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Task 1

1.

m1 = lm(eruptions∼waiting,data=faithful)
summary(m1)

Intercept: −1.874016, coefficient of ‘waiting’: 0.075628, R2
adj = 0.8108. The model

does have significant utility. Both parameters are significantly different from zero.
This information alone would lead to the conclusion that there is a linear relationship
between the two variables (although model assumptions have not been tested).

2.

plot(eruptions waiting,data=faithful)

The data appear to form two clusters.

3.

lines(fitted(m1)∼faithful$waiting)

The model seems reasonable, visually.

4.

plot(m1)

The model is not appropriate for describing the relationship between eruption dura-
tion and waiting time. This is particularly evident from the plot of residuals vs fitted
values, which exhibits strong systematic relationships, implying that the model is
inappropriate.

Task 2

1.

The dependent variable is Height, and the independent variable is Girth.

1
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m1 = lm(Height∼Girth,data=trees)
summary(m1)

This model has significant utility. The parameter estimate is β̂ = 1.0544.

2.

The model cannot be used to predict Girth given Height. This is because the model
predicts Height, not Girth. In particular, note that standard error estimates could
not be achieved if trying to predict Girth given Height using a model designed to
predict Height given Girth. An equivalent model to predict Height would have a
different distribution of residuals. Indeed, the two optimisation problems solved in
parameter estimation for the two models are different. Note that these would be
equivalent if all observations perfectly on a line.

m2 = lm(Girth∼Height,data=trees))
summary(m2)

This model has significant utility. Only the coefficient of Height is significant. The
estimate of the slope is β̂ = 0.25575. This is very different to the equivalent pa-
rameter estimate from model m1. This demonstrates how it is important to know
exactly what question you want to ask before you try to draw conclusions – it is
always important to use an appropriate model to address a particular question.

3.

m3 = lm(Girth∼0+Height,data=trees))
summary(m3)

plot(Height∼Girth,data=trees)
lines(fitted(m1)∼trees$Girth)
lines(trees$Height∼fitted(m2))
lines(trees$Height∼fitted(m3))

The lines are different because they represent different models, which correspond
to the optimisation of different functions.

4.

m1 = lm(Volume∼Girth,data=trees)
m2 = lm(Volume∼Height,data=trees)
summary(m1)

summary(m2)

Looking at the model summaries, model m1 is better than m2.

plot(m1)

The residuals appear to be correlated with fitted values, and there is one point
of high influence.
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m1 = lm(Volume[-31]∼Girth[-31],data=trees)
summary(m1)

Parameter estimates do change. The change is reasonably substantial, but not
so dramatic as to result in significantly different parameter values – the changes are
approximately one σ in magnitude.

Task 3

1.

cor(anscombe$x1,anscombe$y1)

cor(anscombe$x2,anscombe$y2)

cor(anscombe$x3,anscombe$y3)

cor(anscombe$x4,anscombe$y4)

All correlations are essentially the same.

2.

summary(lm(anscombe$y1∼anscombe$x1))
summary(lm(anscombe$y2∼anscombe$x2))
summary(lm(anscombe$y3∼anscombe$x3))
summary(lm(anscombe$y4∼anscombe$x4))

The summaries suggest that all models are essentially the same.

3.

plot(anscombe$y1∼anscombe$x1)
plot(anscombe$y2∼anscombe$x2)
plot(anscombe$y3∼anscombe$x3)
plot(anscombe$y4∼anscombe$x4)

Despite having the same correlations, and the same parameters and statistics when
creating linear models, the relationships between x and y for each of these datasets
are very different. This shows how it is vitally important to visually inspect the
data, and ensure that model assumptions are satisfied, rather than naively drawing
conclusions based on limited statistics.

Task 4

1.

plot(speed∼dist,data=cars)

The relationship seems reasonably linear, but also seems to plateau.

2.

m1 = lm(speed∼dist,data=cars)
summary(m1)
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plot(m1)

The model does have significant utility. There is a dependency between residuals
and fitted values.

3.

m2 = lm(speed∼sqrt(dist),data=cars)
summary(m2)

plot(m2)

The relationship seems linear, and this model fits better than the previous model
(according to R2). Also, the dependency between the residuals and fitted values is
reduced.

4.

m3 = lm(log(speed)∼log(dist),data=cars)
summary(m3)

plot(m3)

This model fits better than the previous model (according to R2). Consequently, it
may be concluded that this model is better than the previous model.

5.

The model of speed against the square root of dist includes an intercept parameter
that is not significantly different from zero. Consequently, this term may be removed
from the model.

6.

plot(log(speed)∼log(dist),data=cars)
lines(fitted(m3)∼log(dist),data=cars)

7.

plot(speed∼dist,data=cars)
x = order(cars$dist)

lines(exp(fitted(m3))[x]∼dist[x],data=cars)

8.

lines(fitted(m2)[x]∼dist[x],data=cars,col="red")

The curves are similar, but they are different. Note that the fitted values from
the log-log model are systematically lower, as the model forces the curve to have an
intercept of zero (pass through the origin).
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Task 5

1.

plot(time∼conc,data=Indometh)

The relationship between time and conc is negative and non-linear. Specifically,
time is inversely related to conc.

2.

plot(log(time)∼log(conc),data=Indometh)

3.

m1 = lm(log(time)∼log(conc),data=Indometh)
summary(m1)

plot(m1)

Intercept: −0.4203, coefficient of ‘log(conc)’: −0.9066. Both parameters are sig-
nificantly different from zero. There are no concerning outliers with particularly
large influence.

4.

plot(log(time)∼log(conc),data=Indometh)
lines(fitted(m1)∼log(conc),data=Indometh)

5.

plot(time∼conc,data=Indometh)
x = order(Indometh$conc)

lines(exp(fitted(m1))[x]∼conc[x],data=Indometh)

Task 6

1.

m1 = lm(Volume∼Height,data=trees)
m2 = lm(Volume∼Girth,data=trees)
summary(m1)

summary(m2)

The model summaries indicate that the model that regresses Volume on Girth is bet-
ter, on the basis of a much higher Multiple R-squared value (0.9353 versus 0.3579).

2.

m3 = lm(Volume∼Height+Girth,data=trees)
summary(m3)
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plot(m3)

This model is better than both of the previous models, on the basis that it has
a higher Multiple R-squared value (0.948). All model terms are significant. The
model seems reasonable – the diagnostic plots do not indicate anything particularly
concerning about this model.

3.

m4 = lm(Volume∼Height*Girth,data=trees)
summary(m4)

plot(m4)

This model is better than the previous models, on the basis that it has a higher
Multiple R-squared value (0.9756). Again, all model terms are significant, and the
model seems reasonable – the diagnostic plots do not indicate anything particularly
concerning about this model.

4.

m5 = lm(log(Volume)∼log(Height)+log(Girth),data=trees)
summary(m5)

plot(m5)

This model is better than the previous models, on the basis that it has a higher
Multiple R-squared value (0.9777). Note also that this model has fewer parameters
than the previous model. Again, all model terms are significant, and the model seems
reasonable – the diagnostic plots do not indicate anything particularly concerning
about this model. We can conclude that the relationship between Volume, Height
and Girth is not linear. Rather, it is a power relationship, as it better described by
a log-log model.

5.

m6 = lm(log(Volume)∼log(Height)*log(Girth),data=trees)
summary(m6)

plot(m6)

This model has a higher Multiple R-squared value than previous models (0.9778).
However, this is at the expense of more parameters – more terms are present
in the model. In fact, none of the parameter estimates are significantly differ-
ent from zero. This means that not all terms are required in order to model
log(Volume). If log(Height) and log(Girth) are present, then including the inter-
action term log(Height):log(Girth) does not result in a better model.

6.

The model that regresses log(Volume) on log(Height) and log(Girth) is the most
appropriate.

plot(Volume∼Girth,data=trees)



Tutorial 6: Linear Regression (Answers) 7

x = order(trees$Girth)

lines(exp(fitted(m5))[x]∼Girth[x],data=trees)

Task 7

1.

plot(conc∼rate,data=Indometh)

The relationship between conc and rate is positive and non-linear. Visually, it
appears that there may be a power or exponential relationship between conc and
rate.

2.

plot(log(conc)∼rate,data=Indometh)
m1 = lm(log(conc)∼rate,data=Indometh)
summary(m1)

A logarithmic transformation of the dependent variable linearises the model and
stabilises the variance, resulting in a linear model in which both terms are signifi-
cant.

3.

m2 = lm(log(conc)∼rate+state,data=Indometh)
summary(m2)

State is a factor variable with two levels. Including this term improves the model –
the Multiple R-squared value increases, and all terms are significant.

4.

m3 = lm(log(conc)∼rate*state,data=Indometh)
summary(m3)

Including the interaction term results in the state term not being significant. Con-
sequently, not all three terms are required in the model.

5.

m4 = lm(log(conc)∼rate*state-state,data=Indometh)
summary(m4)

All three terms in this model are required, and the Multiple R-squared value is
higher than for the previous models m1 and m2.

plot(conc∼rate,data=Puromycin)
x = Puromycin$state==levels(Puromycin$state)[1]

y = order(Puromycin$rate[x])
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z = order(Puromycin$rate[!x])

lines(exp(fitted(m4))[x][y]∼rate[x][y],data=Puromycin)
lines(exp(fitted(m4))[!x][z]∼rate[!x][z],data=Puromycin,col="red")

Task 8

1.

m1 = lm(Fertility∼.,data=swiss)
summary(m1)

Not all terms are significant.

2.

step(m1)

The Examination term was removed. The AIC corresponding to the final model
is 189.86.

m2 = lm(Fertility∼.-Examination,data=swiss)
summary(m2)

All terms in the final model are significant.

Task 10

The simple linear regression equation for an observation i is:

yi = α̂ + β̂xi + εi (1)

Summing over all observations, we get:

n∑
i=1

yi =
n∑

i=1

α̂ +
n∑

i=1

β̂xi +
n∑

i=1

εi

= α̂
n∑

i=1

1 + β̂

n∑
i=1

xi

= α̂n+ β̂

n∑
i=1

xi

1

n

n∑
i=1

yi = α̂ + β̂
1

n

n∑
i=1

xi

ȳ = α̂ + β̂x̄

α̂ = ȳ − β̂x̄ (2)

Rearranging Equation (1) we get:

εi = yi − α̂− β̂xi (3)
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Combining Equations (2) and (3) we get:

εi = yi − (ȳ − β̂x̄)− β̂xi
= (yi − ȳ)− β̂(xi − x̄)

The parameters α̂ and β̂ are chosen so as to minimise the sum of squares of the
residuals:

S =
n∑

i=1

ε2i → min

=
n∑

i=1

(
(yi − ȳ)− β̂(xi − x̄)

)2
→ min

This equation is minimised when the derivative of S with respect to β̂ is equal to
zero:

∂S

∂β̂
= −2

n∑
i=1

(xi − x̄)
(

(yi − ȳ)− β̂(xi − x̄)
)

= 0

n∑
i=1

(xi − x̄)
(

(yi − ȳ)− β̂(xi − x̄)
)

= 0

n∑
i=1

(xi − x̄)(yi − ȳ)− β̂
n∑

i=1

(xi − x̄)2 = 0

Rearranging this for β̂:

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

=
Cov(x, y)

Var(x)

And α̂ can be achieved by plugging this back into Equation (2):

α̂ = ȳ − β̂x̄


