
Tutorial 2: Descriptive Statistics
and Exploratory Data Analysis

Rob Nicholls – nicholls@mrc-lmb.cam.ac.uk

MRC LMB Statistics Course 2014

A very basic understanding of the R software environment is assumed.
See Tutorial 1 for an introduction to R.

Contents

1 Univariate Statistics and Histograms . . . . . . . . . . . . . . . . . . 2
1.1 Measures of Location . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Measures of Position . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . 7

2 Comparing the Distributions of Datasets . . . . . . . . . . . . . . . . 8
2.1 Comparing Empirical and Theoretical Distributions . . . . . . 8
2.2 Comparing (Unpaired) Empirical Distributions . . . . . . . . . 9

3 Bivariate/Multivariate Data Analysis . . . . . . . . . . . . . . . . . . 11
3.1 Bivariate Data Analysis – Investigating Correlations . . . . . . 11
3.2 Simple Multivariate Data Analysis . . . . . . . . . . . . . . . 13

1



Tutorial 2: Descriptive Statistics and Exploratory Data Analysis 2

1 Univariate Statistics and Histograms

The first part of this tutorial will consider univariate statistical analysis using R.
This involves simple quantification and visualisation of the distribution of a univari-
ate dataset.

To help illustrate the discussed concepts, we will use an artificial dataset. R
contains built-in functions that will generate a dataset of random values typical
of a particular distribution (e.g. see runif, rnorm and rpois; for a full list type
?Distributions). Begin by generating a vector of 1000 random values from the
standard Normal distribution using the command:

x = rnorm(1000)

The distribution of a univariate dataset may be easily visualised using a histogram.
To plot a histogram of x type:

hist(x)

Histograms are bar charts, with bars arranged in equal-spaced intervals across the
data range. The bar height is equal to the number (frequency) of values that occur
in the corresponding interval in the dataset.

Note that it is not necessary to assign the result of rnorm(1000) to a variable x

before creating the histogram – repeatedly executing the command:

hist(rnorm(1000))

would result in histograms being created using new vectors of artificially-generated
random Normal data. Try this now, and see what happens. Note that the scales/limits
of the axes automatically adjust according to the contents of the dataset. The x-
and y-axis limits may be fixed using the xlim and ylim arguments, respectively.
Also, the text of the main and axes titles can be set using the main, xlab and ylab

arguments.
The freq argument is useful for switching between displaying frequency (number

of observations) and density (proportion) on the y-axis. The command:

hist(x,freq=FALSE)

would result in density being displayed on the y-axis. This scales the height of
the bars so that the sum of all heights totals one. This is useful, as it results in a
view that is independent of the dataset length – the scale of the y-axis would be the
same whether the vector x contained 10 or 10,000 observations.

Another important argument is breaks, which determines the size of the interval
on the x-axis (i.e. the bar width). Try the two commands:

hist(x,breaks=10)

hist(x,breaks=100)

Adjusting breaks can be useful when attempting to achieve an optimal representa-
tion. Note that, if frequency is plotted on the y-axis, changing the number of breaks
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can dramatically change the y-axis scale.

Not only does the hist function display a histogram, it also returns useful infor-
mation regarding the histogram construction. Assign the return value of the hist

function to the variable y using the command:

y = hist(x)

and look at the contents of the y variable. You will see that y now contains
potentially-useful data, such as the mid-points of the histogram bars, and the counts
(frequencies) and densities corresponding to each of the bars. These data can be
accessed using the ‘$’ symbol. For example, this information could be used to plot
points corresponding to the relative heights of the histogram bars in a new plot, e.g.
using the command:

plot(y$density∼y$mids)

A smooth curve approximating the histogram can be achieved using the density

function. In this case, a smooth curve can be added to the plot using the command:

lines(density(x))

Task 1:

1. Load the ‘boot’ library by typing: library(boot)

2. The dataset ‘paulsen’ within the ‘boot’ library contains data relating to neu-
rotransmission in Guinea Pig brains. The current (pico-amperes) flowing into
individual brain cells is stored in the variable ‘y’ (i.e. the vector containing
these data can be accessed by typing: paulsen$y). Display the distribution
of these data using a histogram, using the argument breaks=30, displaying
density on the y-axis (rather than frequency).

3. Use the lines and density functions to overplot a smoothed curve onto the
histogram that represents the empirical probability density function, coloured
red.

1.1 Measures of Location

It is often of interest to identify a statistic representing some notion of the average
value in a given dataset or distribution. Such an ‘average value’, which may also be
referred to as the central or typical value, is called a measure of central tendency or
location.

There are various measures of central tendency. Two of the most common are:

• mean (R function: mean) – the sum of all values divided by the number of
observations. Also called the arithmetic mean, and is closely related to the
expected value of a distribution.

• median (R function: median) – the middle value, such that half of the data
are above, and half are below the median.
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Recall the histogram created earlier in the tutorial:

x = rnorm(1000)

hist(x,freq=FALSE)

Vertical lines corresponding to the mean and median can added to the histogram
using the commands:

abline(v=mean(x),col="red")

abline(v=median(x),col="blue")

You will see that, in this case, the mean and median are very close to each other.
The lwd argument can be used to change the line thickness.

Whilst the mean is mathematically and computationally convenient, and pow-
erful for well-behaved symmetric data, it is highly sensitive to outliers and often
inappropriate for describing the ‘typical’ value from an asymmetric distribution. In
contrast, the median is a robust statistic, being insensitive to outliers and applicable
to asymmetric data.

To demonstrate this, type the command:

y = c(x,1000)

which creates a variable y that contains the same values as x, except for the in-
clusion of an outlier (1000). Now type the commands:

mean(x); mean(y)

median(x); median(y)

You will see that the mean is greatly affected by the inclusion of the outlier, whilst
the median is (almost) unaffected. This can be visualised using the sequence of
commands:

hist(x)

abline(v=mean(x),col="red")

abline(v=median(x),col="blue")

abline(v=mean(y),col="orange")

abline(v=median(y),col="green")

To illustrate the difference between the mean and median when the data are
asymmetric (i.e. the distribution is skewed), create a new variable:

z = x^2

Now plot the histogram of z, set the number of breaks to 50, and add vertical
lines corresponding to the mean and median of z, similarly to as above. You will
see that there is a large difference between the mean and median. Whilst the mean
is the ‘average value’, it is clearly not a typical value from this distribution, since
the vast majority of the data lie below the mean – this can be confirmed using the
following command:
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length(z[z<mean(z)])

Task 2:

1. The inbuilt dataset ‘rivers’ contains data relating to the lengths of 141 rivers
in North America. Display the distribution of these data using a histogram,
using the argument breaks=30, displaying density on the y-axis (rather than
frequency).

2. Use the lines and density functions to overplot a smoothed curve onto the
histogram that represents the empirical probability density function, coloured
red.

3. Draw vertical lines corresponding to the mean and median of the distribution,
coloured orange and blue, respectively.

4. What is the relative difference between the mean and median of the distribu-
tion. How much proportionally larger is the mean than the median?

1.2 Measures of Position

In addition to measures of central tendency, it is often useful to calculate statistics
regarding position within a distribution. Such measures include:

• minimum and maximum (R functions: min and max) – minimum and maxi-
mum values in an empirical distribution.

• quantiles (R function: quantile) – the nth quantile is the value such that
n% of the data/distribution lie below that value. The 25th, 50th and 75th

quantiles are also called the 4-quantiles, the 1st, 2nd and 3rd quartiles, or the
lower quartile, median and upper quartile. The 1st, 2nd, . . . , 99th quantiles are
also called the 100-quantiles, or percentiles.

Recall the histogram created earlier in the tutorial:

x = rnorm(1000)

hist(x,freq=FALSE)

By default, the R function quantile returns the minimum, lower quartile, median,
upper quartile and maximum values (see the prob argument for other quantiles).
These measures of position can be drawn onto the histogram using the command:

abline(v=quantile(x),col="red")

Note that all five values returned by the quantile function have been drawn as
red vertical lines.

Now recreate the variable z:

z=x^2
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For comparison with x, create a similar view for z (i.e. plot a histogram for z

and add vertical lines using the abline and quantiles functions). Note that the
distribution of z is asymmetric.

A simple intuitive view of such information can be achieved using a box plot (also
called a box-and-whisker plot). Create a box plot of x using the command:

boxplot(x)

The median is displayed as a thick black line; the first and third quartiles corre-
spond to the edges of the box; the ‘whisker’ lines extend out by approximately 1.5
times the difference between the first and third quartiles (or equal to the min/max
values); and any values outside the whiskers are identified using circles (these are
often called outliers, under the assumption that the data are Normal).

Create a box plot corresponding to z, and compare it with the box plot of x.

Another useful visual representation is the empirical cumulative distribution
function, which is the proportion of observations lower than the nth quantile (y-
axis) against the nth quantile (x-axis). This stepwise function may be plotted using:

plot(ecdf(x))

Similarly to above, vertical lines corresponding to quantiles of the distribution can
be added to the plot:

abline(v=quantile(x),col="red")

Note that the theoretical values of the cumulative distribution function of the stan-
dard Normal distribution can be achieved using the pnorm function. Consequently,
the commands:

a = seq(min(x),max(x),length.out=100)

lines(pnorm(a)∼a,col="blue")

result in the theoretical curve being added to the plot, coloured blue. This helps to
visualise the agreement between the randomly generated dataset x and the theoret-
ical standard Normal distribution.

Note that the above could have been achieved using a single command by util-
ising R’s “->” assignment operator:

lines(pnorm(seq(min(x),max(x),length.out=100)->a)∼a,col="blue")

A similar plot can be achieved corresponding to z, using the commands:

plot(ecdf(z))

abline(v=quantile(z),col="red")

lines(pchisq(seq(min(z),max(z),length.out=100)->a,1)∼a,col="blue")

which utilises knowledge that z follows a χ2
1 distribution (the reason for this will

become apparent later in the Statistics course).
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Another useful function is summary, which provides a summary of an R object.
For example, the command:

summary(x)

returns the mean of x in addition to the values returned by the quantile func-
tion. The summary function is incredibly versatile, providing contextual information
that depends on the class of the input object. For example, the command:

summary(hist(x))

returns information regarding the return values of the hist function, along with
information regarding the data returned by the particular function call.

Task 3:

1. Recall the ‘rivers’ dataset. Display the distribution of these data using a
histogram, using the argument breaks=30, displaying density on the y-axis.

2. Draw a vertical line corresponding to the median of the distribution, coloured
red.

3. Identify the 5th and 95th percentiles of the distribution, and draw vertical lines
corresponding to these values, coloured blue.

1.3 Measures of Dispersion

Measures of dispersion are also important statistics, which describe the overall
‘spread’ of the data/distribution. Such measures include:

• variance (R function: var) – average of the squared differences between the
observations and the sample mean.

• standard deviation (R function: sd) – square root of the sample variance.

• range (R function: range) – difference between the maximum and minimum.

• interquartile range (R function: IQR) – difference between the 1st and 3rd

quartiles.

Similarly to how the median is a robust statistic describing the central tendency,
the interquartile range is a robust measure of dispersion. However, the variance and
standard deviation are more often used for reasons of mathematical and computa-
tional convenience.

For Normally-distributed data, observations have approximately 95% chance of
lying within two standard deviations of the sample mean. Rephrased, since 95%
of observations have values between the 2.5% and 97.5% quantiles, this means that
the values of the 2.5% and 97.5% quantiles would be approximately two standard
deviations from the sample mean, assuming the data are approximately Normally
distributed.
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Task 4:

1. Display the histogram of the artificial standard Normal data: x = rnorm(1000)

using the argument breaks=30.

2. Calculate the two values that are two standard deviations from the sample
mean.

3. Calculate the quantiles that these two values correspond to (i.e. the proportion
of the distribution lower than these values). How close are these values to the
2.5% and 97.5% quantiles?

4. Repeat the calculations a few times using new datasets (i.e. recalculate x =

rnorm(1000) each run). How much do the results vary over a few runs?

2 Comparing the Distributions of Datasets

It is often useful to compare datasets or distributions, such as when:

• comparing the empirical distribution of observed data with a theoretical dis-
tribution;

• comparing the overall empirical distributions of two datasets (unpaired);

• comparing two datasets that are paired, i.e. each observation in one dataset
directly corresponds to an observation in the other. This is referred to as
bivariate data analysis, and will be considered in Section 3.

2.1 Comparing Empirical and Theoretical Distributions

In Section 1.2 we saw how empirical and theoretical distributions can be visually
compared by over-plotting their cumulative distribution functions (using ecdf and
pnorm, for Normal data).

Another useful visual tool for comparing distributions is the Q-Q plot (Quantile-
Quantile plot), which plots the quantiles from the empirical distribution against
their theoretical counterparts. If the empirical distribution is in agreement with the
theoretical distribution then all data points should lie on or close to the diagonal
line.

Continuing to use the variable x containing a vector of artificially-generated ran-
dom Normal variates, we can compare the empirical distribution of x against the
standard Normal distribution using the command:

qqnorm(x)

which creates a Normal Q-Q plot. To aid visualisation of (dis)agreement, the line
passing through the 1st and 3rd quartiles can be added to the Normal Q-Q plot using
the command:

qqline(x)

It should be evident that there is a strong agreement between the empirical and
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theoretical distributions in this case, particularly in the centre of the distribution,
with more noise being present near the edges.

In contrast, creating a Normal Q-Q plot corresponding to z (=x^2) should clearly
indicate that z is not Normally distributed. Given information that z should follow
a χ2

1 distribution, we can create a Q-Q plot for z using the following commands:

qqplot(z,qchisq(c(1:1000)/1001,1))

Here, we use the qchisq(c(1:1000)/1001,1) command to generate a list of 1000
quantiles from the χ2

1 distribution, against which to compare our dataset z.
Note that this procedure can also be used to plot the quantiles of two theoretical

distributions against each other. For example, the standard Normal and χ2
1 distri-

butions can be compared using the commands:

a=c(1:1000)/1001

qqplot(qnorm(a),qchisq(a,1))

Or, more elegantly, using one command:

qqplot(qnorm(c(1:1000)/1001->a),qchisq(a,1))

Task 5:

1. The inbuilt ‘faithful’ dataset contains data regarding the waiting time and
eruption duration of a geyser. Create a histogram of the eruption durations,
which are stored in the variable ‘eruptions’. What do you notice about this
distribution?

2. Create a Normal Q-Q plot corresponding to the eruption durations data, to
visually assess the Normality of the data. Add a Normal Q-Q line. Can the
data be considered to be Normally distributed?

3. Recreate the Normal Q-Q plot with Q-Q line using the transformed data:
abs(faithful$eruptions-3). Can the transformed data be considered to be
Normally distributed? Can you think of a good reason why such a transfor-
mation might be applied to this sort of dataset prior to analysis?

2.2 Comparing (Unpaired) Empirical Distributions

Recreate the variables x and z, as used earlier in the tutorial:

x=rnorm(1000)

z=x^2

The Q-Q plot can also be used to compare two empirical distributions. This can be
achieved using the command:

qqplot(x,z)
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In this case, it should be clear that the distributions of these datasets are not sim-
ilar. However, two datasets artificially generated by taking random numbers from
the standard Normal distribution should produce Q-Q plots that indicate similarity
of those distributions:

x = rnorm(1000)

y = rnorm(1000)

qqplot(x,y)

abline(a=0,b=1)

Here, the abline command draws a 45◦ line (i.e. intercept a=0, gradient b=1)
to aid visualisation.

In Section 1.2 we visualised the distribution of univariate data using box plots.
R allows multiple box plots to be plotted side-by-side, using the same axis scale, al-
lowing intuitive visual comparison of distributions. For example, type the command:

boxplot(list(x=x,y=y,z=z))

Here, we create a list with three entries (the three vectors containing the datasets),
informing the boxplot function that separate boxplots for these three datasets
should be plotted next to each other, using the same y-axis scale.

Note that assigning the datasets names within the list (i.e. setting x=x, y=y

and z=z) allows these names to be displayed as text on the x-axis – the simpler
command: boxplot(list(x,y,z)) would have worked, but the box plots would
have been labelled ‘1’, ‘2’ and ‘3’ rather than ‘x’, ‘y’ and ‘z’.

It should be clear that the two variables containing standard Normal data (x
and y) have similar distributions, whilst the other dataset (z) has a dramatically
different distribution.

Note that the above box plot can also be created by converting the data to two
vectors, where the second vector indicates the ‘factor’, e.g.:

a = c(x,y,z)

b = c(rep("x",length(x)),rep("y",length(y)),rep("z",length(z)))

boxplot(a∼b)

Task 6:

1. The inbuilt ‘PlantGrowth’ dataset contains results from an experiment to com-
pare plant yields obtained under a control and two different treatment condi-
tions. The plant yields are stored in the variable ‘weight’. Display a box plot
corresponding to these data.

2. Data regarding the treatments are contained in the variable ‘group’. Using a
single plotting command, display side-by-side box plots of the distribution of
weights for each of the three groups. Is there any visual evidence for differences
between the three treatment groups?
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Task 7:

1. The inbuilt ‘chickwts’ dataset contains the results of an experiment to measure
and compare the effectiveness of various feed supplements on the growth rate
of chickens. The chicken weights are stored in the variable ‘weight’. Display a
box plot corresponding to these data.

2. Data regarding the differing feed supplements are contained in the variable
‘feed’. Using a single plotting command, display side-by-side box plots of the
distribution of weights for each of the groups. Is there any visual evidence for
differences between the groups? Are there any feed supplements that seem to
result in particularly light or particularly heavy chickens?

Task 8:

1. The inbuilt ‘DNase’ dataset contains data obtained during development of an
ELISA assay for the recombinant protein DNase in rat serum. The dataset
contains columns pertaining to optical density at a given concentration, over
11 experimental runs. Display a box plot corresponding to the distribution of
the optical density.

2. Display side-by-side box plots of the distribution of the optical density over
all experimental runs, for each of the 8 concentrations. Does there appear to
be a relationship between optical density and concentration?

3 Bivariate/Multivariate Data Analysis

So far we have only considered the comparison of univariate datasets, i.e. when there
is no direct relationship between individual observations in the compared datasets.
However, it is often interest to identify whether there are any relationships between
paired variables within or between datasets. In the case where there are only two
variables, this is called bivariate data analysis ; where there are more than two vari-
ables it is called multivariate data analysis.

3.1 Bivariate Data Analysis – Investigating Correlations

The most common way of visualising the relationship between two paired variables
is by using a scatterplot, allowing visual identification of any relationships that may
exist between the two variables. For example, type the commands:

x = rnorm(1000)

y = rnorm(1000)

plot(y∼x)

The fact that there is no relationship between these two variates is clarified by
the lack of any visually observable correlation in the plot. Now type the commands:

x = rnorm(1000)

z = x + rnorm(1000)

plot(z∼x)
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Now, logically there should be a positive linear relationship between z and x, given
that z is explicitly dependent on x. This assertion can be visually confirmed by
looking at the plot of z against x, which clearly depicts a positive linear dependency.

The Pearson product-moment correlation coefficient, or simply the correlation,
denoted by r, is a measure of the linear dependency between two variables. The cor-
relation is bounded by [−1, 1], with positive values indicating a positive correlation,
negative values indicating a negative correlation, and values close to zero indicating
little/no correlation. Plots that demonstrate a strong positive correlation tend to
have many data points in the upper right and lower left quadrants, and few data
points in the upper left and lower right quadrants (and the converse is true for plots
demonstrating a strong negative correlation).

The correlation between two variables can be achieved using the cor function.
Looking at the correlation between x and y, and x and z, using the commands:

cor(x,y)

cor(x,z)

we can identify that there is no correlation between x and y, whilst x and z are
positive correlated. Consequently, we can use the Pearson correlation r to quanti-
tatively distinguish between correlated and uncorrelated variables, and distinguish
between degrees of correlation. Importantly, such quantification does not rely on
visual interpretation, which can be subjective.

However, it is important to remember that the Pearson correlation coefficient is
only well-suited to the identification/quantification of linear relationships. In cases
where there is a non-linear relationship between variables, a non-parameteric cor-
relation coefficient, such as the Spearman rank correlation coefficient, may be more
suitable. The Spearman correlation coefficient is defined as the Pearson correlation
coefficient of the variables after converting them to ranks. This essentially means
that the Spearman coefficient rewards a monotonic relationship, independent of lin-
earity, at the expense of power. To illustrate this, consider the following example:

x = rnorm(1000)

y = exp(x)

plot(y∼x)

cor(x,y)

cor(x,y,method="spearman")

Note that the spearman correlation is equal to 1, whilst the default (Pearson) correla-
tion is considerably less than 1 (for a more extreme example consider the case where
y = exp(exp(x))). Consequently, it is always important to consider the nature of
the data when deciding on appropriate statistics from which to draw conclusions.

Relationships between variables will be further discussed later in the Statistics
course as part of the Linear Regression topic.

Task 9:

1. Load the ‘boot’ library by typing: library(boot)

2. The dataset ‘calcium’ within the ‘boot’ library contains data relating to an
experiment for the biochemical analysis of intracellular storage and transport
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of calcium across plasma membrane. The dataset records the calcium uptake
against the time that the cells were suspended in solution. Create a scatterplot
of calcium uptake against time.

3. Calculate the (Pearson) correlation between calcium uptake and time.

4. Calculate the Spearman correlation coefficient between calcium uptake and
time. Is there a large difference between the Pearson and Spearman correlation
coefficients? Can you explain any difference (or lack of difference) between
them?

Task 10:

1. Load the ‘boot’ library by typing: library(boot)

2. The dataset ‘survival’ within the ‘boot’ library contains data relating to the
survival percentages of batches of rats who were given varying doses of ra-
diation. The dataset records the survival rate (as a percentage) against the
radiation dose. Create a scatterplot of survival rate against dose.

3. Calculate the (Pearson) correlation between survival rate and dose.

4. Calculate the Spearman correlation coefficient between survival rate and dose.
Is there a large difference between the Pearson and Spearman correlation coef-
ficients? Can you explain any difference (or lack of difference) between them?

5. Apply the transformation: f(x) = log(1/x) to the survival rate field. This can
be achieved by creating a new variable: a = log(1/survival$surv). Create
a scatterplot of the transformed survival rate (a) against dose.

6. Recalculate the Pearson and Spearman correlation coefficients, this time be-
tween the transformed survival rate (a) against dose. What is the difference
between the new and old Pearson correlation coefficients? What is the dif-
ference between the new and old Spearman correlation coefficients? Can you
explain the difference (or lack of difference) in the changes in these statistics?

3.2 Simple Multivariate Data Analysis

Datasets often contain more than two paired variables. From the point of view of
visual exploratory data analysis, the difficulty with such cases is that the relation-
ship between more than two variables cannot be easily represented using a simple
2-dimensional plot. Furthermore, variables may be continuous (e.g. floating point
responses), discrete responses (e.g. integer or boolean) or controlled factors – the
nature of the dataset determines how it should be analysed.

If a dataset (a ‘data.frame’) contains n > 2 variables/columns then the versa-
tile R function plot will by default plot an n × n array of pairwise scatterplots
corresponding to all possible variable-pair combinations, which can be useful for
preliminary exploratory data analysis.

Consider the inbuilt dataset ‘iris’, which contains measurements of the sepal and
petal length and width of 50 flowers from each of 3 species of iris. The command:

plot(iris)
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creates a 5 × 5 array of scatterplots of the 5 variables (4 responses and 1 factor). A
glance at this plot reveals which variables are most correlated (e.g. Petal.Width and
Petal.Length), which display obvious clustering (e.g. Petal.Width and Petal.Length),
and which factors are responsible for such clustering (the setosa species is clearly
distinct from the versicolor and virginica species).

We might then choose to display multiple box plots allowing visualisation of the
distributions of the four response variables at each of the Species levels – multiple
side-by-side box plots can be useful for visually investigating the affect of different
factors (independent variables whose values are discrete and can be categorised).
This can be done using the sequence of commands:

quartz(width=7,height=7)

par(mfrow=c(2,2))

boxplot(iris$Petal.Length∼iris$Species,main="Petal.Length")

boxplot(iris$Petal.Width∼iris$Species,main="Petal.Width")

boxplot(iris$Sepal.Length∼iris$Species,main="Sepal.Length")

boxplot(iris$Sepal.Width∼iris$Species,main="Sepal.Width")

Here, the quartz(width=7,height=7) command opens a new graphics device win-
dow with the specified size in inches (availability of quartz may depend on the
system – if your system doesn’t support quartz then you can use the x11 function
as an alternative). The par(mfrow=c(2,2)) command specifies for the graphics
window to be split into a 2× 2 array of subfigures, allowing four separate figures to
be simultaneously viewed.

Looking at the four box plots, it is clear that Petal.Length and Petal.Width are
able to distinguish between setosa and the other two species, having much shorter
Petal.Length and Petal.Width values. Perhaps interestingly, the Sepal.Width of se-
tosa appears to be noticeably larger than for the other two species, on average.

If provided with a data frame containing n numerical columns, the cor function
will return an n × n matrix containing the pairwise correlations corresponding to
each variable-pair combination. In this case, the command:

cor(iris[,1:4])

returns the 4×4 correlation matrix describing the pairwise correlations between the
response variables. This agrees with the previous assertion that Petal.Length and
Petal.Width are highly correlated, and also indicates the correlation of Petal.Length
and Sepal.Length. Furthermore, Sepal.Width is recorded as being negatively corre-
lated with Petal.Length and Petal.Width, and Sepal.Length and Sepal.Width appear
relatively uncorrelated (and negatively correlated, if at all).

We will now consider an example using the ‘poisons’ dataset in the ‘boot’ library.
If you haven’t done so already, load the ‘boot’ library by typing:

library(boot)

The ‘poisons’ dataset contains data regarding animal survival times after been poi-
soned with one of three poisons, and treated with one of four treatments. The
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command:

boxplot(poisons$time∼poisons$poison)

produces a multiple box plot displaying the distributions of survival times corre-
sponding to each of the three poisons. It is visually evident that poison 3 systemat-
ically results in the shorter survival times, whilst poison 1 seems to result in longer
survival times, on average. In an attempt to further explore poison 1, we can display
box plots corresponding to the four treatments given poison 1:

boxplot(poisons$time[poisons$poison==1->a]∼poisons$treat[a])

We can see that, for poison 1, treatment A results in the shortest survival times,
whilst treatment B results in the longest survival times.

Expanding our attention to also include poisons 2 and 3, we can display box
plots corresponding to the four treatments, for each of the three poisons:

colour = c(rep("red",4),rep("blue",4),rep("orange",4))

boxplot(poisons$time∼poisons$treat+poisons$poison,col=colour)

Here, we specify the sum: poisons$treat+poisons$poison as the factor, which
automatically expands to all possible pairwise combinations (=12 levels in this case).
We also colour the box plots red, blue and orange, corresponding to poisons 1, 2
and 3, respectively, aiding visual clarity. Visual inspection of the resulting box plots
confirms that the behaviour observed for poison 1 holds for poisons 2 and 3 also
– given a particular poison, treatment A results in systematically shorter survival
times, whilst treatment B results in systematically longer survival times.

We may now be interested to know whether, given a particular treatment, poison
3 always results in systematically lower survival times. To answer this visually, we
can reorder and recolour the box plots:

colour = c(rep("red",3),rep("blue",3),rep("orange",3),rep("green",3))

boxplot(poisons$time∼poisons$poison+poisons$treat,col=colour)

making it easy to conclude that poison 3 does always result in systematically lower
survival times, given a particular treatment.

Task 11:

1. Recall the example that focussed on the ‘iris’ dataset. Using this dataset,
calculate the three separate correlation matrices of the four response variables,
which correspond to the three levels in the Species factor.

2. Is the previous assertion that Petal.Length is highly positively correlated with
Petal.Width justified?

3. Is the previous assertion that Petal.Length is highly positively correlated with
Sepal.Length justified?

4. Is the previous assertion that Petal.Length and Petal.Width are negatively
correlated with Sepal.Width justified?
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5. Is the previous assertion that Sepal.Length and Sepal.Width are uncorrelated
(but negatively correlated, if at all) justified?

6. What conclusions can you draw from this exercise?

Task 12:

1. The inbuilt dataset ‘CO2’ contains data from an experiment on the cold tol-
erance of the grass species Echinochloa crus-galli. The dataset records the
carbon dioxide uptake rates (response), ambient carbon dioxide concentration
(independent variable), and three factors (Plant, Type and Treatment). Cre-
ate a multiple box plot showing the distribution of CO2 uptake rates for the
two types ‘Quebec’ and ‘Mississippi’, side-by-side. Does it appear that there
is a difference between the CO2 uptake rates for plants originating from the
different regions?

2. Create a multiple box plot showing the distribution of CO2 uptake rates for
the twelve plants, side-by-side. Given knowledge that the first six plants orig-
inate from Quebec, and the latter six from Mississippi, colour the box plots
corresponding to Quebec red, and those corresponding to Mississippi in blue.

3. Create a multiple box plot showing the distribution of CO2 uptake rates for
the seven concentrations, side-by-side. How does ambient CO2 concentration
appear to affect CO2 uptake?

4. Create a multiple box plot showing the distribution of CO2 uptake rates for
the seven concentrations, for each of the two types, side-by-side (14 box plots
total). It would seem that CO2 uptake is dependent on concentration – does
this information reinforce or change your previous assertions regarding the dif-
ference between the CO2 uptake rates for plants originating from the different
regions?

5. Create a multiple box plot showing the distribution of CO2 uptake rates for
the two treatments ‘nonchilled’ and ‘chilled’, side-by-side. Does it appear
that there is a difference between the CO2 uptake rates for plants exposed to
different treatments?

6. Create a multiple box plot showing the distribution of CO2 uptake rates for
the two treatments, for each of the two types, side-by-side (4 box plots total).
Colour the box plots so that those corresponding to the ‘nonchilled’ treat-
ment are coloured red, and those corresponding to the ‘chilled’ treatment are
coloured blue.

7. Create a multiple box plot showing the distribution of CO2 uptake rates for
the two treatments, for each of the two types, for each of the seven concentra-
tions, side-by-side (28 box plots total). Colour the box plots so that those cor-
responding to nonchilled:Quebec, chilled:Quebec, nonchilled:Mississippi and
chilled:Mississippi are coloured red, blue, orange and green, respectively. Ac-
cording to visual inspection, which factor seems to be more inhibitive for CO2
uptake: Type, Treatment or Plant?


