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1 Introduction to Simple Linear Regression

It is often of interest to model linear relationships between variables, such as when
wanting to know whether two variables are correlated, or when wanting to be able
to predict a response given knowledge of a number of independent variables. Such
questions can be addressed by considering a parametric regression model :

Y = f(X; θ) + ε

in which the response variable Y is regressed against the independent variables X,
given knowledge of some parameters θ and an error model ε.

The most simple form of such a model, in which there is only one independent
variable, is referred to as simple linear regression. Such a model may be expressed:

Y = α + βX + ε

where X is the regressor (also called the predictor or independent variable), Y is the
response (also called the dependent variable), α and β are parameters that describe
the relationship between X and Y , and the term ε represents the error model (the
errors are also referred to as residuals). In simple linear regression, it is assumed
that the residuals follow a Normal distribution, specifically:

ε ∼ N (0, σ2)

for some parameter σ.
Such a model is useful for investigating linear relationships between variables.
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It is often the case that we observe a series of n observations of the response
(y1, . . . , yn) and predictor (x1, . . . , xn) variables, in which case the simple linear
regression model be may expressed:

yi = α + βxi + εi i = 1, . . . , n

for some parameters α and β.
Here, the values of yi and xi are known (observed), the values of the parameters

α and β are chosen, and the residuals εi are determined as:

εi = yi − α− βxi

Note that we could select any values for α and β, and we would be able to select
values for εi in order to satisfy this equation.

We want to find find values of the parameters α and β such that the errors εi are
co-minimised. Doing so would allow α and β to be meaningful, allowing the model
to be used to predict the value of the response variable Y , utilising knowledge of
the regressor X.

Note that if all data points were to lie on a straight line then all errors εi would
be zero. The errors represent random effects that we cannot account for, given the
available information.

We want to use the regression model to predict the value of the response variable
Y , given a particular value x of the independent variable X. Denoting the estimate
of the response by ŷ, we can write:

ŷ = α̂ + β̂x

where α̂ and β̂ are estimates of the parameters α and β, respectively. This essentially
says that if we denote the mean of Y by ŷ = E(Y |x; α̂, β̂), know the value x of the
independent variable X, and assume that α = α̂ and β = β̂, then:

ŷ = E(Y |x; α̂, β̂)

= E(α + βX + ε|x; α̂, β̂)

= E(α|x; α̂, β̂) + E(βX|x; α̂, β̂) + E(ε|x; α̂, β̂)

= α̂ + β̂x

since E(ε) = 0, due to the assumption that ε ∼ N (0, σ2).

In order to model such a system, we need to be able to achieve estimates α̂ and
β̂ of the parameters α and β, respectively. However, in order to test hypotheses
regarding the parameters, we must make distributional assumptions regarding the
error model. Specifically:

• Residuals are Normally distributed: ε ∼ N (0, σ2), for some parameter σ.

• Residuals are independent, i.e. Cov(εiεj) = E(εiεj) = 0 for all i 6= j.

• The expected value of the residuals is independent of the predictor variable x,
i.e. E(ε|x) = 0 for all x.
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• The variance of the residuals is independent of the predictor variable x, i.e.
V ar(ε|x) is constant for all x. This is called homoscedasticity.

Consequently, we want to find optimal parameter estimates α̂ and β̂ such that the
errors εi are co-minimised, whilst satisfying the above conditions/assumptions. Of
course, this is only possible if there is a linear relationship between the variables X
and Y , satisfying the above conditions.

Were we to find suitable parameter estimates α̂ and β̂, we would be able to
predict values of the response variable corresponding to each of the observed values
(xi) of the predictor variable. Denoted by ŷi = E(Y |X = xi; α̂, β̂), these values are
referred to as the fitted values, which may be calculated as:

ŷi = α̂ + β̂xi

and the residual errors are given by the difference between the actual and predicted
values of the response:

εi = yi − ŷi
The distribution of yi given parameter estimates α̂ and β̂ is thus given by:

yi ∼ N (ŷi, σ
2)

2 Parameter Estimation and Model Utility

Linear models can be created in R using the lm function, which estimates parameters
for a linear model, and tests the significance of model terms as well as overall model
utility.

Begin by attempting to fit a linear model to describe the relationship between
two independent random Normal samples:

x = rnorm(100)

y = rnorm(100)

m1 = lm(y∼x)
summary(m1)

Here, we create a linear model object m1, and then view useful information about
the model using the summary function. The formula y ∼ x, which is read as “regress
y on x”, corresponds to the linear model:

y = α + βx+ ε

Clearly, in this case the parameters α and β should not be significantly different
from zero, since we know that the variables x and y are independent. This should
be reflected in the p-values corresponding to the t-tests, which are performed to
test whether the parameters are significantly different from zero – this information
is displayed in the model summary table. In this case, both p-values should be
greater than 0.05, indicating insignificance. Note that t-tests are used because the
estimators can be considered approximately Normally distributed, providing the
number of observations is large (according to the Central Limit Theorem).

The p-value corresponding to an F -test is reported at the bottom of the summary,
corresponding to the overall utility of the model. This essentially tests whether the
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model has any predictive power. In this case, the p-value should be greater than
0.05, since the model has no predictive power.

Another quantity of interest reported by the summary is the Multiple R2 value
(and the Adjusted R2 value) which represents the correlation between dependent
and independent variables. This is also called the coefficient of determination, and
is equal to the square of the Pearson product-moment correlation coefficient (for
simple linear regression – i.e. only one independent variable).

Now consider fitting a linear model in the presence of a true linear correlation
between the variables:

x = rnorm(100)

y = x + rnorm(100)

m1 = lm(y∼x)
summary(m1)

Here, we know that there is a positive correlation between the variables, and we
also know that β = 1. Indeed, we should find that the p-value corresponding to the
x term now indicates significance, since β is significantly different from zero. Fur-
thermore, the p-value corresponding to the overall F -test should also be significant,
indicating that the model has predictive power.

Note that the significance of p-values corresponding to the t-tests is illustrated,
as indicated in the summary output:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For example, p-values between 0.001 and 0.01 will be highlighted using two asterisks.

The inclusion of independent variables as regressors is only justified if the cor-
responding parameter estimates are significantly non-zero, i.e. there is a significant
relationship between the independent and response variables. Otherwise, the model
would not be meaningful and appropriate, and may suffer from overfitting. Conse-
quently, in order to be suitably parsimonious, it is always desirable to only include
terms that are identified as significant.

In this particular case, since the intercept term is not significant, we could ex-
clude the parameter α from the model by specifying to force a zero intercept:

m1 = lm(y∼0+x)
summary(m1)

Now consider fitting a linear model in the presence of a true linear correlation
between the variables, with a non-zero intercept:

x = rnorm(100)

y = 1 + x + rnorm(100)

m1 = lm(y∼x)
summary(m1)

In this case, we should see that both terms are significant.
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Diagnostic Plots

Whenever creating a linear model, it is not sufficient to test overall utility and
significance of terms – it is important to also consider whether the model assumptions
are reasonable, or whether there are serious violations that would imply that the
model is invalid.

In R, plotting a linear model object will result in four diagnostic plots being
displayed, which help to explore relationships between the model and the observed
data. These allow manual visual testing for Normality, independence, homoscedas-
ticity and outliers. These can be plotted using the plot function:

plot(m1)

The four diagnostic plots displayed are:

1. Plot of Residuals vs Fitted Values. Residuals and fitted values should not be
related, and should be independent, thus there should be no pattern. The
variance of the residuals σ2 should be constant (i.e. independent of the predic-
tor variable), so the residuals should lie within a horizontal band of constant
vertical width. Note also that the residuals will always be centred on zero,
since E(ε) = 0. This plot also allows easy visual identification of potential
outliers.

2. Normal Q-Q Plot of the Residuals. Allows visual testing of the assumption that
the errors are Normally distributed. Non-Normality indicates assumptions are
violated, which would imply that the model is inappropriate.

3. Scale-Location Plot. This plots:√∣∣∣∣ εi√σ̂2

∣∣∣∣ =
√
|standardised residuals| vs fitted values

which sometimes makes non-constant variance more noticeable. Again, this
plot should exhibit no pattern.

4. Index Plot of Cook’s Distance. Cook’s distance is a combination of the mag-
nitude of the residual and the leverage of the observation, thus is a measure
of how influential a particular data point is, i.e. how much effect it has on the
regression. A data point has high leverage if its x-value is extreme – a point
with high leverage has the potential to be influential. For the sake of exploring
sensitivity, it is often worth investigating the effects on the model parameter
estimates of removing highly influential data points.

Task 1:

The inbuilt R dataset faithful pertains to the waiting time between eruptions and
the duration of the eruption for the Old Faithful geyser in Yellowstone National
Park, Wyoming, USA.

1. Create a simple linear regression model that models the eruption duration us-
ing waiting time as the independent variable, storing the model in the variable
m1. Look at the summary of the model.
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(a) What are the values of the estimates of the intercept and coefficient of
‘waiting’?

(b) What is the adjusted R2 value?

(c) Does the model have significant utility?

(d) Are neither, one, or both of the parameters significantly different from
zero?

(e) Can you conclude that there is a linear relationship between the two
variables?

2. Plot the eruption duration against waiting time. Is there anything noticeable
about the data?

3. Draw the regression line corresponding to the model m1 onto the plot (i.e. plot
the fitted values – extracted using the fitted function – against the observed
waiting times, displayed as lines). Based on this graphical representation, does
the model seem reasonable?

4. Generate the four diagnostic plots corresponding to the model m1. Discuss
the appropriateness of the model m1 for describing the relationship between
eruption duration and waiting time.

Task 2:

The inbuilt R dataset trees provides measurements of the girth, height and volume
of timber in 31 felled black cherry trees.

1. It may be hypothesised that Height depends on Girth.

(a) If creating a model to test this hypothesis, what is the dependent (re-
sponse) variable, and what is the independent (predictor) variable?

(b) Create a model to test this hypothesis, assuming a linear relationship
between Height and Girth. Call this model m1. Does this model have
significant utility?

(c) What is the slope, i.e. what is the value of the parameter that describes
the relationship between Height and Girth?

2. Suppose that we know that the height of a particular tree is 80ft.

(a) Can we use the above model m1 to estimate the Girth corresponding to
the 80ft tree? If not, why not?

(b) Create a simple linear regression model suitable for the purpose of esti-
mating Girth given knowledge of tree Height. Call this model m2. Does
this model have significant utility? Are all parameters significant?

(c) What is the slope, i.e. what is the value of the parameter that describes
the relationship between Girth and Height? Compare this with the slope
from model m1. What can you conclude?

3. Note that the intercept in model m2 is not significant.
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(a) Create a third model m3 that is similar to m2, but does not include the in-
tercept parameter (this can be achieved by including an additive ‘0’ term
on the right hand side of the regression formula – for further information
type ?formula. Be aware that forcing a zero intercept will cause the R2

values to no longer be useful/comparable).

(b) Plot tree Height against Girth, and display lines corresponding to the
three regression models: m1, m2 and m3 (i.e. plot the fitted values –
extracted using the fitted function – against the observed values of the
independent variable). Why are these lines different?

4. Now suppose we want to model tree Volume.

(a) Create two models – one that models Volume using Girth as the in-
dependent variable, and one that models Volume using Height as the
independent variable. From looking at the model summaries, which of
these two models do you consider better?

(b) Consider the better of the two models. Create diagnostic plots corre-
sponding to this model. What do you notice?

(c) From looking at the diagnostic plots, we can see that one observation is
particularly influential, having a large residual given the leverage. Regen-
erate the model excluding this one influential observation. From looking
at the summary, how does removal of this single observation affect the
estimation of model parameters?

Task 3:

Consider the inbuilt R dataset anscombe. This dataset contains four x-y datasets,
contained in the columns: (x1,y1), (x2,y2), (x3,y3) and (x4,y4).

1. For each of the four datasets, calculate the correlation between the x and y
variables. What do you conclude?

2. For each of the four datasets, create a linear model that regresses y on x. Look
at the summaries corresponding to these models. What do you conclude?

3. For each of the four datasets, create a plot of y against x. What do you
conclude?

3 Modelling Non-Linear Relationships

It should be noted that a linear model is linear in the parameters. Consequently,
linear regression is not limited to dealing with models of the form:

Y = α + βX + ε

and actually extends to models of the more general form:

f(Y ) = α + βg(X) + ε

for some functions f() and g().
For example, the model:

log(Y ) = α + β
√
X + ε
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is also called a simple linear regression model, since it is linear in the parameters,
and there is only one independent variable (X).

It is often necessary to transform data in order to satisfy the assumptions behind
the linear model. This is often done in order to:

1. Linearise the data, i.e. make the relationship between variables more linear;

2. Stabilise the variance σ2 of the model residuals, so that σ2 does not depend
on the independent variable(s).

Common transformations include the natural logarithm, and power transformations
of the form Xn (for some n ∈ R), noting that if n < 1 then large x-values will be
proportionally reduced relative to smaller ones. Importantly, any transformations
applied to the data must be monotonic, so that there is no information loss (i.e. the
original data must be recoverable).

Transformations to linearise the data usually involve transforming the indepen-
dent variable X, whilst variance stabilising transformations usually involve trans-
forming the response variable Y (and possibly the independent variable X also).

Note that power relationships (that intercept the origin) may be explored, identi-
fied, and modelled by log-transforming both the independent and response variables
and fitting a linear model.

Task 4:

Consider the inbuilt R dataset cars, which contains data regarding the speed of cars
and the distances taken to stop.

1. Plot speed against dist (distance). Does the relationship between these vari-
ables seem linear?

2. Create a linear model for the relationship between speed and dist. Does this
model have significant utility? Do the diagnostic plots identify any behaviour
suggesting that the regression assumptions are violated?

3. Now plot speed against the square root of dist. Does this relationship seem
more linear? Create a linear model for the relationship between speed and the
square root of dist. Is this model better or worse than the previous model?

4. Now plot the (natural) logarithm of speed against the logarithm of dist. Does
this relationship seem linear? Create a linear model for the relationship be-
tween the logarithm of speed against the logarithm of dist. Is this model better
or worse than the previous model?

5. What do the parameter estimates (and standard errors) imply about the suit-
ability of the model of speed against the square root of dist?

6. Focussing on the log-log plot, utilise the log-log model in order to add the line
of fitted values – extracted using the fitted function – to the plot, showing
the linear relationship between the transformed data.

7. Now regenerate the original plot of speed against dist. Using the lines func-
tion, add a curve to the plot corresponding to the fitted values of the log-log
model.
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8. Add a second curve to the plot, this one corresponding to the fitted values of
the model of speed against the square root of dist. Are these curves similar?

Task 5:

Consider the inbuilt R dataset Indometh, which contains data on the pharmacoki-
netics of indometacin.

1. Plot time versus conc (concentration). What is the nature of the relationship
between time and conc?

2. Apply monotonic transformations to the data so that a simple linear regres-
sion model can be used to model the relationship (ensure both linearity and
stabilised variance, within reason). Create a plot of the transformed data, to
confirm that the relationship seems linear.

3. After creating the linear model, inspect the diagnostic plots to ensure that the
assumptions are not violated (too much). Are there any outliers with large
influence? What are the parameter estimates? Are both terms significant?

4. Add the line of fitted values – extracted using the fitted function – to the
plot showing the linear relationship between the transformed data.

5. Now regenerate the original plot of time versus conc (i.e. the untransformed
data). Using the lines function, add a curve to the plot corresponding to the
fitted values of the model.

4 Multiple Regression

Multiple regression is the extension of simple linear regression to include multiple
independent variables. This more general form may be expressed:

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε

or alternatively:

Y = β0 +
n∑

i=1

βiXi + ε

or alternatively:
Y = BTX + ε

where

B =


β0
β1
...
βn

 and X =


1
X1
...
Xn


Multiple regression models can be created in R similarly to simple linear regres-

sion models. For example,

x1 = rnorm(100)

x2 = rnorm(100)

y = 1 + x1 + x2*x2 + rnorm(100)
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m1 = lm(y∼x1+x2)
summary(m1)

Note which terms are significant. Now try the model:

m1 = lm(y∼x1+x2*x2)
summary(m1)

Note that it did not produce the desired effect. In order to do this, we need to
create a new variable before attempting to regress y against x1 and x22, e.g.:

x2sq = x2*x2

m1 = lm(y∼x1+x2sq)
summary(m1)

Note that both terms should now be significant.
We can also try including an interaction term between the independent variables,

in order to detect any co-dependency:

m1 = lm(y∼x1+x2sq+x1:x2sq)
summary(m1)

or equivalently:

m1 = lm(y∼x1*x2sq)
summary(m1)

In this case, the interaction term should not be significant.
Note that the reported p-value corresponding to the F -test corresponds to the

hypothesis that all parameters equal zero, although it doesn’t test whether all pre-
dictor variables are required/necessary/appropriate. Also, the reported R2 value
measures how well the model predicts the observed values of the response.

Task 6:

Recall the inbuilt R dataset trees, which provides measurements of the girth, height
and volume of timber in 31 felled black cherry trees. Suppose we want to model
Volume using the Height and Girth variables.

1. Create one simple linear regression model that regresses Volume on Height,
and another that regresses Volume on Girth. Which of these two models is
better?

2. Now create a multiple regression model that regresses Volume on both Height
and Girth. Is this model better than the previous two models? Are all model
terms significant? From looking at the diagnostic plots, does it appear that
this is an appropriate model? Are there any peculiarities that indicate that
the modelling assumptions are invalid?

3. Now create a multiple regression model that regresses Volume on Height and
Girth, also including a term representing the interaction between Height and
Girth. Is this model better than the previous models? Are all model terms
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significant? From looking at the diagnostic plots, does it appear that this
is an appropriate model? Are there any peculiarities that indicate that the
modelling assumptions are invalid?

4. Now create a multiple regression model that regresses log(Volume) on log(Height)
and log(Girth). Is this model better than the previous models? Are all model
terms significant? From looking at the diagnostic plots, does it appear that
this is an appropriate model? What can we conclude from this?

5. Now create a multiple regression model that regresses log(Volume) on log(Height)
and log(Girth), also including a term representing the interaction between
log(Height) and log(Girth). Is this model better than the previous models?
Are the model terms significant? What can we conclude from this?

6. Which of the above models do you think is the most appropriate for modelling
Volume? Plot Volume against Girth. Add lines to the plot illustrating the
fitted values – extracted using the fitted function – of the model you selected
as being most appropriate.

Task 7:

The inbuilt R dataset Puromycin contains data regarding the reaction velocity versus
substrate concentration in an enzymatic reaction involving untreated cells or cells
treated with Puromycin.

1. Plot conc (concentration) against rate. What is the nature of the relationship
between conc and rate?

2. Find a transformation that linearises the data and stabilises the variance,
making it possible to use linear regression. Create the corresponding linear
regression model. Are all terms significant?

3. Add the state term to the model. What type of variable is this? Is the
inclusion of this term appropriate?

4. Now add a term representing the interaction between rate and state. Are all
terms significant? What can you conclude?

5. Given this information, create the regression model you believe to be the most
appropriate for modelling conc. Regenerate the plot of conc against rate.
Draw curves corresponding to the fitted values of the final model onto this
plot – note that two separate curves should be drawn, corresponding to the
two levels of state.

5 Choosing Between Models

In multiple regression, it is often the case that there are various acceptable models,
in which case it is necessary to choose between them. The number of models to
consider can be very large – note that if there are k independent variables then
there are 2k possible models. Since the number of possible models to test can be
large, it is often necessary to adopt a strategy for trialling different models, given a
number of independent variables.
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A common strategy is stepwise regression, which involves adding or removing
terms each step, converging on an ‘optimal’ solution. There are two main forms of
stepwise regression:

1. Forward Selection – start from the simplest model, and add terms one at a
time until the fit cannot be improved;

2. Backward Elimination – start from the most complex model, and remove terms
one at a time until further removal makes the fit (too much) worse.

Note that these different strategies can lead to different models being selected in
some cases – they do not guarantee that the global best model will be found.

At each step of the stepwise regression procedure, we must decide whether or
not to add/remove a term, or whether to stop. Note that adding more terms will
always increase the R2 value, since adding more parameters will always allow an
improved fit. However, if terms are included that are no appropriate (i.e. have
little/no predictive power) then the model will suffer from overfitting.

Akaike’s Information Criterion (AIC) is often used to make such decisions. This
score rewards models that better fit the data, whilst penalising those that use many
parameters. The best model is deemed to be the one with the lowest AIC (although
note that other information criteria exist).

Task 8:

The inbuilt R dataset swiss contains standardized fertility measure and socio-economic
indicators for 47 French-speaking provinces of Switzerland.

1. Create a linear model regressing Fertility on all other variables, using the com-
mand:
m1 = lm(Fertility∼.,data=swiss)

Are all terms significant?

2. Use the step function – i.e. use the command step(m1) – to perform backward
elimination stepwise regression, in order to automatically remove inappropriate
terms. Which term(s) were removed? What is Akaike’s Information Criterion
(AIC) corresponding to the final model? Are all terms in the resulting model
significant?

Task 9:

The inbuilt R dataset attitude contains data from a survey of clerical employees.

1. Create a linear model regressing rating on complaints, and store the model
in a variable called m1.

2. Use the step function to perform forward selection stepwise regression, in or-
der to automatically add appropriate terms, using the command:
m2 = step(m1,.∼.+privileges+learning+raises+critical+advance)

Which term(s) were added? What is Akaike’s Information Criterion (AIC)
corresponding to the final model? Are all terms in the resulting model signif-
icant?
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6 Estimation of Parameters for the Simple

Linear Regression Model

In this section, we will consider how the parameters α̂ and β̂ can be estimated
in the case of simple linear regression.

We want to find the optimal parameter estimates α̂ and β̂ that result in the
model optimally fitting the observed data. Specifically, we want to maximise the
likelihood of observing these particular parameter values, given the data. This can
be written:

L(α, β|x1, . . . , xn, y1, . . . , yn)→ max

However, we known that:

L(α, β|x1, . . . , xn, y1, . . . , yn) =
n∏

i=1

f(yi|xi;α, β)

=
n∏

i=1

1√
2πσ2

e
−(yi−E(yi))

2

2σ2

=
n∑

i=1

(
−1

2
log(2πσ2)− (yi − E(yi))

2

2σ2

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − E(yi))
2

Consequently,
L(α, β|x1, . . . , xn, y1, . . . , yn)→ max

happens when:

S =
n∑

i=1

(yi − ŷi)2 → min

This is equivalent to:

S =
n∑

i=1

(yi − α̂− β̂xi)2 → min

or, noting that εi = yi − ŷi:

S =
n∑

i=1

ε2i → min

So the optimal estimates of α and β are achieved when the residual sum of squares
(S) is minimised. Consequently, the maximum likelihood estimates and least squares
estimates of α and β are equivalent (due to model form and distributional assump-
tions).

This optimisation problem may be solved by equating the differentials of S with
respect to α̂ and β̂ to zero, and simultaneously solving them thus eliminating α̂ and
finding β̂, and subsequently deducing α̂.

As an aside, note that α̂ and β̂ are themselves random variables, and thus have
distributions. Consequently, so does the fitted value ŷ.

Task 10:

Starting from the equation:

S =
n∑

i=1

(yi − α̂− β̂xi)2 → min
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derive the formula for β̂, and subsequently α̂.


