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Task 1

1.

shapiro.test(CO2$uptake[CO2$Plant=="Mc1"])

Answer : p-value = 0.3768. It is not unreasonable to assume that the CO2 up-
take for Mc1 is Normally distributed.

shapiro.test(CO2$uptake[CO2$Plant=="Mc2"])

Answer : p-value = 0.1543. It is not unreasonable to assume that the CO2 up-
take for Mc1 is Normally distributed.

shapiro.test(CO2$uptake[CO2$Plant=="Mc3"])

Answer : p-value = 0.001716. Reject the hypothesis that CO2 uptake is Normally
distributed for Mc3.

2.

install.packages("outliers")

library(outliers)

grubbs.test(CO2$uptake[CO2$Plant=="Mc1"])

Answer : p-value = 0.1038. Grubb’s test does not detect any outliers.

grubbs.test(CO2$uptake[CO2$Plant=="Mc2"])

Answer : p-value = 0.02225. Grubb’s test detects an outlier (10.5).

dixon.test(CO2$uptake[CO2$Plant=="Mc3"])

Answer : p-value ≈ 0. Dixon’s test detects an outlier (10.6).
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Task 2

1.

hist(LakeHuron)

qqnorm(LakeHuron)

2.

shapiro.test(LakeHuron)

Answer : p-value = 0.3271. It is not unreasonable to assume that the data are
Normally distributed.

3.

t.test(LakeHuron,mu=578)

Answer : p-value ≈ 0. We can reject the hypothesis that µ = 578.

4.

95% confidence interval: [578.7398, 579.2684].

5.

The only integer value that could reasonably equal the mean is 579.

Task 3

1.

hist(Nile)

qqnorm(Nile)

2.

shapiro.test(Nile)

Answer : p-value = 0.04072. Reject the hypothesis that the data are Normally
distributed.

3.

Choosing to use either the sign test or the Wilcoxon test is acceptable. Choosing to
use the sign test over the Wilcoxon test on the grounds of potential asymmetry of
the distribution is a particularly acceptable choice. However, for the sake of gath-
ering maximal information, it may be best to consider the results of both tests:

binom.test(sum(Nile>850),length(Nile))

wilcox.test(Nile,mu=850)

Answer : p-value = 0.1933 from the sign test, and p-value = 0.0008844 from the
Wilcoxon test. The data are not entirely symmetric, so the assumptions for the
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Wilcoxon test may not be valid. However, the lack of significance achieved by the
sign test may be due to lack of power. Consequently, it is not clear whether or
not the hypothesis that the median is 850 should be rejected. If type II errors are
deemed ‘worse’ than type I errors, then it may be prudent to not reject the hypoth-
esis in this case, due to the ambiguity, but nevertheless acknowledge the fact that
evidence has been gained that may support rejection of the hypothesis. As such,
further testing would be required in order to reach a solid conclusion.

binom.test(sum(Nile>950),length(Nile))

wilcox.test(Nile,mu=950)

Answer : p-value = 0.0352 from the sign test, and p-value = 0.05503 from the
Wilcoxon test. The sign test rejects the hypothesis that the median is 950, whilst
the Wilcoxon test does not. On the basis that the sign test makes reasonable as-
sumptions, and achieves significance despite low power, it is reasonable to reject the
hypothesis in this case. Indeed, the lack of significance achieved by the Wilcoxon
test may be due to incorrect assumptions regarding symmetry of the data.

4.

t.test(Nile,mu=880)

Answer : p-value = 0.0221.

wilcox.test(Nile,mu=880)

Answer : p-value = 0.08039.

The hypothesis that µ = 880 is rejected when using a t-test, but not rejected when
using the Wilcoxon test.

5.

An argument could be made for using either the t-test or Wilcoxon test in this case.
On the one hand, we have established that the data cannot be considered Nor-

mally distributed, using the Shapiro-Wilk Normality test. Consequently, the as-
sumptions for using the t-test to test for differences in the mean may be violated,
and thus we should use the Wilcoxon signed-rank test in order to test for differences
in the median.

On the other hand, note that the dataset comprises many observations. Conse-
quently, whilst the data may not be Normally distributed, it may be reasonable to
assume that the sampling distribution of the mean (x̄) is Normally distributed (as a
direct consequence of the Central Limit Theorem, since the number of observations
is large and the data are not too non-Normal). Consequently, the assumptions made
by the t-test may be justified.

Ultimately, in such a case the decision regarding whether or not the hypothesis
should be rejected should depend on context. Specifically, the consequences of a type
I versus a type II error should be considered. If incorrect rejection of the hypothesis
(i.e. type I error) would have catastrophic consequences then the default would be
to decide that the results are inconclusive, thus fail to reject the hypothesis – this
would amount to using the Wilcoxon test in this case. By default, this is considered
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more prudent than choosing to reject a hypothesis in the absence of unambiguously
conclusive evidence (i.e. significance achieved from a test performed with reason-
able assumptions). Of course, failing to reject a hypothesis always leaves room for
further investigation (e.g. collecting more data or performing other statistical tests)
whereas rejecting a hypothesis essentially leaves little room for subsequent investi-
gation (since hypothesis rejection essentially amounts to statistical contradiction).

In summary, an argument could be made for using either the t-test or Wilcoxon
test in this case. However, it might be more prudent to use the Wilcoxon test, failing
to reject the hypothesis, but at the same time acknowledging that this conclusion
is borderline/inconclusive. Consequently, further investigation would be required in
order to draw more solid conclusions.

Task 4

1.

hist(CO2$uptake)

qqnorm(CO2$uptake)

2.

shapiro.test(CO2$uptake)

Answer : p-value = 0.0007908. Reject the hypothesis that the data are Normally
distributed.

3.

x = CO2[CO2$conc<300,]

boxplot(x$uptake∼x$Treatment)

for(i in levels(x$Treatment)){
print(shapiro.test(x$uptake[x$Treatment==i]))

}

Answer : p-value = 0.4138 for nonchilled; p-value = 0.07255 for chilled. Cannot
reject the hypothesis that the data are Normally distributed for either treatment.

var.test(x$uptake∼x$Treatment)

Answer : p-value = 0.8637. Cannot reject the hypothesis that the variances are
equal.

t.test(x$uptake∼x$Treatment,var.equal=TRUE,alternative="greater")

Answer : p-value = 0.05681. Cannot reject the hypothesis. Therefore, cannot
conclude that the average CO2 uptake for nonchilled plants is significantly greater
than for chilled plants, for concentrations less than 300mL/L.
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4.

x = CO2[CO2$conc>300,]

boxplot(x$uptake∼x$Treatment)

for(i in levels(x$Treatment)){
print(shapiro.test(x$uptake[x$Treatment==i]))

}

Answer : p-value = 0.04062 for nonchilled; p-value = 0.003608 for chilled. Reject
the hypothesis that the data are Normally distributed for both treatments (note
that we cannot assume that both distributions are Normal, even when applying the
Bonferroni correction).

wilcox.test(x$uptake∼x$Treatment,alternative="greater")

Answer : p-value = 0.006669. Reject the hypothesis. Therefore, conclude that
the average CO2 uptake for nonchilled plants is significantly greater than for chilled
plants, for concentrations greater than 300mL/L.

5.

x = CO2[CO2$conc>400,]

boxplot(x$uptake∼x$Type)

for(i in levels(x$Type)){
print(shapiro.test(x$uptake[x$Type==i]))

}

Answer : p-value = 0.9025 for Quebec; p-value = 0.1593 for Mississippi. Can-
not reject the hypothesis that the data are Normally distributed for either type.

var.test(x$uptake∼x$Type)

Answer : p-value = 0.002558. Reject the hypothesis that the variances are equal.

t.test(x$uptake∼x$Type)

Answer : p-value ≈ 0. Reject the hypothesis. Therefore, conclude that the average
CO2 uptake is significantly different in the plants from Quebec and Mississippi, for
concentrations greater than 400mL/L.

6.

The conclusions that:

1. the average CO2 uptake for nonchilled plants is significantly greater than for
chilled plants, for concentrations greater than 300mL/L, and

2. the average CO2 uptake is significantly different in the plants from Quebec
and Mississippi, for concentrations greater than 400mL/L,
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are believable. However, the conclusion that the average CO2 uptake for nonchilled
plants cannot be considered significantly greater than for chilled plants, for con-
centrations less than 300mL/L, is less convincing. This result is inconclusive, and
should be further investigated by (1) obtaining more data; or (2) finding other
methods with which to test the hypothesis.

Task 5

1.

x = CO2[CO2$conc>=675,]

boxplot(x$uptake∼x$conc)

From looking at the box plots, it does not appear that the distributions are very
dissimilar.

2.

for(i in levels(factor(x$conc))){
print(shapiro.test(x$uptake[x$conc==i]))

}

Answer : p-value = 0.4104 for 675 mL/L; p-value = 0.2211 for 1000 mL/L. Cannot
reject the hypothesis that the data are Normally distributed for either concentration.

3.

var.test(x$uptake∼x$conc)

Answer : p-value = 0.7756. Cannot reject the hypothesis that the variances are
equal.

4.

t.test(x$uptake∼x$conc,var.equal=TRUE,alternative="less")

Answer : p-value = 0.3462. Cannot reject the hypothesis. Therefore, cannot con-
clude that CO2 uptake is substantially larger for concentrations of 1000 mL/L than
for 675 mL/L.

5.

t.test(x$uptake∼x$conc,paired=TRUE,alternative="less")

Answer : p-value = 0.002496. Reject the hypothesis. Therefore, can conclude
that CO2 uptake is substantially larger for concentrations of 1000 mL/L than for
675 mL/L.


