Twinning and other pathologies

Andrey Lebedev

CCP4

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

OD-structures

- identical layers
- identical interfaces between the layers
- but: two or more ways of packing three adjacent layers
 - *) MX: "identical" means Ca r.m.s.d. < 1 A

- *) S_1 and S_2 . are called stacking vectors
- two-dimensional periodicity
- a potential for disorder in the third dimension

Example 1: OD-twin

L-2-haloacid dehalogenase from *Sulfolobus tokodaii* Rye *et al.* (2007) *Acta Cryst.* **D**67

The diffraction images can be indexed in C2 with two different orientation of the crystal

Some reflections from two lattices overlap.

C2

C2

Real and reciprocal lattices

Twinning by reticular merohedry with twin index 10 and obliquity 0.1°

Integration of a single lattice: in effect, twinning coefficient depends on h

Intensities of the overlapping reflections

Fourier transform of the tetramer

Diffraction pattern of domain 1 Diffraction pattern of domain 2

Tetramers in different twin domains are in the same orientation

Therefore, if reflections of the two lattices overlap, they have close intensities. The stronger the overlap, the closer the intensities are.

Demodulation

Original data: R / R-free = 0.21 / 0.27

Modulation function

 $q'(h) = p_0 + p_1 \cos(2\pi th) + p_2 \cos(4\pi th) + \dots$

Patterson Map

Indexed lattice

The second lattice

Non-origin peaks in the Patterson map:

- contribution from the second lattice
- because of the overlapping spots

Z/

Improvement in the electron density

Visually, improvement occurred only for the electron density for solvent molecules (Poor density for solvent was the original reason for data revision)

The electron density maps (2-1 at 1.5σ and 1-1 at 3σ) around the pyruvate molecule before and after demodulation

OD-structures

Classification: OD-structures vs. twins

This is structure based classification of a specific class of structures

This is geometry based classification accounting for crystal and lattice symmetries.

Symbols for groupoid symmetry

 $P \ 1 \ 2 \ (1) \\ \{ \ 2_{P} \ 1 \ (2_{2}) \}$

In 2_p , P is a non-integer subscript.

Special values of P correspond to space group symmetry or specialised groupoid symmetry

The following types are possible

(I) two surfaces of a single layer are identical;

(II) two surfaces of a single layer are different and contacts are made by different surfaces.(III) two surfaces of a single layer are different but contacts are made by identical surfaces.

An example of symbol for groupoid of type (III):

Ρ	1	1	(4)	1	1	
{	2 _P	2 _Q	(1)	2 _U	$2_{\rm V}$	}
{	2 _{P'}	2 _{Q'}	(1)	2 _{U'}	2 _{V'}	}

Example 2: OD-twin with zero obliquity

Uppenberg *et al.* (1995). *Biochemistry* **34**, 16838-51.

Molecule: Lipase B from *Candida antarctica*

PDB code 1lbs

Space group: C2 a = 95.9 Å, b = 95.6 Å, c = 81.8 Å β =122.2°

OD layer: $P(2)2_12_1$

 The data were processed in C2 but in the twin lattice (twin index = 3)

a'=229.5 Å, c'=86.8Å, <mark>β =90°</mark>

- non-overlapping reflections from the minor twin component were removed
- overlapping reflections were detwinned

Example 2: OD-twin with zero obliquity

This packing could be assumed by similarity with the previous example

This packing is more likely to occur as it explains the exactly orthorhombic twin lattice

The previous example: This example: twin index 10 twin index 3 obliquity 0.1° obliquity 0°

In general, protein OD-twins frequently have zero obliquity (twins by metric merohedry)

Example 3: allotwin

Crystals of Lon protease Resolution 3Å

Dauter *et al.* (2005). *Acta Cryst.* D**61**, 967-975.

P2₁	a = 48.5 Å
. –1	b = 86.3 Å
	c = 138.0 Å
	β = 92.3°

1-1-1	P2	1 ² 1	1 ² 1	
-------	----	------------------	------------------	--

a = 86.3 Å b = 90.6 Å c = 148.0 Å

Example 3: allotwin

Crystals of Lon protease Resolution 3Å

Dauter et al. (2005). Acta Cryst. D61, 967-975.

Structures of both crystal forms were solved

0.21/0.31

R / R-free

0.19 / 0.35

Four types of domains

Crystal disorder

Twinning, partial disorder: Missing global periodicity

Example 4: partially disordered OD-structure

Wang *et al.* (2005). *Acta* Cryst. D**61**, 67-74.

Crystals of Phi29 DNA polymerase Resolution 2.2Å

The translation symmetry is not global in the direction a^* .

The diffraction pattern is characterized by the presence of the diffuse streaks along *a**.

The structure was solved using demodulated data and experimental phasing

Refinement against corrected data: R=0.28

Example 5: Partial disorder with several stacking vectors

Trame, C. B. & McKay, D. B. (2001). *ActaCryst.* **D57**, 1079–1090.

model of P222₁ single crystal

model of disordered crystal

Heat-shock locus U protein from Haemophilus influenzae and its complexes

Several crystal forms, all partially disordered OD belonging to different OD-families.

Data:	
Resolution	2.3Å
Processed in	P622
a = 110.6, c = 335.	.8

OD layer: P(6)22

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Twins by reticular merohedry (inc some OD-twins), allotwins, disordered structures

- Can be readily seen in diffraction images (with spot predictions shown)

Important special case: twinning by (pseudo)merohedry

- All spots overlap with related spots from another individual crystal
- Detection requires analysis of intensity statistics
- More significant effect on model if ignored
- Point group and, consequently, space group determination may be a problem

some weak reflections vanish

Twinning by merohedry

- higher lattice symmetry is determined by crystal symmetry

Twinning by pseudomerohedry

- specialised unit cell parameters

Twinning analysis

Two reasons to show this slide

- Crystal content analysis may help recognising twinned crystal
- Deterministic case: structure cannot be "solved" in wrong space group

Not always that easy

Monoclinic OD-twin (twin by pseudomerohedry)

Au et al. (2006). *Acta Cryst*. D**62**, 1267-1275.

Ferrochelatase-1 from B. anthracis

PDB code 2c8j

Space group:P21Resolution2.2Å

a = 49.9, b = 109.9, c = 59.4 Å $\alpha = \beta = \gamma = 90^{\circ}$

OD layer: P2(1)1

Monoclinic OD-twin (twin by pseudomerohedry)

P2₁2₁2 symmetrised structure

Molecules shifted along **c** by 2.5Å R-free = 40%

Twinning was suspected only after several unsuccessful attempts at solving structure in an orthorhombic space group

P2₁ true structure

The lattice is exactly orthorhombic R-free = 27%

Enantiomorphic stacking vectors

(1)

Structures (1) and (2)

- belong to different space groups:
 - (1) P3₁ (2) P3₂
- are not necessarily related by inversion
- but have the same structure amplitudes:

F(1) = F(2)

 and belong to the same OD family

(2)

Enantiomorphic stacking vectors

Gulbis et al. (1996). Structure of the	Space group:	P3 ₂ 21
C-terminal region of p21WAF1/CIP1	a = 83.5 Å, c = 233.9Å	
complexed with human PCNA.		
<i>Cell</i> 87 , 297–306.	OD layer:	P(3)21

PDB code 1axc

Structure:	from PDB	generated
Space group:	P3 ₂ 21	P3 ₁ 21
R (%):	22.09	22.35
R-free (%):	29.15	30.02

Asymmetry of OD layer is within 0.2Å, but it helps choosing the right space group

Examples of crystal pathologies

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Resolution bins (resolution shells)

s < s(h,k,l) < s + ds<I>(s) = mean(I(h,k,l))

.

h=0

. • • • • • • • • • • • • • • • • • • •

 $< I > (s) \approx C^* \exp(-2^* B^* s^2)$

B - Overall temperature factor

Normalised intensity: Second moment

a few weak reflections

Normalised intensity: Cumulative distribution

 $\{Z(hkl)\}$ --> sort --> $\{Z_i\}$

 $Z_1 < Z_2 < Z_3 < \dots < Z_N$

Theoretical distribution of intensities

Pseudosymmetry

twin axis

Twinning axis || NCS axis

Theoretical distribution of intensities

Theoretical distribution of intensities

Monoclinic OD-twin (twin by pseudomerohedry)

P2₁2₁2 symmetrised structure

Molecules shifted along **c** by 2.5Å R-free = 40%

Twinning was suspected only after several unsuccessful attempts at solving structure in an orthorhombic space group

P2₁ true structure

The lattice is exactly orthorhombic R-free = 27%

Two good, two bad

C-terminal domain of gp2 protein from phage SPP1 perfect twin

Bad example 1

PDB code 1l2h partial twin

Bad example 2

human deoxycytidine kinase single crystal

Twinning tests in CCP4I (ctruncate)

	CCP4 Program Suite 6.1.2 CCP4Interface 2.0.5 running on macf32-7.local Project: Andrey										
									Change Project Help		
1	 Data Reduction	-	1	16:02:19	FINISHED	truncate_anl	1m14	\Box	Directories&ProjectDir		
	Data Processing using Mosfim								View Any File	1	
	Import Integrated Data								View Files from Job -		5
	Find or Match Laue Group								View LogFile in Web Browser		
	Scale and Merge Intensities								View LogSummary in Web Browser		
	Utilities								View Log File		
	Automated Data Processing								View Log Graphs		6
2 3	 🔻 Check Data Quality								View Annotated Log in Web Browse	r	
	 Analysis with ctruncate								Input files		
	Analysis with sfcheck								twin.mtz		
									Output files		
									Manu Command Sprints		
									View Command Scripts Add notebook entry		
								∇	The INICOURT CHITY		
									Mail CCP4 Exit	1	

		$\bigcirc \bigcirc \bigcirc \bigotimes$ X Truncate - Convert Intensities to SFs Initial parameters from /Users/lel	bedev/Des	ktop					
				Help					
		Job title 1ml4							
		Input data are intensities from Scala 💴			L				
		🗇 Use old Truncate program			L				
4	\rightarrow	🔳 Ensure unique data & add FreeR column for 0.05 🛛 fraction of data. 🔟 Copy FreeR	from anoth	ner MTZ	L				
		Extend reflections to higher resolution:							
		MTZ in 1006_04_Hem1: pointless1_scala1.mtz	Browse	View					
		MTZ out 1006_04_Hem1: pointless1_truncate2.mtz	Browse	View					
		Identifier to append to column labels			L				
		Ctruncate options			L				
		Output MTZ Labels			Ż				
		Run 🔤 Save or Restore 📼	Clos	e y	97.				

Cumulative intensity distribution

To compare: Red: Acentric theoretical, Blue: Acentric observed $Z \approx |E|^2$

Untwinned data

Twinned data

> Cumulative intensity distribution> Cumulative ... (Centric and acentric)

Second moments of Z (fourth moments of |E|)

Compare the experimental curve with the line $\langle E^4 \rangle = 2$

Untwinned data

> Acentric moments of E for k=1,3,4> 4th moments of E ...

Twinned data

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

H-test and L-test

L = |J1 - J2| / (J1 + J2)

sublattices with strong and weak reflections (pseudotranslation)

H = |J1 - J2| / (J1 + J2)

twin axes

H-test and L-test

sublattices with strong and weak reflections (pseudotranslation)

Theoretical distribution of H

Distribution of H can be perturbed by NCS and weak observations

Blue:

ideal distribution for partial twin

Green: blue + effect of NCS axis || twin axis

Red:

green + effect of
intensities with small I/ sig(I)

Examples of experimental P(H)

An almost ideal case

+ effect of NCS axis || twin axis + effect of intensities with small I/ sig(I)

H-test and L-test

sublattices with strong and weak reflections (pseudotranslation)

H = |J1 - J2| / (J1 + J2)

twin axes

Theoretical distribution of L

Distribution of L can be strongly perturbed by weak observations

Pseudotranslation

Crystallographic translation

Pseudotranslation C/2

Planes 2L+1 contain weak reflections

Crystallographic translation

Limiting case, C' = C/2

• Weak reflections vanish

Two times larger reciprocal lattice spacing

Statistics of <u>one</u> intensity are strongly affected by pseudotranslation

1jjk: Pseudotranslation results in alteration of 000 strong and weak reflections 0 100.0 100.0.2.0 .

> Acentric moments of E for k=1,3,4
> 4th moments of E ...

L-test and H-test are not affected by pseudotranslation

> L test for twinning> cumulative distribution function for |L|

> H test for twinning (operator ...)> cumulative distribution function for |H|

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

Why so many tests?

		s of one vation	Statistics of two observations		
	P(Z)	<z^2></z^2>	H-test	L-test	
Specific for a given resolution shell	No	Yes	No	No	
Specific for a given twin operation	No	No	Yes	No	
Can detect perfect twinning	+	+	-	+	
Works for incomplete data	+	+	_	+	
Insensitive to pseudotranslation	-	_	+/-	+	
Insensitive to anisotropy	_	—	+/-	+	
Insensitive to weak reflections at high resolution	—	(—)	—	_	

Are these tests always sufficient?

How to handle the cases with strong pseudosymmetry?

Validation of crystallographic symmetry:

refinement in space groups compatible with

- unit cell
- current model (considered as at least approximately correct)

OD-structures

Twinning by (pseudo)merohedry

Statistics of one observation

Statistics of two observations

Twinning tests summary

Space group validation

YSBL server

http://www.ysbl.york.ac.uk/YSBLPrograms/index.jsp

CCP4I interface

CCP4I > Validation & Deposition > Validate space group

000)	🔀 Zanuda							
				Help					
Job title				$\Box \Box$					
Transform input model and data into subgroups of the pseudosymmetry space group (PSSG)									
and REFINE all transformed models and save the best model 🖂									
SYMMETRYSE input model (i.e. transform it into PSSG) before further transformations									
MTZ in	Full path	/Users/andrey/1-Shelf/ZanudaGUI/22_Src/Examples/01_std.	Browse	iew					
PDB in	Full path	/Users/andrey/1-Shelf/ZanudaGUI/22_Src/Examples/01_std.	Browse	iew					
MTZ out	zn01	model_zanuda1.mtz	Browse	iew					
PDB out	zn01	model_zanuda1.pdb	Browse Vi	iew 🗸					
	Run	Save or Restore	Close						

Starting from ccp4-6.3.0 (forthcoming release)

Pseudotranslation: what else can go wrong?

Cell and H-M symbol are the same

Crystallographic and pseudosymmetry axes are confused

Molecular Replacement:

- Two structures are globally very similar (e.g. rmsd = 0.5A)
- MR can in some cases pick up a wrong solution

An example of symmetry correction

PDB code:	1yup	
space group (PDB):	P1	8 molecules per a.u.
space group (true):	P2 ₁	4 molecules per a.u.
Pseudo-symmetry space group: (because of pseudo-translation)	C2	2 molecules per a.u.

Monoclinic structures related to 1yup

Structure solution and symmetry validation

Zanuda: limitations

Assumptions:

- The pseudosymmetry is very strong (r.m.s.d. from exact symmetry \approx 1A)
- The structures of individual molecules are almost correct
 - although they might have been refined / rebuilt in an incorrect space group

If assumptions are not satisfied, the results will likely to be wrong.

Four alternative solutions in two space groups

GAF (N-terminal) domain of CodY protein from Bacillus subtilis Levdikov, V. M. et al. (2006). J Biol Chem 281, 11366-73.

Twinned crystal with pseudo-symmetric substructure

Human macrophage receptor CLEC5A for dengue virus Watson, A. A. et al. (2011). J Biol Chem 286, 24208-18.

3-fold axes with respect to the true structure:

- ▲ crystallographic
- $\Delta \Delta$ pseudosymmetry for (A)

- Substructure (A) is common for twin individuals
- Substructure (B) is not even approximately symmetric relative to \triangle and \triangle
 - The choice of correct origin was essential for structure completion

Acknowledgements

Eleanor Dodson Roberto Steiner Zbigniew Dauter Gleb Bournkov Michail Isupov Garib Murshudov University of York King's College, London APS, Chicago EMBL-Hamburg University of Exeter MRC LMB Cambridge

All the authors of cited papers

Zanuda: space group validation

Algorithm:

- From input model: determine pseudosymmetry space group (PSSG)
- From PSSG: select subgroups with observed unit cell
- For each such subgroup:
 - Convert model and data into the subgroup
 - Restrained refinement
- Repeat refinements of the best (R-free) model
 - Starting from P1
 - Adding the best (r.m.s.d.) symmetry element at each refinement
 - » Terminate if there is no symmetry elements to be added
 - » Terminate and cancel the last symmetry element if R-free jumps

Tutorial

Ferrochelatase-1 Tutorial:

Space group assignment in the presence of pseudosymmetry and twinning

Data:

http://www.ysbl.york.ac.uk/mxstat/andrey/hemh.html

- OD-twin by pseudomerohedry
- use of pointless for point group detemination in a relatively difficult case
- use of molecular replacement

Beginning of refinement:

The structure and data are unrelated (data correspond to different structure) Twinning coefficient would converge to 0.5

Crystallography Course LMB

Switching to twin refinement

