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1 Introduction

It is often the case that we want to infer information using collected data, such as
whether two samples can be considered to be from the same population, whether
one sample has systematically larger values than another, or whether samples can be
considered to be correlated. Such hypotheses may be formally tested using inferen-
tial statistics, allowing conclusions to be drawn, allowing the potential for objective
decision making in the presence of a stochastic element.

The general idea is to predict the likelihood of an event associated with a given
statement (i.e. the hypothesis) occurring by chance, given the observed data and
available information. If it is determined that the event is highly unlikely to ran-
domly occur, then the hypothesis may be rejected, concluding that it is unlikely for
the hypothesis to be correct. Conversely, if it is determined that there is a reason-
able chance that the event may randomly occur, then it is concluded that it is not
possible to prove nor disprove the hypothesis, using the particular test performed,
given the observed data and available information. Conceptually, this is similar to
saying that the hypothesis is ‘innocent until proven guilty’. Such hypothesis testing
is at the core of applied statistics and data analysis.

The ability to draw valid conclusions from such testing is subject to certain
assumptions, the most simple/universal of which being the base assumptions that
the observed data are ordinal, and are typical of the populations they represent.
However, assumptions are often also made about the underlying distribution of the
data. Different statistical tests require different assumptions to be satisfied in order
to be validly used. Tests that make fewer assumptions about the nature of the data
are inherently applicable to wider classes of problems, whilst often suffering from
reduced Statistical Power (i.e. reduced ability to correctly detect thus reject the
hypothesis in cases when the hypothesis is truly incorrect).
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Statistical tests may be separated into two classes: parametric tests and non-
parametric tests. Parametric tests make assumptions about the data’s underlying
probability distribution, essentially making assumptions about the parameters that
define the distribution (e.g. assuming that the data are Normally distributed). In
contrast, non-parametric tests make no assumptions about the specific functional
form of the data’s distribution. As such, non-parametric tests generally have re-
duced power but wider applicability in comparison with parametric tests.

In practice, we consider the Null Hypothesis – this term is used to refer to any
hypothesis that we are interested in disproving (or, more correctly, accumulating
evidence for rejection). The converse is referred to as the Alternative Hypothesis.
These are written:

H0 : statement is true

H1 : statement is not true

By convention, H0 denotes the null hypothesis and H1 denotes the alternative hy-
pothesis.

For example, if we wanted to test the hypothesis that a coin is a fair (i.e. the
coin lands on heads or tails with equal probability) then we could consider:

H0 : p = 0.5

H1 : p 6= 0.5

where p is the probability of the coin landing on heads. This could be tested by
repeatedly tossing the coin, recording the number of times that the coin landed on
heads, and testing H0 using the Binomial distribution. This would be a one-sample
test.

For comparison, a two-sample test might be used if we wanted to test the hy-
pothesis that a two coins are equally fair/unfair (i.e. both coins land on heads with
equal probability), in which case we could consider:

H0 : p1 = p2

H1 : p1 6= p2

where p1 and p2 are the probabilities of coins 1 and 2 landing on heads, respectively.
In this case, we could test the null hypothesis by repeatedly tossing both coins,
recording the number of times that each coin landed on heads, and obtaining the
probability that both values come from Binomial distributions with equal success
probability p = p1 = p2, given the numbers of trials n1 and n2, respectively.

Whether or not the null hypothesis is rejected depends on the statistical signif-
icance of the test, given by P (H0), commonly referred to as a p-value. A result is
considered significant if it has been predicted to be highly unlikely to have occurred
randomly by chance, given some threshold level. This threshold, often denoted α,
is called the significance level. The significance level is commonly set to α = 0.05,
which represents the threshold at which there is only 5% probability that the null
hypothesis is correct. If a p-value is found to be less than this value, then the result
would be considered statistically significant. However, note that different signifi-
cance levels may be selected depending on the nature of the application (e.g. a
lower α-level may be selected if the incorrect rejection of a hypothesis would lead to
human fatalities).
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The significance level α is equal to the rate of false positive (type I) errors, called
the size of the test. The rate of false negative (type II) errors is denoted β.

α = P (reject H0|H0 is correct)

β = P (do not reject H0|H0 is incorrect)

The size of a test (α) may be controlled by adjusting the significance level. The
power of a test is equal to 1− β, and is determined by the nature of the particular
statistical test used to test the null hypothesis. Given that non-parametric tests tend
to have lower power than parametric tests, non-parametric tests will have a greater
tendency to fail to reject the null hypothesis in cases where the null hypothesis is
actually incorrect.

H0 is correct H0 is incorrect
Reject null hypothesis false positive true positive

type I error (α)
Fail to reject null hypothesis true negative false negative

type II error (β)

It should be noted that there are two types of tests – one-tailed and two-tailed
tests – which correspond to two different ways of computing the significance level (p-
value). A two-tailed test considers any values that are extremes of the distribution
to be of interest for the purposes of testing the hypothesis, irrespective of whether
those values are particularly large or small. In contrast, a one-tailed test is directed,
being interested in detecting extreme outliers that are either particularly large or
particularly small, but not both.

For example, suppose there are two classes of students that sit a particular exam.
A random selection of n students is selected from each of the two classes – these
samples are to be used to test hypotheses regarding differences in the performance of
each class. A two-tailed test might be used to test the hypothesis that both classes
performed equally well in the exam. However, a one-tailed test might be used to
test the hypothesis that class 1 performed better than class 2 in the exam.

Acknowledging whether a test is one-tailed or two-tailed is important in deter-
mining the probability required to achieve a given level of significance. For example,
suppose the outcome of a statistical test is P (X ≤ x) = 0.04. If the hypothesis test is
one-sided (i.e. testing whether the random variable X is no greater than x) then the
p-value is 0.04, thus the null hypothesis is rejected. However, if the test is two-sided
(i.e. testing whether the random variable X is no more extreme than the value x)
then the p-value is 0.08, thus the null hypothesis is not rejected (assuming α = 0.05).

When performing a statistical test, a confidence interval is often reported. This
is the interval in which a test statistic could potentially lie without resulting in the
null hypothesis being rejected, given a particular significance level α, and is referred
to as the 100× (1−α)% confidence interval. For example, if α = 0.05, then the 95%
confidence interval would be of interest, which would be the interval with boundaries
at the 2.5% and 97.5% levels, for a two-tailed test.

There are many different statistical tests, designed for various purposes. For ex-
ample, when testing protein expression in different conditions, it may be of interest
to test whether one condition results in a systematically greater yield than another.
In such circumstances, it may be appropriate to test whether the average value of
the underlying distribution corresponding to one particular sample is systematically
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larger/smaller than that of another. Such tests, which are designed to compare mea-
sures of centrality, are very commonly used. There are various such tests, intended
for use with different types of data, e.g. a single data sample, two independent sam-
ples, or two dependent samples (paired, with known correspondences), and different
tests depending on what assumptions can be made (e.g. ability to reasonably assume
Normality). The following table highlights various statistical tests that may be used
in various circumstances, assuming that the objective is to test for differences in the
average values of distributions:

1-sample 2-sample independent 2-sample dependent (paired)
Parametric t-test t-test paired t-test

Welch’s t-test
Non-parametric sign test median test sign test

Wilcoxon signed-rank test Mann-Whitney U -test Wilcoxon signed-rank test

The remainder of this tutorial will provide an introduction to some of the most
common statistical tests, which may be used to test various types of hypotheses,
with various types of data.

2 Testing distributional assumptions

Testing for Normality

Since some statistical tests require certain assumptions to be satisfied, e.g. the t-test
requires the sample to be (approximately) Normally distributed, it is useful to be
able to test such distributional assumptions.

The Shapiro-Wilk test tests the null hypothesis that a particular sample can be
considered to be Normally distributed, and can be performed in R using the com-
mand:

shapiro.test(rnorm(10))

Here, we test whether a random sample of 10 variates from the N (0, 1) distribution
can be considered to be Normally distributed. Since the data were generated from
a Normal distribution, the p-value should be large, thus the null hypothesis is not
rejected. Now consider performing the test on the squares of standard Normal vari-
ates (i.e. the data now follow a χ2

1 distribution):

shapiro.test(rnorm(10)^2)

In this case, the p-value should be small, thus allowing the null hypothesis to be
rejected.

Remember that in Tutorial 2 we considered the use of Q-Q plots to visually
explore relationships between distributions. In particular, the qqnorm function was
used to compare a sample against the Normal distribution. Such representations
provide a visual indication of the nature of the data (i.e. the degree of Normality in
this case), allowing insight to be gained, whilst tests such as the Shapiro-Wilk test
allow such hypotheses to be tested in a more objective manner, providing quanti-
tative (i.e. test statistic and p-value) and qualitative (significant / not significant)
results. Nevertheless, manual visual exploration of the data is always useful, espe-
cially for identifying peculiarities in the dataset that would not be automatically
detected during the standard course of statistical hypothesis testing.
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Testing for equality of distributions

Whilst the Shapiro-Wilk test specifically tests whether a given sample can be consid-
ered to be Normally distributed, the Kolmogorov-Smirnov test tests for the equality
of two arbitrary distributions (empirical or theoretical). Specifically, it considers
the maximum difference between corresponding values of the cumulative distribu-
tion functions of the compared distributions, and tests whether such a difference
could have arisen by chance.

The Kolmogorov-Smirnov test can be performed in R using the command:

ks.test(rnorm(10),rnorm(10))

which tests whether two samples of 10 random variates from the N (0, 1) distri-
bution could be from the same distribution. Since the data were both generated
from the same distribution, the p-value should be large, thus the null hypothesis is
not rejected. Comparing two distributions that are truly different should result in
the null hypothesis being rejected, e.g.:

ks.test(rnorm(10),rnorm(10,2))

Note that the test statistic, the Kolmogorov-Smirnov distance, can be used to quan-
tity the distance between distributions.

Testing for outliers

Grubb’s test for outliers tests the null hypothesis that there are no outliers in a
given sample, making the assumption:

• The data can reasonably be considered to follow a Normal distribution.

The test considers the maximum absolute difference between observations and the
mean, normalised with respect to the sample standard deviation:

G = max
i

∣∣∣∣xi − x̄s

∣∣∣∣
and considers the chance of such an extreme value occurring given the number of
observations, given that the data are Normally distributed.

Grubb’s test is available for R in the package outliers. To install and load this
package, type:

install.packages("outliers")

library(outliers)

Grubb’s test can now be executed using the command:

grubbs.test(rnorm(10))

In this case, since the data are generated from a standard Normal distribution,
the null hypothesis that there are no outliers will not be rejected. However, if we
manually insert a value that should be considered an outlier:
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grubbs.test(c(rnorm(10),5))

then Grubb’s test will detect the outlier, and the null hypothesis will be rejected.
Note that Dixon’s Q-test is a non-parametric outlier detection test also available

in the outliers R package (function: dixon.test), which may be used if the data
are not Normal.

Testing for equality of variances between two independent samples

The F -test is the most common test used to test for equality of variance between
two independent samples. The F -test tests the null hypothesis that the variances
of two samples are equal using the test statistic:

F =
s2

1

s2
2

F ∼ Fn1−1,n2−1

where s1 and s2 are the sample standard deviations, and n1 and n2 the number of
observations in the two samples, respectively. Consequently, this test is also referred
to as the variance ratio test.

The F -test for equality of variances makes the following assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• Both data samples are Normally distributed.

Since the F -test is sensitive to the assumption of Normality, it is important for this
assumption to be tested prior to application.

An F -test can be performed in R using the var.test function. For example,
typing:

var.test(rnorm(10),rnorm(10))

will perform an F -test on two independent samples of 10 random numbers taken
from N (0, 1) – the standard Normal distribution – testing the null hypothesis that
the variances of the two samples are equal. In fact, it actually tests the hypothesis
that the ratio of the two variances is equal to one. Consequently, since the null
hypothesis is not rejected, the value ‘1’ is contained within the reported 95% confi-
dence interval.
Note that the F -test is independent of the location of the distributions – it does not
test equality of means. Note that changing the mean value of the distribution does
not affect the F -test:

var.test(rnorm(10),rnorm(10,5))

However, altering the variance of one of the compared samples has a dramatic affect
on the result of the F -test:

var.test(rnorm(10),rnorm(10,0,3))

The F -test is useful for assessing equality of variances, assuming Normality has
already been ascertained. Determining equality of variances is useful when attempt-
ing to perform other tests that assume equal variances, such as the two-sample t-test.
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In cases where the testing for equality of variances is required, but data cannot be
considered to be Normal, other tests less sensitive to the assumption of Normality
could be considered (e.g. Levene’s test, Bartlett’s test, or the Brown-Forsythe test).

Task 1:

In R, the inbuilt dataset ‘CO2’ contains data from an experiment on the cold tol-
erance of the grass species Echinochloa crus-galli. The dataset records the carbon
dioxide uptake rates (response), ambient carbon dioxide concentration (independent
variable), and three factors (Plant, Type and Treatment).

1. Consider the three Plants that are both Chilled and from Mississippi – these
are labelled ‘Mc1’, ‘Mc2’ and ‘Mc3’. Extract the data corresponding to these
Plants, and, separately for each of the three plants, perform statistical tests
to test whether they can be considered to be Normally distributed.

2. For each of the three plants, perform statistical tests to detect any outliers,
ensuring that assumptions are satisfied for any statistical tests performed.
Which of the plants have corresponding distributions that exhibit at least one
outlier?

Caution – in this task we have simultaneously performed multiple hypothesis tests.
This is dangerous, as it increases the chances of randomly observing a significant
result (i.e. type I error). For example, suppose that 20 hypothesis tests are per-
formed, then clearly it is quite possible that at least one of the tests is significant at
the 95% level, purely by chance. In order to account for this effect, we would usually
use the Bonferroni correction, which essentially involves using a higher α-level (sig-
nificance threshold) in order to account for the fact that we are performing multiple
hypothesis tests. Specifically, α is divided by the number of tests being performed.
For instance, in the above example three tests are simultaneously performed. Con-
sequently, the significance level α would be reduced from 0.05 to 0.0167.

3 One-sample tests

One-sample t-test

The one-sample t-test tests the null hypothesis that the population mean is equal
to some value µ0.

The test statistic is:

t =
x̄− µ0

s/
√
n

t ∼ Tn−1

where x̄ is the sample mean, s is the sample standard deviation, and n is the number
of observations.

Note the similarity between the formula for the test statistic and that of a z-
score – in computing the t-test statistic the data are normalised with respect to the
hypothesised mean (not the sample mean!) and the sample variance. Note also that,
according to the Central Limit Theorem, if µ0 is the true population mean then the
distribution of the test statistic converges to the standard Normal distribution as
n→∞.

The one-sample t-test essentially makes the assumptions:
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• The observations x1, . . . , xn are independent and identically distributed (i.i.d.);

• The data are approximately Normally distributed (or large sample).

The latter condition is flexible to some degree; t-tests can be used on non-Normal
data providing the data are not too non-Normal, e.g. the distribution is unimodal
and symmetric. For non-Normal data, the reliability of the test increases as the
number of observations increases (which causes the sample mean to become more
Normal). However, if the data are non-Normal then a non-parameteric test may be
preferred.

A t-test can be performed in R using the t.test function. For example, typing:

t.test(rnorm(10))

will perform a one-sample t-test on a sample of 10 random numbers taken from
N (0, 1) – the standard Normal distribution – testing the null hypothesis that the
mean of the sample is equal to zero. Of course, in this case we know that the ‘true’
mean is zero, as the sample has been taken from the standard Normal distribution.
Consequently, we would expect a p-value greater than 0.05, indicating no evidence
with which to reject the null hypothesis. Further to providing a t-test statistic and
associated p-value, note that the R output from the t.test function call also in-
cludes the 95% confidence interval, and the sample mean. Note that the ‘true’ mean
(0) is indeed contained within the 95% confidence interval.

For comparison, now consider a t-test performed on a sample of 10 random num-
bers taken from N (1, 1), again testing the hypothesis that the population mean is
zero, which can be performed using the command:

t.test(rnorm(10,1))

This time, the mean should not be equal to 0, given that we have artificially gener-
ated numbers from a distribution whose mean is 1. Indeed, inspecting the output of
the command should indicate that the null hypothesis is rejected, with a p-value less
than the α = 0.05 threshold, noting that the value ‘0’ is outside the confidence inter-
val. Note also that increasing the mean of the sample higher than 1 would result in
smaller p-values (i.e. higher significance levels), and also that inflating the variance
higher than 1 would result in larger p-values (due to the increased uncertainty).

One-sample sign test

An alternative to the one-sample t-test is the one-sample sign test, which is a simple
non-parametric test that makes very few assumptions about the nature of the data,
namely:

• The observations x1, . . . , xn are independent and identically distributed (i.i.d.).

Whilst the t-test allows the testing of a hypothesis regarding the value of the mean,
the sign test tests a hypothesis regarding the value of the median (a more robust
statistic).

The sign test counts the number of observations greater than the hypothesised
median m0, and calculates the probability that this value would result from a
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Bin(n, 0.5) distribution, where n is the number of observations not equal to m0.
As such, the one-sample sign test is also referred to as the Binomial test.

For example, suppose we want to use the sign test to test the null hypothesis
that the median of a random sample of 10 variates from the N (0, 1) distribution is
equal to zero. This can be done in R using the commands:

x=rnorm(10))

binom.test(sum(x>0),length(x))

Here, we use the binom.test function to test whether the median of x could be
equal to 0. As expected, the test should result in the null hypothesis not being
rejected, with a p-value much larger than the 0.05 threshold.

Repeating the test, this time testing whether the median could be equal to 1,
will most often result in a significant result:

x=rnorm(10))

binom.test(sum(x>1),length(x))

However, if more than one out of the ten standard Normal variates randomly have a
value greater than 1 then the null hypothesis will not be rejected (indicating a type
II error) due to the low power of the test.

One-sample Wilcoxon signed-rank test

Another non-parametric alternative to the one-sample t-test is the one-sample Wilcoxon
signed-rank test, which makes more assumptions regarding the nature of the data
than the sign test, thus has increased power. Specifically:

• The observations x1, . . . , xn are independent and identically distributed (i.i.d.);

• The distribution of the data is symmetric.

The one-sample Wilcoxon signed-rank test ranks the observations according to
their absolute differences from the hypothesised median |xi−m0|, and uses the sums
of the ranks corresponding to the positive and negative differences as test statistics.

The one-sample Wilcoxon signed-rank test may be performed in R using the
command:

wilcox.test(rnorm(10))

which again tests the null hypothesis that the median of a random sample of 10
variates from the N (0, 1) distribution is equal to zero. The null hypothesis should
not be rejected in the majority of cases.

Now perform a one-sample Wilcoxon signed-rank test on a sample of 10 random
numbers taken from the N (1, 1) distribution, again testing the hypothesis that the
population mean is zero:

wilcox.test(rnorm(10,1))

This should result in a significant result, thus rejecting the null hypothesis, in the
majority of cases.
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Task 2:

In R, the inbuilt dataset ‘LakeHuron’ contains data corresponding to annual mea-
surements of the level of Lake Huron (in feet).

1. Visually inspect the data by creating a histogram and Normal Q-Q plot, in
order to gain insight regarding the nature of the data.

2. Test whether the data can be considered to be Normally distributed.

3. Use an appropriate statistical test to test the null hypothesis:

H0 : µ = 578

where µ is the population mean corresponding to the data. Can this hypothesis
be rejected?

4. According to the test used in the previous step, what is the 95% confidence
interval corresponding to estimated distribution of µ?

5. List all integer values that could reasonably be equal to µ, according to your
results from the previous steps.

Task 3:

In R, the inbuilt dataset ‘Nile’ contains data corresponding to annual flow of the
river Nile at Ashwan.

1. Visually inspect the data by creating a histogram and Normal Q-Q plot, in
order to gain insight regarding the nature of the data.

2. Test whether the data can be considered to be Normally distributed.

3. Use an appropriate statistical tests to test the null hypotheses:

H0 : µ = 850

and
H0 : µ = 950

where µ is the population mean corresponding to the data. Can these hy-
potheses be rejected?

4. Use (1) the one-sample t-test, and (2) the one-sample Wilcoxon signed-rank
test, to test the hypothesis:

H0 : µ = 880

where µ is the population mean corresponding to the data. Is this hypothesis
rejected by none, one, or both of the tests?

5. Which of the two tests would you use to test the hypothesis considered in the
previous step? Discuss the pros and cons associated with using each test to
draw conclusions in this particular case.
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4 Testing for differences between two

independent samples

Independent two-sample t-test

The two-sample version of the t-test, designed for use with two independent samples,
tests the null hypothesis that the population means of the two groups are equal.

The test statistic is:

t =
x̄1 − x̄2

s12

√
n−1

1 + n−1
2

t ∼ Tn1+n2−2

where x̄1 and x̄2 are the means of the two samples, s12 is an estimator of the common
standard deviation of the two samples, and n1 and n2 are the numbers of observations
in the two samples, respectively.

The independent two-sample t-test essentially makes the assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• Both data samples are approximately Normally distributed;

• The data samples have the same variance.

Consequently, further to requiring Normality, the independent two-sample t-test also
requires that the compared samples can be considered to have the same variance.
This assumption can be tested, e.g. using an F -test.

Indeed, it is always important to (1) test for Normality, and (2) test for equal
variances, before performing a two-sample t-test. If assumptions are violated, then
other statistical tests should be used to test the hypothesis. For example, if the
Normality assumption is violated then a non-parametric test could be used, and if
the equal variance assumption is violated then Welch’s t-test (see below) could be
used instead of the standard variant.

A t-test can be performed in R using the t.test function. For example, typing:

t.test(rnorm(10),rnorm(10),var.equal=TRUE)

will perform a two-sample t-test on two independent samples of 10 random numbers
taken from N (0, 1) – the standard Normal distribution – testing the null hypothesis
that the means of the two samples are equal (the fact that the means happen to be
zero in this case is irrelevant). The var.equal=TRUE argument specifies to assume
that the variances of the compared sample can be considered to be equal.

Since the data are generated from the same distribution, the t-test should not
reject the null hypothesis that the means are equal (i.e. the p-value should be
greater than 0.05). Note that the reported 95% confidence interval corresponds to
the difference between means, in contrast with the one-sample t-test.

Note that this is the same function as used for a one-sample t-test – the t.test

function is context-dependent, performing a one-sample t-test if one vector (data
sample) is provided, and performing a two-sample t-test if two vectors are provided
as input arguments.
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For comparison, now consider a t-test performed on two samples of 10 random
numbers taken from N (0, 1) and N (1, 1), respectively. The hypothesis that the
population means are equal can be tested using the command:

t.test(rnorm(10),rnorm(10,1),var.equal=TRUE)

This time, the means should not be equal, given that we have artificially generated
numbers from distributions with different means. Indeed, inspecting the output of
the command should generally indicate that the null hypothesis is rejected, with a
p-value less than the α = 0.05 threshold, noting that the value ‘0’ is outside the
confidence interval (i.e. the difference between the population means is unlikely to
be equal to zero).

Welch’s t-test

Welch’s t-test is a generalisation of the independent two-sample t-test that doesn’t
assume that the variances of the two data samples are equal. Consequently, the test
statistic is:

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

where x̄1 and x̄2 are the means, s1 and s2 the standard deviations, and n1 and n2

the numbers of observations in the two samples, respectively.
Welch’s two-sample t-test makes the assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• Both data samples are approximately Normally distributed.

This version of the t-test can be performed in R by omitting the ‘var.equal=TRUE’
argument, e.g.:

t.test(rnorm(10),rnorm(10))

Relative to the independent two-sample t-test, relaxation of the equal variance cri-
terion in Welch’s t-test results in reduced power, but wider applicability.

Mann-Whitney U-test

Similar to how the Wilcoxon signed-rank test is a non-parametric analogue of the
one-sample t-test, the Mann-Whitney U -test test is a non-parametric analogue of
the independent two-sample t-test that tests whether the medians of the compared
samples can be considered to be equal.

The test makes the assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• The distributions of both data samples are symmetric.

The Mann-Whitney U -test, which is also referred to as the two-sample Wilcoxon
signed-rank test, may be performed in R using the command:
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wilcox.test(rnorm(10),rnorm(10))

which tests the null hypothesis that the median of two random samples of 10 variates
from the N (0, 1) distribution are equal. In this case, since the data are generated
from identical distributions, the null hypothesis should not be rejected.

Task 4:

Recall R’s inbuilt dataset ‘CO2’, which contains data from an experiment on the cold
tolerance of the grass species Echinochloa crus-galli. The dataset records the carbon
dioxide uptake rates (response), ambient carbon dioxide concentration (independent
variable), and three factors (Plant, Type and Treatment).

1. Visually inspect the CO2 uptake data (i.e. the CO2$uptake vector) by creating
a histogram and Normal Q-Q plot, in order to gain insight regarding the nature
of the data.

2. Test whether CO2 uptake can be considered to be Normally distributed.

3. Now consider the data corresponding only to concentrations (conc) less than
300 mL/L.

(a) Create side-by-side box plots of the CO2 uptake corresponding to the two
levels of Treatment (i.e. ‘chilled’ and ‘nonchilled’), for observations for
which concentration is less than 300 mL/L.

(b) Can the two samples corresponding to ‘chilled’ and ‘nonchilled’ plants
(i.e. the two sets of data displayed as box plots in the previous step) be
considered to be Normally distributed?

(c) Can the variances of these two samples be considered to be equal?

(d) Perform an appropriate test to determine whether the average CO2 up-
take for nonchilled plants is significantly greater than for chilled plants,
for concentrations less than 300mL/L.

4. Now consider the data corresponding only to concentrations greater than 300
mL/L.

(a) Create side-by-side box plots of the CO2 uptake corresponding to the two
levels of Treatment (i.e. ‘chilled’ and ‘nonchilled’), for observations for
which concentration is greater than 300 mL/L.

(b) Test whether these two samples corresponding to ‘chilled’ and ‘nonchilled’
plants can be considered to be Normally distributed.

(c) Perform an appropriate test to determine whether the average CO2 up-
take for nonchilled plants is significantly greater than for chilled plants,
for concentrations greater than 300mL/L.

5. Now consider the data corresponding only to concentrations greater than 400
mL/L.

(a) Create side-by-side box plots of the CO2 uptake corresponding to the two
levels of Type (i.e. ‘Quebec’ and ‘Mississippi’), for observations for which
concentration is greater than 400 mL/L.
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(b) Test whether these two samples corresponding to ‘Quebec’ and ‘Missis-
sippi’ plants can be considered to be Normally distributed.

(c) Perform an appropriate test to determine whether the average CO2 up-
take is significantly different in the plants from Quebec and Mississippi,
for concentrations greater than 400mL/L.

6. Reflect on your results from parts 3, 4 and 5 of this task – i.e. consider in which
of the different groups the average CO2 uptake was found to be significantly
different, and for which groups no differences were detected. Which results do
you “believe”? Were all results conclusive? Use your observations from visual
inspection of the box plots in order to support your conclusions.

5 Testing for differences between two dependent

(paired) samples

Paired two-sample t-test

In cases where there is a known correspondence between the two compared samples,
it is necessary to account for the fact that the observations between the samples
are not independent when performing statistical tests. Such correspondences may
exist because the observations correspond to the same individuals (i.e. repeated
measurements) or simply because the samples have been matched in some way.
In such circumstances, it is possible to test for differences between the samples
accounting for such dependencies. In such cases, the quantities of interest are the
differences between the paired observations.

The paired two-sample t-test, designed for use with two independent samples,
tests the null hypothesis that the population means of the two groups are equal.

The test statistic is:

t =
x̄∆ − µ0

s∆/
√
n

t ∼ Tn−1

where x̄∆ and s∆ are the mean and standard deviation of the differences between
the two samples, respectively (compare with the one-sample t-test).

The paired two-sample t-test makes the assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• The distribution of the paired differences is approximately Normally distributed;

The paired two-sample t-test can be performed in R by supplying the paired=TRUE

argument to the t.test function, e.g.:

x=rnorm(10)

y=rnorm(10)

t.test(x,y,paired=TRUE)

noting that this command is equivalent to:

t.test(x-y)
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since the paired two-sample t-test is effectively a one-sample t-test performed on
the distribution of differences between paired observations.

Two-sample sign test

A non-parametric alternative to the paired two-sample t-test is the two-sample sign
test. Similarly to how the paired two-sample t-test is effectively a one-sample t-test
performed on the distribution of differences between paired observations, the two-
sample sign test is effectively a one-sample sign test performed on the distribution
of differences between paired observations.

Being a non-parametric test, the two-sample sign test makes very few assump-
tions about the nature of the data:

• Within each sample, the observations are independent and identically
distributed (i.i.d.).

The two-sample sign test counts the number of differences between paired observa-
tions that are greater than zero, and calculates the probability that this value would
result from a Bin(n, 0.5) distribution, where n is the number of differences not equal
to zero.

For example, suppose we want to use the sign test to test the null hypothesis
that the medians of two paired samples of 10 random variates from the N (0, 1)
distribution are equal. This can be done in R using the commands:

x=rnorm(10))

y=rnorm(10))

binom.test(sum(x>y),length(x))

Here, we use the binom.test function to test whether the median of x could be
equal to the median of y. As expected, the test should result in the null hypothesis
not being rejected, with a p-value much larger than the 0.05 threshold.

Paired Wilcoxon signed-rank test

Another non-parametric alternative to the paired two-sample t-test is the paired
Wilcoxon signed-rank test. Similarly to with the two-sample sign test, the paired
Wilcoxon signed-rank test is effectively a one-sample Wilcoxon signed-rank test per-
formed on the distribution of differences between paired observations. The test
makes the assumptions:

• Within each sample, the observations are independent and identically
distributed (i.i.d.);

• The distribution of the paired differences is symmetric.

The paired two-sample Wilcoxon signed-rank test may be performed in R using
the command:

x=rnorm(10)

y=rnorm(10)

wilcox.test(x,y,paired=TRUE)

which again tests the null hypothesis that the medians of two samples of 10 random



Tutorial 5: Hypothesis Testing 16

variates from the N (0, 1) distribution are equal, noting that this command is equiv-
alent to:

wilcox.test(x-y)

which is a one-sample Wilcoxon signed-rank test performed on the distribution of
differences between paired observations.

Task 5:

Recall R’s inbuilt dataset ‘CO2’, which contains data from an experiment on the cold
tolerance of the grass species Echinochloa crus-galli. The dataset records the carbon
dioxide uptake rates (response), ambient carbon dioxide concentration (independent
variable), and three factors (Plant, Type and Treatment).

Suppose we want to test whether the CO2 uptake is significantly larger for con-
centrations of 1000 mL/L than for 675 mL/L.

1. Create box plots to display the distributions of CO2 uptake for the data cor-
responding to concentrations of 1000 mL/L and 675 mL/L (i.e. create two
side-by-side box plots). Does it appear that the uptake is substantially larger
for concentrations of 1000 mL/L than for 675 mL/L?

2. Test whether these two distributions can be considered to be Normally dis-
tributed.

3. Test whether these two distributions can be considered to have equal variances.

4. Perform an independent two-sample t-test to compare the means of these dis-
tributions. Can they be considered to be significantly different? From this test,
can we conclude that CO2 uptake is substantially larger for concentrations of
1000 mL/L than for 675 mL/L?

5. Note that each observation in each of the two samples corresponds to a differ-
ent Plant (i.e. a different individual). Note also that there is a direct corre-
spondence between observations in the 1000 mL/L sample and the 675 mL/L
sample, and that the corresponding observations have the same indices in their
respective vectors. Perform an appropriate statistical test to test whether the
CO2 uptake is significantly larger for concentrations of 1000 mL/L than for
675 mL/L. Is it possible to conclude that CO2 uptake is significantly larger
for concentrations of 1000 mL/L than for 675 mL/L?


