Tutorial 3: Probability Theory, Random Variables and

 Distributions - Answers SheetRob Nicholls - nicholls@mrc-lmb.cam.ac.uk

MRC LMB Statistics Course 2014

Task 1

1.

$$
P(A)=1 / 4
$$

2.

$$
P(B)=6 / 13
$$

3.

$$
P(A \cap B)=3 / 26
$$

4.

$$
P(A \cap B) \neq 0
$$

so A and B are not mutually exclusive.
5.

$$
P(A) P(B)=1 / 4 \times 6 / 13=3 / 26=P(A \cap B)
$$

so A and B are independent.
6.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=1 / 4+6 / 13-3 / 26=31 / 52
$$

7.

$$
\begin{aligned}
P\left(A \cap B^{\prime}\right) & =P(A \cap(\Omega \backslash B)) \\
& =P((A \cap \Omega) \backslash(A \cap B)) \\
& =P(A \backslash(A \cap B)) \\
& =P(A)-P(A \cap B)) \\
& =1 / 4-3 / 26 \\
& =7 / 52
\end{aligned}
$$

Task 2

1.

$$
P(A \cap B)==0
$$

so:

$$
\begin{aligned}
x=P(B) & =P(A \cup B)-P(A)+P(A \cap B) \\
& =0.8-0.4+0 \\
& =0.4
\end{aligned}
$$

2.

From Task 1.7:

$$
\begin{aligned}
P(A \backslash B) & =P\left(A \cap B^{\prime}\right) \\
& =P(A)-P(A \cap B)
\end{aligned}
$$

so:

$$
\begin{aligned}
x=P(B) & =P(A \cup B)-P(A)+P(A \cap B) \\
& =P(A \cup B)-P(A \backslash B) \\
& =0.8-0.2 \\
& =0.6
\end{aligned}
$$

3.

$$
\begin{aligned}
P\left(\left(A \cap B^{\prime}\right)^{\prime}\right) & =1-P\left(A \cap B^{\prime}\right) \\
& =1-P(A \backslash B)
\end{aligned}
$$

so:

$$
\begin{aligned}
P(A \backslash B) & =1-P\left(\left(A \cap B^{\prime}\right)^{\prime}\right) \\
& =1-0.8 \\
& =0.2
\end{aligned}
$$

And thus the problem is reduced to that of Task 2.2 , so $x=0.6$.
4.

From Task 1.7:

$$
\begin{aligned}
P\left(A^{\prime} \cup B\right) & =P\left(A^{\prime}\right)+P(B)-P\left(A^{\prime} \cap B\right) \\
& =1-P(A)+P(B)-(P(B)-P(A \cap B)) \\
& =1-P(A)+P(A \cap B)
\end{aligned}
$$

so:

$$
\begin{aligned}
x=P(B) & =P(A \cup B)-P(A)+P(A \cap B) \\
& =P(A \cup B)-P(A)+\left(P\left(A^{\prime} \cup B\right)-1+P(A)\right) \\
& =P(A \cup B)+P\left(A^{\prime} \cup B\right)-1 \\
& =0.8+0.8-1 \\
& =0.6
\end{aligned}
$$

5.

A and B are independent, so:

$$
\begin{aligned}
P(A) P(B) & =P(A \cap B) \\
& =P(A)+P(B)-P(A \cup B)
\end{aligned}
$$

Which rearranges to:

$$
\begin{aligned}
& P(B)(P(A)-1)=P(A)-P(A \cup B) \\
& \begin{aligned}
P(B) & =\frac{P(A)-P(A \cup B)}{P(A)-1} \\
& =\frac{0.4-0.8}{0.4-1} \\
& =\frac{-0.4}{-0.6} \\
& =2 / 3
\end{aligned}
\end{aligned}
$$

6.

$$
\begin{aligned}
P\left(\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)\right) & =P\left(A \cap B^{\prime}\right)+P\left(B \cap A^{\prime}\right) \\
& =(P(A)-P(A \cap B))+(P(B)-P(A \cap B)) \\
& =P(A)+P(B)-2 P(A \cap B) \\
& =P(A)+P(B)-2 P(A) P(B) \\
& =0.4+\frac{2}{3}-\left(2 \times 0.4 \times \frac{2}{3}\right) \\
& =8 / 15
\end{aligned}
$$

Task 3

$$
\begin{aligned}
P(A \cap B) & =P(A) P(B) \\
P(A) & =3 P(B)
\end{aligned}
$$

So:

$$
\begin{aligned}
0.7=P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =P(A)+P(B)-P(A) P(B) \\
& =3 P(B)+P(B)-3 P(B)^{2} \\
& =4 P(B)-3 P(B)^{2} \\
& =4 x-3 x^{2}
\end{aligned}
$$

Rearranging this yields a quadratic equation, which can be solved for x :

$$
\begin{align*}
3 x^{2}-4 x+0.7 & =0 \\
x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-(4 \times 3 \times 0.7)}}{2 \times 3} \\
& =\frac{4 \pm \sqrt{7.6}}{6} \\
& =0.207 \quad(3 \mathrm{sf}) \tag{3sf}
\end{align*}
$$

Note that there is only one solution to the problem, as x is only defined on $[0,1]$ the solution $x=1.13$ (3sf) does not exist, as probabilities cannot be greater than 1 .

Task 4

1.

From the partition theorem:

$$
P(r e d)=\sum_{i} P\left(r e d \cap B_{i}\right)
$$

From the definition of conditional probability:

$$
P\left(r e d \cap B_{i}\right)=P\left(r e d \mid B_{i}\right) P\left(B_{i}\right)
$$

Combining these:

$$
\begin{aligned}
P(\text { red }) & =\sum_{i} P\left(\text { red } \mid B_{i}\right) P\left(B_{i}\right) \\
& =P\left(\text { red } \mid B_{1}\right) P\left(B_{1}\right)+P\left(\text { red } \mid B_{2}\right) P\left(B_{2}\right) \\
& =2 / 5 \times 1 / 3+2 / 3 \times 2 / 3 \\
& =2 / 15+4 / 9 \\
& =0.578 \quad(3 \mathrm{sf})
\end{aligned}
$$

2.

From Bayes' Theorem:

$$
\begin{aligned}
P\left(B_{1} \mid \text { red }\right) & =\frac{P\left(\text { red } \mid B_{1}\right) P\left(B_{1}\right)}{P(\text { red })} \\
& =\frac{2 / 5 \times 1 / 3}{0.578} \\
& =0.231 \quad(3 \mathrm{sf})
\end{aligned}
$$

3.

$$
\begin{align*}
P\left(B_{2} \mid \text { red }\right) & =1-P\left(B_{1} \mid \text { red }\right) \\
& =1-0.231 \\
& =0.769 \tag{3sf}
\end{align*}
$$

Task 5

1.

$$
\Omega=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H, T T T\}
$$

2.

$$
A=\{H H T, H T H, T H H\}
$$

3.

$$
P(A)=3 / 8
$$

4.

$$
P(A)=3 / 8
$$

5.

choose $(20,10)$
Answer: 184756
6.
dbinom (10, 20, 0.5)
Answer: 0.176 (3sf)

Task 6

1.

$$
\begin{gathered}
X \sim \operatorname{Bin}(10,0.5) \\
P(X \geq 8)=1-P(X<8) \\
=1-P(X \leq 7)
\end{gathered}
$$

1-pbinom($7,10,0.8$)
Answer: 0.678 (3sf)
2.

$$
\begin{gathered}
X \sim \operatorname{Bin}(20,0.5) \\
\begin{aligned}
P(X \geq 16) & =1-P(X<16) \\
& =1-P(X \leq 15)
\end{aligned}
\end{gathered}
$$

1-pbinom(15,20,0.8)
Answer: 0.630 (3sf)

Task 7

$$
\begin{gathered}
X \sim \operatorname{Bin}(95,0.514) \\
\begin{aligned}
P(X \geq 60) & =1-P(X<60) \\
& =1-P(X \leq 59)
\end{aligned}
\end{gathered}
$$

1-pbinom(59, $95,0.514)$
Answer: 0.0139 (3sf)
Given the available information, we determine that that there is only a 1.39% chance of no less than 60 boys being born in a given month. Consequently, we conclude that this observation is extraordinary.

Task 8

1.

$\mathrm{x}=0: 10$
$\mathrm{y}=\mathrm{dbinom}(\mathrm{x}, 10,0.5)$
plot ($\mathrm{y} \sim \mathrm{x}, \mathrm{pch}=19,1 \mathrm{as}=1$)
for(i in 1:length(x)) \{lines(c(1,1)*x[i],c(0,y[i]))\}
2.
plot_binom $=$ function($n, p)\{$
$\mathrm{x}=0$: n
$y=\operatorname{dbinom}(x, n, p)$
plot ($\mathrm{y} \sim \mathrm{x}, \mathrm{pch}=19,1 \mathrm{las}=1$)
for(i in 1:length(x))\{lines(c(1,1)*x[i],c(0,y[i]))\}
\}

