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A Random Variable is an object whose value is determined by 
chance, i.e. random events


Probability that the random variable X adopts a particular value x:


            : discrete


            : continuous



Continuous Random Variables 

P(X = x) =
p∈ [0,1] X
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Continuous Random Variables 

Continuous Uniform Distribution:


Probability Density Function:

X ~U(a,b)

fX (x) =
(b− a)−1 x ∈ [a,b]

0 x ∉ [a,b]
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Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0,1]) =1



Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0, 12 ]) = 1
2



Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0, 13]) = 1
3



Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0, 110 ]) = 1
10



Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0, 1
100 ]) = 1

100



Continuous Random Variables 

Example: X ~U(0,1)

P(X ∈ [0, 1n ]) = 1
n

Lim
n→∞

P(X ∈ [0, 1n ]) = 0

Lim
n→∞

P(0 ≤ X ≤ 1
n ) = 0

Lim
ε→0

P(0 ≤ X ≤ ε) = 0

In general, for any continuous random variable X:	


Lim
ε→0

P(α ≤ X ≤α +ε) = 0



Continuous Random Variables 

P(X = x) =
pX (x) X

0 X
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     : discrete


     : continuous

“Why do I observe a value if there’s no probability of observing it?!”

Answers:
•  Data are discrete
•  You don’t actually observe the value – precision error

•  Some value must occur… even though the probability of 
observing any particular value is infinitely small



Continuous Random Variables 

For a random variable:

The Cumulative Distribution Function (CDF) is defined as:


            (discrete/continuous)



Properties:

•  Non-decreasing

•   

•   

X :Ω→ A

FX (x) = P(X ≤ x)

Lim
x→−∞

FX (x) = 0

Lim
x→+∞

FX (x) =1



Continuous Random Variables 

Probability Density function:







Cumulative Distribution function:







        Boxplot:

FX (x) = P(X ≤ x)

fX (x)



Continuous Random Variables 

FX (x) = P(X ≤ x)

fX (x)Probability Density function:







Cumulative Distribution function:
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Continuous Random Variables 

FX (x) = P(X ≤ x)

FX (x) = fX (y)dy
−∞

x

∫

Probability Density function:







Cumulative Distribution function:
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fX (x)
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x

∫

Probability Density function:







Cumulative Distribution function:
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Continuous Random Variables 
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Continuous Random Variables 

Probability Density function:
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Continuous Random Variables 

Probability Density function:







Cumulative Distribution function:







        Boxplot:

FX (x) = P(X ≤ x)

FX (x) = fX (y)dy
−∞

x

∫

fX (x)

d
dx
FX (x) = fX (x)



Cumulative Distribution Function (CDF):

 Discrete:



 Continuous:


Probability Density Function (PDF):


 Discrete:



 Continuous:




fX (x) =
d
dx
FX (x)

FX (x) = P(X ≤ x) = fX (y)dy
−∞

x

∫
       

Continuous Random Variables 

fX (x)dx
−∞

∞

∫ =1

pX (x) =1
x=−∞

∞

∑pX (x) = P(X = x)

FX (x) = P(X ≤ x) = pX (y)
y=−∞

x

∑

       



Expectation and Variance 
Motivational Example:


Experiment on Plant Growth (inbuilt R dataset)

 - compares yields obtained under different conditions



Expectation and Variance 
Motivational Example:


Experiment on Plant Growth (inbuilt R dataset)

 - compares yields obtained under different conditions

•  Compare means to test for differences

•  Consider variance (and shape) of the 
distributions – help choose 
appropriate prior/protocol

•  Assess uncertainty of parameter 
estimates – allow hypothesis testing





Expectation and Variance 
Motivational Example:


Experiment on Plant Growth (inbuilt R dataset)

 - compares yields obtained under different conditions

•  Compare means to test for differences

•  Consider variance (and shape) of the 
distributions – help choose 
appropriate prior/protocol

•  Assess uncertainty of parameter 
estimates – allow hypothesis testing



In order to do any of this, we need to know how to describe distributions


i.e. we need to know how to work with descriptive statistics



Expectation and Variance 

Discrete RV:




Sample (empirical):         (explicit weighting not required)




Continuous RV:

E(X) = xpX (x)
−∞

∞

∑

E(X) = xfX (x)
−∞

∞

∫ dx

E(X) = 1
n

xi
i=1

n

∑



Expectation and Variance 
Normal Distribution:

fX (x) =
1
2πσ

e
− x−µ( )2

2σ 2

X ~ N(µ,σ 2 )



Expectation and Variance 
Normal Distribution:

E(X) = xfX (x)
−∞

∞

∫ dx = µ

X ~ N(µ,σ 2 )

fX (x) =
1
2πσ

e
− x−µ( )2

2σ 2



Expectation and Variance 
Standard Cauchy Distribution:
(also called Lorentz)


E(X) = xfX (x)
−∞

∞

∫ dx = undefined

fX (x) =
1
π

1
1+ x2



Expectation and Variance 
Expectation of a function of random variables:


E(g(X)) = g(x) fX (x)
−∞

∞

∫ dx

E(αX +β) = (αx +β) fX (x)
−∞

∞

∫ dx

=α xfX (x)
−∞

∞

∫ dx +β fX (x)
−∞

∞

∫ dx

=αE(X)+β

Linearity:




Expectation and Variance 
Variance:


Var(X) = E (X −µ)2( )
= E (X −E(X))2( )
= E(X 2 )−E(X)2

X ~ N(0,1)	

	

	




Expectation and Variance 
Variance:


Var(X) = E (X −µ)2( )
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Expectation and Variance 
Variance:


Var(X) = E (X −µ)2( )
= E (X −E(X))2( )
= E(X 2 )−E(X)2

X ~ N(0,1)	

X ~ N(0,2)	

	

	




Expectation and Variance 
Variance:


Var(X) = E (X −µ)2( )
= E (X −E(X))2( )
= E(X 2 )−E(X)2

X ~ N(0,1)	

X ~ N(0,2)	

	

	


Population Variance:



Unbiased Sample Variance:

s2 = 1
n−1

xi − x( )2
i=1

n

∑

σ 2 =
1
n

xi −µ( )2
i=1

n

∑



Expectation and Variance 
Variance:


Var(X) = E(X 2 )−E(X)2

Non-linearity:

Var αX +β( ) = E (αX +β)2( )−E αX +β( )2

Var(X)Standard deviation (s.d.):




Expectation and Variance 
Variance:


Var(X) = E(X 2 )−E(X)2

Non-linearity:

Var αX +β( ) = E (αX +β)2( )−E αX +β( )2

= E α 2X 2 + 2αβX +β 2( )− αE(X)+β( )2

Var(X)Standard deviation (s.d.):




Expectation and Variance 
Variance:


Var(X) = E(X 2 )−E(X)2

Non-linearity:

Var αX +β( ) = E (αX +β)2( )−E αX +β( )2

= E α 2X 2 + 2αβX +β 2( )− αE(X)+β( )2

= α 2E(X 2 )+ 2αβE(X)+β 2( )− α 2E(X)2 + 2αβE(X)+β 2( )

Var(X)Standard deviation (s.d.):




Expectation and Variance 
Variance:


Var(X) = E(X 2 )−E(X)2

Non-linearity:
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Var(X)Standard deviation (s.d.):




Expectation and Variance 
Variance:


Var(X) = E(X 2 )−E(X)2

Non-linearity:

Var αX +β( ) = E (αX +β)2( )−E αX +β( )2

= E α 2X 2 + 2αβX +β 2( )− αE(X)+β( )2

= α 2E(X 2 )+ 2αβE(X)+β 2( )− α 2E(X)2 + 2αβE(X)+β 2( )
=α 2 E(X 2 )−E(X)2( )
=α 2Var(X)

Var(X)Standard deviation (s.d.):




Expectation and Variance 

Often data are standardised/normalised 


Z-score/value:



Example:



Z = X −µ
σ

X ~ N(µ,σ 2 ) fX (x) =
1
2πσ

e
− x−µ( )2

2σ 2

Z ~ N(0,1) fZ (x) =
1
2π

e−x
2 2



Moments 

Shape descriptors

Li and Hartley (2006) Computer Vision
Saupe and Vranic (2001) Springer
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Moments 

Shape descriptors

Li and Hartley (2006) Computer Vision
Saupe and Vranic (2001) Springer



Moments 

Moments provide a description of the shape of a distribution

Raw moments      Central moments  Standardised moments

µ1 = E(X) = µ 0 0

... E (X −µ)2( ) =σ 2 1

... ... E X−µ
σ( )

3( )

... ... E X−µ
σ( )

4( )

µn = E(X
n ) E (X −µ)n( ) E X−µ

σ( )
n( )

: mean

: variance

: skewness

: kurtosis



Moments 

Standard Normal: 






Standard Log-Normal:



Moments 

Moment generating function (MGF):

MX (t) = E(e
Xt ) =1+ tE(X)+ t

2

2!
E(X 2 )+...+ t

n

n!
E(Xn )+...

Alternative representation of a probability distribution.

µn = E(X
n ) = dn

dtn
MX (0)



Moments 

Moment generating function (MGF):

MX (t) = E(e
Xt ) =1+ tE(X)+ t

2

2!
E(X 2 )+...+ t

n

n!
E(Xn )+...

Alternative representation of a probability distribution.

µn = E(X
n ) = dn

dtn
MX (0)

Example:

X ~ N(µ,σ 2 ) ⇒ MX (t) = e
tµ+12σ

2t2

X ~ N(0,1) ⇒ MX (t) = e
1
2 t
2



Moments 

However, MGF only exists if E(Xn) exists

MX (t) = E(e
Xt )

Characteristic function always exists:

ϕX (t) =MiX (t) =MX (it) = E(e
itX ) = eitx fX (x)dx

−∞

∞

∫

Related to the probability density function via Fourier transform

ϕX (t) = e
−t2 2X ~ N(0,1)Example:



The Law of Large Numbers (LLN) 
Motivational Example:

Experiment on Plant Growth (inbuilt R dataset)

 - compare yields obtained under different conditions

•  Want to estimate the population mean 
using the sample mean.

•  How can we be sure that the  
sample mean reliably estimates  
the population mean?



The Law of Large Numbers (LLN) 

Does the sample mean reliably estimate the population mean?

The Law of Large Numbers:





Xn =
1
n

Xi
n→∞# →##

i=1

n

∑ µ Providing Xi : i.i.d.



The Law of Large Numbers (LLN) 

Does the sample mean reliably estimate the population mean?

The Law of Large Numbers:





Xn =
1
n

Xi
n→∞# →##

i=1

n

∑ µ Providing Xi : i.i.d.

X ~U(0,1)

µ = 0.5



The Central Limit Theorem (CLT) 

Question - given a particular sample, thus known sample mean, 
how reliable is the sample mean as an estimator of the population 
mean?

Furthermore, how much will getting more data improve the 
estimate of the population mean?

Related question - given that we want the estimate of the mean 
to have a certain degree of reliability (i.e. sufficiently low S.E.), 
how many observations do we need to collect?

The Central Limit Theorem helps answer these questions by 
looking at the distribution of stochastic fluctuations about the 
mean as n→∞



The Central Limit Theorem states:

For large n:

Or equivalently:


More formally: 

Conditions:




    : i.i.d. RVs (any distribution)

E(Xi ) = µ
Var(Xi ) =σ

2 <∞

Xi

The Central Limit Theorem (CLT) 

n Xn −µ( ) ~ N(0,σ 2 )

Xn ~ N µ,σ
2

n
!

"
#

$

%
&

n 1
n

Xi
i=1

n

∑ −µ
#

$
%

&

'
( d) →) N(0,σ 2 )
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The Central Limit Theorem (CLT) 

Proof of the Central Limit Theorem:


n 1
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Xi
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#
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The Central Limit Theorem (CLT) 

Proof of the Central Limit Theorem:


Zi =
Xi −µ
σ

n 1
n

Xi
i=1

n

∑ −µ
#

$
%

&

'
( d) →) N(0,σ 2 )

1
n

Xi
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n

∑ − nµ
#
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1
n

Xi −µ
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∑ d" →" N(0,1)



The Central Limit Theorem (CLT) 
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The Central Limit Theorem (CLT) 

Proof of the Central Limit Theorem:
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Summary 

Considered how:
•  Probability Density Functions (PDFs) and Cumulative 

Distribution Functions (CDFs) are related, and how they differ 
in the discrete and continuous cases

•  Expectation is at the core of Statistical theory, and Moments 
can be used to describe distributions

•  The Central Limit Theorem identifies how/why the Normal 
distribution is fundamental


The Normal distribution is also popular for other reasons:
•  Maximum entropy distribution (given mean and variance)
•  Intrinsically related to other distributions (t, F, χ2, Cauchy, …)
•  Also, it is easy to work with
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