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Task 1

1.

library(boot)

2.

hist(paulsen$y,breaks=30,freq=FALSE)

3.

lines(density(paulsen$y),col="red")

Task 2

1.

hist(rivers,breaks=30,freq=FALSE)

2.

lines(density(rivers),col="red")

3.

abline(v=mean(rivers)->x,col="orange")

abline(v=median(rivers)->y,col="blue")

4.

(x-y)/(x+y)

The relative difference is ≈ 0.164.
x/y

The mean is ≈ 1.39 times (or 39%) larger than the median.
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Task 3

1.

hist(rivers,breaks=30,freq=FALSE)

2.

lines(density(rivers),col="red")

3.

x=quantile(rivers,prob=c(0.05,0.95))

abline(v=x,col="blue")

Task 4

1.

hist(rnorm(1000)->x,breaks=30)

2.

y=mean(x)+2*sd(x)*c(-1,1)

3.

c(sum(x<y[1]),sum(x<y[2]))/length(x)

These values are close to the 2.5% and 97.5% quantiles.

4.

Repeating the calculations yields results fluctuating around the 2.5% and 97.5%
quantiles.

Task 5

1.

hist(faithful$eruptions)

The distribution is bimodal.

2.

qqnorm(faithful$eruptions)

qqline(faithful$eruptions)

The data are not Normally distributed.
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3.

qqnorm(abs(faithful$eruptions-3))

qqline(abs(faithful$eruptions-3))

According to visual inspection alone, the transformed data appear to be approx-
imately Normally distributed.

Without very good reason to do so (based on the mechanics of the system), there
is no good reason why such a transformation would be applied to such a dataset.
It is sometimes useful to transform data so that the distribution displays preferable
characteristics (e.g. being able to be considered Normally distributed), although
doing so is only valid for monotonic transformations – i.e. so that the original data
could be recovered without any information loss.

In the example, the abs(faithful$eruptions-3) transformation is artificially
applied in order to make the data appear Normally distributed. However, it would
not be possible to recover the original data after transformation. Therefore, the
application of such a transformation would not be a statistically valid protocol.

Task 6

1.

boxplot(PlantGrowth$weight)

2.

boxplot(PlantGrowth$weight∼PlantGrowth$group)

Task 7

1.

boxplot(chickwts$weight)

2.

boxplot(chickwts$weight∼chickwts$feed)
There is visual evidence for differences between the groups. Overall, ‘Horsebean’

seems to result in particularly light chickens, and ‘Casein’ and ‘Sunflower’ seem to
result in particularly heavy chickens, on average.

Task 8

1.

boxplot(DNase$density)

2.

boxplot(DNase$density∼DNase$conc)
There appears to be a strong positive non-linear relationship between optical

density and concentration.
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Task 9

1.

library(boot)

2.

plot(calcium)

3.

cor(calcium)

4.

cor(calcium,method="spearman")

There is not a very large difference between the Pearson (0.87) and Spearman
(0.91) correlation coefficients. The lack of difference may be due to (1) the relation-
ship being strong and relatively linear; and (2) the relationship not being monotonic.
The fact that the Spearman correlation coefficient is larger than the Pearson might
be explained to some degree by the non-linearity of the relationship.

Task 10

1.

library(boot)

2.

plot(survival)

3.

cor(survival)

4.

cor(survival,method="spearman")

The Spearman (-0.91) correlation coefficient is considerably stronger than the
Pearson (-0.68). This is due to the strong non-linear and semi-monotonic nature of
the relationship.

5.

a = log(1/survival$surv)

plot(a∼survival$dose)
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6.

cor(a,survival$dose)

cor(a,survival$dose,method="spearman")

Both Pearson and Spearman correlation coefficients change from negative to
positive. The Pearson correlation becomes much stronger in magnitude after the
transformation – this is because the original data displayed a negative non-linear
correlation, whilst the transformed data exhibit a positive linear correlation. In
contrast, the Spearman correlation coefficient adopts the exact same value, except
for the sign change – this is because the ordering is perfectly preserved, but reversed.

Task 11

1.

cor(iris[iris$Species=="virginica",1:4])

cor(iris[iris$Species=="setosa",1:4])

cor(iris[iris$Species=="versicolor",1:4])

or better:
x=levels(iris$Species)

cor(iris[iris$Species==x[1],1:4])

cor(iris[iris$Species==x[2],1:4])

cor(iris[iris$Species==x[3],1:4])

or better:
for(i in 1:length(levels(iris$Species)->x)){
print(x[i])

print(cor(iris[iris$Species==x[i],1:4]))

}

2.

The previous assertion that Petal.Length and Petal.Width are highly positively cor-
related is misleading. When looking at individual species, it transpires that the
within-species correlation between between Petal.Length and Petal.Width is much
weaker. The correlation is strongest for Versicolor (0.79), being much weaker for
Setosa (0.33) and Virginica (0.32). The reason for the higher positive correlation
when combining the three species (0.96) is due to systematic differences in the
Petal.Length and Petal.Width between the species. Indeed, it may be true that
species with a larger Petal.Length would also tend to have a larger Petal.Width
(although note that we could not draw such conclusions without testing hypotheses
properly).

3.

Again, the previous assertion that Petal.Length and Sepal.Length are highly posi-
tively correlated is misleading. The correlation is strong for Versicolor (0.75) and
Virginica (0.86), but is much weaker for Setosa (0.27). Consequently, there is not
a strong correlation between Petal.Length and Sepal.Length for all species. The
reason for the higher positive correlation when combining the three species (0.87) is
again partially due to systematic differences between the species.
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4.

The previous assertion that Petal.Length and Petal.Width are negatively corre-
lated with Sepal.Width is highly misleading. Considering the within-species corre-
lations, we see that both Petal.Length and Petal.Width are positively correlated with
Sepal.Width, for all species. These correlations are strongest for Versicolor, slightly
weaker for Virginica, and particularly weak for Setosa. The reason for the higher
positive correlations when combining the three species is again due to systematic
differences between the species (in this case Setosa appears to have a systematically
lower Petal.Length and Petal.Width and systematically higher Sepal.Width than
the other two species, although to draw such conclusions we would have to test such
hypotheses properly).

5.

Again, the previous assertion that Sepal.Length and Sepal.Width are uncorrelated
(but negatively correlated, if at all) is highly misleading. Considering the within-
species correlations, we see that both Sepal.Length is positively correlated with
Sepal.Width for all species. From these results, we may conclude that (1) these
are not uncorrelated, and (2) they are not negatively correlated. Both of these
statements disagree with the previous assertion. The reason for the difference in the
observered correlation when combining the three species is again due to systematic
differences between the species.

6.

This exercise demonstrates that it is important to interpret results carefully, as
such analyses may be prone to error or misinterpretation. It is important to know
exactly what questions you want to ask, and know exactly what conclusions can be
drawn from different pieces of information (results). For example, when determining
whether or not Petal.Length and Petal.Width are correlated, it is important to
know whether you want to make general statements about the relationship between
Petal.Length and Petal.Width over all plants in the study (thus ignoring species
type), or investigate the correlations observed for each species separately.

Furthermore, it is important to explore data in detail, using different approaches,
in order to gain maximal information. If there are different groupings in the data
(e.g. different species) then can the distributions of some property be considered
the same for each species? Also, can the relationships between different properties
be considered the same for each species? Modelling such systems and consequently
testing such hypotheses is an important part of statistics and data analysis.

The example also demonstrates how correlations can be achieved in cases where
the compared data are heterogeneous, and exhibit non-linear relationships. In such
cases, correlation coefficients should be interpreted carefully.

Task 12

1.

boxplot(CO2$uptake∼CO$Type)
Visually, it does appear that there is a difference between the CO2 uptake rates for
plants originating from the different regions.



Tutorial 2: Descriptive Statistics and Exploratory Data Analysis Answers Sheet 7

2.

boxplot(CO2$uptake∼CO2$Plant)
boxplot(CO2$uptake∼CO2$Plant,col=c(rep("red",6),rep("blue",6)))

3.

boxplot(CO2$uptake∼CO2$conc)
Higher concentrations tend to result in higher uptake. The relationship seems more
pronounced at lower concentrations.

4.

boxplot(CO2$uptake∼CO2$conc+CO2$Type)
This representation reinforces previous assertions.

5.

boxplot(CO2$uptake∼CO2$Treat)
It appears that there are differences in the distributions, but whether or not the
differences are significant is not clear.

6.

boxplot(CO2$uptake∼CO2$Treat+CO2$Type)
boxplot(CO2$uptake∼CO2$Treat+CO2$Type,col=rep(c("red","blue"),2))

7.

x = boxplot(CO2$uptake∼CO2$Treat+CO2$Type+CO2$conc)

Looking at the contents of the box plot object x reveals the existence of the names

attribute, which is a vector specifying which level combinations each of the 28 box
plots correspond to, in the same order as displayed. This attribute would also
have been revealed by the summary function. Manual inspection of this vector (i.e.
x$names) reveals the pattern required to colour the box plots accordingly:
boxplot(x,col=rep(c("red","blue","orange","green"),7))

Given a particular value of conc (concentration), we can see that the effect of Plant
(i.e. within-group variation) is small relative to the effect of Type or Treat. It seems
that both Type and Treat have a substantial effect on uptake, at all concentrations.
Certainly, given the Type, the nonchilled (red and orange) plants have systemati-
cally higher uptakes than the chilled (blue and green) plants. However, note that
there are some nonchilled plants (orange) that have a systematically lower uptake
than some chilled plants (blue); the difference between these being the Type. Fur-
thermore, note that the uptake is systematically lower for Mississippi (orange and
green) than for Quebec (red and blue). Consequently, we might conclude from vi-
sual analysis that changing the Type from Quebec to Mississippi is generally more
inhibitive for uptake than changing Treatment or Plant. Such assertions would
ordinarily be confirmed or disproven by modelling and testing hypotheses.


