorous way of 
demonstrating the reason for systematic absences), we can state that systematic 
absences occur for certain classes of reflections because the contribution of any atom 
is cancelled out by the contribution of its translated symmetry mate (i.e., Fhkl = 0). 



Reflection conditions due to centered unit cells 
 
Unit cell type   Limiting condition 
 
P    None 
C    hkl:  h + k = 2n 
I    hkl:  h + k + l = 2n 
F    hkl:  h + k = 2n, h + l = 2n, k + l = 2n 
R    hkl:  -h + k + l = 3n (obverse setting) 
 
 
Reflection conditions due to screw axes (axial reflections) 
 
21 along a   h00:  h = 2n 
21 along b   0k0:  k = 2n 
21 along c  00l:  l = 2n 
31 or 32 along c   00l:  l = 3n   
41 or 43 along c   00l:  l = 4n 
42 along c  00l:  l = 2n 
61 or 65 along c   00l:  l = 6n   
62 or 64 along c   00l:  l = 3n   
63 along c  00l:  l = 2n   



Some important points about systematic absences 
 
Systematically absent means that all affected reflections must be absent.  
 
For example, a 21 screw axis along a would lead to the absence of all h00 with h 
odd. A single weak reflection with h odd rules out a screw axis ! (but beware of 
incompletely resolved reflections if the spots are very close). Note that no 
constraints apply to h00 reflections with h even: they can be strong, weak or absent. 
 
Enantiomorphous screw axes produce the same systematic absences. Hence, pairs 
of enantiomorphous space groups (e.g., P4122 and P4322) cannot be distinguished 
based on the diffraction pattern alone. 
 
Systematic absences due to unit cell centering may obscure absences due to screw 
axes. For example, body (I) centering results in the absence of all reflections with 
(h + k + l) odd, including h00 with h odd, 0k0 with k odd, and 00l with l odd. 
Hence, it is not possible to distinguish between I222 and I212121. 
 
The reflection conditions for each space group are given in the International Tables. 



Space group determination 

This topic will be discussed again in the lecture on Data Processing. 
 
Here, we only note that the process involves, in principle, three steps: 
 

 1) Determination of the crystal system, lattice type and probable Laue group 
      based on the geometry (shape) of the unit cell. 
 2) Determination of the true Laue group based on intensities. 
 3) Assignment of screw axes based on systematic absences. 

 
 
If the space group cannot be uniquely determined (enantiomorphous pairs, I222 vs. 
I212121), do not despair. There are ways of resolving the ambiguity, which will be 
discussed in future lectures (but typically involve trying all possibilities and seeing which 
one works !) 
 
 
 
 



Summary	



•   (Real) Crystals can display only 1, 2, 3, 4 or 6 fold rotation axes.	



•   Crystals of non-chiral molecules can also contain mirror planes and centres of inversion 
(excluded for macromolecules)*.	



•   Crystals belong to one of seven Crystal Systems (determined by the symmetry operators 
present).	



•   Combinations of these symmetry operators lead to the 32 Point Groups.	



•   Lattices can be Primitive, (single) face centred (C) , all face centred (F), body centred (I) or 
rhombohedral (R). The combination of possible lattices with the seven crystal systems leads to 
the 14 Bravais Lattices.	



•   Combining Point Group and Lattice symmetries gives rise to the 230 space groups, of which 
only 65 are possible for chiral molecules*.  Space groups (considering an ideal infinite crystal) 
may contain symmetry elements (rotation axes, mirror planes) with a translational component 
(screw axes, glide planes).	



•   Diffraction patterns do not have translational symmetry but do have a centre of symmetry 
(Friedel’s Law). This reduces the 32 Point Groups to the 11 Laue Groups.	


	


* Except racemic mixtures	


	


	


	


	


	





Data Processing Practical	


	



This will take place in the Klug seminar room next Tuesday, 30th April, 
2-5pm	


	


1. Everyone should have a laptop with version 6.3.0 (or later) of the 
CCP4 software suite installed.	


	


2. Please bring some of your own data to work with. Test images will be 
available, but these will take time to install.	


	


3. The exact format will depend on the participants. There can be a 
“lecturer lead” tutorial if this is thought to be useful, but at some stage 
students should do their own processing.	


	


4. Any queries, please ask now or contact andrew@mrc-lmb.cam.ac.uk 
or pre@mrc-lmb.cam.ac.uk	


	




