Model-Building of Proteins Using X-ray Data With *Coot*

Paul Emsley May 2013

Acknowldegments, Collaborators

Bernhard Lohkamp

Kevin Cowtan Eugene Krissinel Stuart McNicholas Martin Noble

Alexei Vagin

But Why..?

- In these days of automation...
 - why should I use something interactive?
 - why are you forcing me to think?
- It's the Nature of the Problem
 - partial/refined model to deposition quality
 - Problematic due to the variety of ways in which a model can be wrong
 - Hypothesis generation and evaluation
- It takes a brain to validate and correct
 - (for at least the next 5 years...)

What is "Refinement"?

- The adjustment of model parameters (coordinates) so that the calculated structure factors match the observations as nearly as possible
 - In "one-shot" real-space refinement, such as in Coot, this translates to:
 - move the atoms into as high density as possible while minimizing geometrical distortions

Distorted Geometry Pre-Refinement

Refinement Gradients

Refinement: Cycle 3

Refinement Cycle 200: Minimized

Real Space Refinement

Diamond, R. (1971). *Acta Cryst*. A 27, 436-452.

- Major Feature of Coot
 - Gradient-based minimiser (BFGS derivative)
 - Geometry library is the standard CIFbased Refmac dictionary
 - Minimise deviations in bond length, angles, torsions, planes, chiral volume, non-bonded contacts
 - Including links and modifications
- Provides "interactive" refinement
- Subject to substantial extension

Representation of Results:

File Edit View Terminal Help A created 32 bond restraints created 38 angle restraints created 1 plane restraints created 5 chiral vol restraints created 76 restraints INFO:: [spec: "A" 45 ""] [spec: "A" 46 ""] link type :TRANS: INFO:: [spec: "A" 45 ""] [spec: "A" 44 ""] link type :TRANS: Link restraints: 2 bond links 6 angle links 4 plane links Flanking residue restraints: 4 bond links 12 angle links 8 plane links INFO:: made 668 non-bonded restraints initial distortion score: -16033.2 Initial Chi Squareds bonds: 1.15701 angles: 0.847832 torsions: N/A planes: 1.6176 non-bonded: 0 chiral vol: 0.705728 rama plot: N/A Minimum found (iteration number 67) at -16275.9 Final Estimated RMS Z Scores: bonds: 1.19412 0.713337 angles: torsions: N/A planes: 1.05134 non-bonded: 0 chiral vol: 0.522415 rama plot: N/A SUCCESS TIME:: (dragged refinement): 332.657

The first attempt

Student Reaction:

"Oh, I don't look at that window..." (I maximise the main window immediately)

Representation of Results:

🛫 Accept Refinement? 🗙
Accept Refinement?
Bonds: 1.114
Angles: 0.402
Angles: 0.492
Planes: 1.902
chinalar 0.007
Chirais: 0.227
Non-bonded: 0.000
Accept 🛛 😢 Reject

Second attempt...

Student Reaction:

"Oh, box of meaningless numbers.

Go away"

Representation of Results: "Traffic Lights"

"Traffic Lights" represent the RMSd values for each of the refined geometry types

🛫 Accept Refinement? 🔀
Accept Refinement?
Bonds: 1.114
Angles: 0.492
Planes: 1.902
Chirals: 0.227
Non-bonded: 0.000
Accept 🖸 Reject
Accept 😢 Reject

Good refinement

Bad refinement

Refinement Techniques

- Single-Atom Drag
 - Over-dragging
- Key-bindings:
 - Triple Refine
 - Single Residue Refine with Auto-accept

Low Resolution Model-Building

- Helix fitting
- "Backrub" rotamers

(mol. no: 1) CA /1/A/46 THR occ: 1.00 bf: 14.64 ele: C pos: (42.40, 4.14,12.99)

(mol. no: 1) CA /1/A/46 THR occ: 1.00 bf: 14.64 ele: C pos: (42.40, 4.14,12.99)

Using Backrubs

for rotamer fitting

Davis et al. (2006) Structure

New Low Resolution Rotamer Search

After Fitting Tools in KING/Molprobity

Networking...

- PDBe interface...
- Drag and drop
 - Also with drugbank

PDBe Recent Structures

JSON parser, network threaded code

Using the API

RCrane: Semi-Automated Building of RNA

Handling EM maps

Partioning Maps: Watershed Algoritm 1D-analog

New region created New region created

Pintilie *et al.* (2010) J.Struct.Biol.

Finding Holes

- An implementation of
 - Smart, Goodfellow & Wallace (1993) Biophysics Journal 65, 2455
 - Atomic radii from AMBER
 - I used
 - radii from CCP4 monomer library
 - (sans simulated annealing)

Coot	000
File Edit Calculate Draw Measures Validate HID About Extensions Lidia Test Hole	
늘 🔍 Reset View 📃 Display Manager 😥 🗞	R/RC
	Мар
	\odot
	\odot
	土
	5
	22
	~
	2
	Ģ.
	R
	Side
	day .
	ھ
	*
	44
	׆
	+
	4
	AND .
	62
Hole end point set: (-55.97 -16.51 -49.72)	

Alpha Helix Placement

- Scenario: Looking at a new map, not built with automatic tools:
 - "I can see that there's a helix here build it for me!"
- From a given point:
 - Move to local averaged maximum
 - Do a 2D MR-style orientation search on a cylinder of electron density
 - Build a helix (both directions)
 - 1D Rotation search to find best fit
 - Score based on density at CB positions
 - Trim 'n Grow

Centering the Rotation point

Cylinder Search

 Pick the orientation that encapsulates the most

electron density

Using 2 rotation axes

. ≁×

17

2 x 1-D Helix orientation searches

Bottom

Helix added

Helix added

N

Helix added

Handling NCS...

Handling NCS

Typical Scenario:

- I have done an LSQ overlap of my NCSrelated molecules and from the graph, have seen significant deviations in the positions of some side-chains.
- Why are they different?

... NCS Differences graph

NCS Overlays

map centre

(mol. no: 3) CG /1/A/52 TYR occ: 1.00 bf: 11.63 ele: C pos: (50.36, 2.86,13.40)

(mol. no: 3) CG /1/A/52 TYR occ: 1.00 bf: 11.63 ele: C pos: (50.36, 2.86,13.40)

NCS Model-modification Tools

- Automatic detection of NCS
 - And their operators
- Copy Master NCS molecule to others
 - Applies NCS transformation
- Copy NCS Master residue-range
- Change NCS Master chain
- NCS Skipping
- NCS Ligands

Interfaces and Assemblies: Interface to PISA

Validation

- My preferred tools:
 - Difference Map Peaks
 - Probe clashes

Projection from the surface of a doughnut: 2 x 360° (linear scaling)

Peptide Backbone Geometry

Typical 2D Projection of Ramachandran Plot

Note: PRE-Pro is another distinct distribution, but not yet encoded in Coot

Acknowledgements

- Keith Wilson
- Eleanor Dodson
- Max Crispin
- Libraries, dictionaries
 - Alexei Vagin, Eugene Krissinel
 - Richardsons (Duke)
- Funding
 - BBSRC, CCP4 & MRC