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Lange galt die Abwesenheit eines Zytoskeletts in Prokaryoten als ein
wichtiger Unterschied zu Eukaryoten. Forschungen zeigen nun, dass auch
Prokaryoten Aktin und Tubulin besitzen, mit Aufgaben in der Plasmid-
trennung, Zellteilung oder -formgebung.

Historically, one of the criteria for distinguishing eukaryotes from pro-
karyotes was the presence of a cytoskeleton. Research now shows that
prokaryotes possess actin- and tubulin-like proteins driving plasmid
segregation, cell division and shape.

ó Bis in die 1990er-Jahre wurde angenom-
men, dass Bakterien keine Kontrolle über die
Position ihrer Proteine und Enzyme besäßen.
Mit der Entdeckung des bakteriellen Zyto-
skeletts hat sich diese Sichtweise geändert
[1]. Das prokaryotische Zytoskelett besteht
aus Filament-bildenden Aktin-, Tubulin- und
Intermediärfilament-verwandten (IF-) Protei-
nen, die für eine Subkompartimentalisierung,
Zellpolarisierung und -formgebung sorgen.
Sie können in dynamische (Nukleotid-bin-
dende) oder statische Filamente eingeteilt
werden. Die dynamischen Filamente verrich-
ten ihre Arbeit als lineare Motoren, indem sie
Objekte durch die Zelle ziehen oder schieben
und werden auch als cytomotive filaments

bezeichnet [2]. Bisher sind noch keine her-
kömmlichen Motorproteine wie Kinesin, Myo-
sin oder Dynein in Bakterien gefunden wor-
den, sodass davon ausgegangen werden kann,
dass der lineare Motoraspekt der prokaryoti-
schen Filamente evolutionär der ältere ist.
Erst im Laufe der Evolution wurden die Fila-
mente statischer und das „Skelett“ rückte
mehr in den Vordergrund, wie wir es heut-
zutage von den eukaryotischen Proteinen ken-
nen.

Die prokaryotische Tubulin-

Proteinfamilie

Der eukaryotische Prototyp ist αβ-Tubulin als
Baustein der Mikrotubuli. Zu den prokaryo-

tischen Tubulinproteinen gehören bislang
drei Vertreter: FtsZ, BtubA/B und TubZ
(Abb. 1 und 2).

FtsZ findet sich nahezu ubiquitär in Bak-
terien und Archaeen. Zusätzlich besitzen Ver-
rucomicrobia BtubA/B und einige Bacillus-
Plasmide TubZ. Trotz beträchtlicher Unter-
schiede in der Sequenz sind allen Tubulin-
proteinen die Rossmann-Faltung und die GTP-
abhängige Polymerisierung gemein (Abb. 2,

[3, 4]). Die longitudinalen Kontaktflächen sind
für alle Proteine nahezu identisch. Die laterale
Interaktion von Protofilamenten unterschei-
det sich jedoch grundlegend zwischen den
einzelnen Proteinen dieser Klasse, und es
sind diese Unterschiede, die die biologische
Vielfalt erzeugen (Abb. 2).

Tubulin bildet hohle Zylinder aus paralle-
len Protofilamenten, die Mikrotubuli. Für FtsZ
hingegen werden, je nach Versuchsanord-
nung, ringförmige, lineare oder gebündelte
Filamente beobachtet. FtsZ-Filamente bilden
den sogenannten Z-Ring in der Zellmitte und
definieren so den Ort der Zellteilung (Abb.

2B), an den weitere Proteine rekrutiert wer-
den (Divisom). Es besitzt die Fähigkeit, eigen-
ständig eine konstriktive Kraft auf die Zelle
auszuüben [5], indem es an membranveran-
kerte Proteine bindet und die Membran wäh-
rend der Zellteilung einschnürt.

Auch TubZ besitzt die konservierten Tubu-
lin-ähnlichen longitudinalen Kontakte, trotz-
dem bildet es ein vollkommen anderes Poly-
mer (Abb. 2A, [3]). Eine geringe Neigung
innerhalb eines Monomers induziert einen
Twist des gesamten Filaments, sodass eine
Doppelhelix gebildet wird, die nicht Tubulin,
sondern der Struktur polymerisierten F-
Aktins entspricht. Als Bestandteil des TubZ/
TubR/tubC-Plasmid-Partitionierungssystems
(Typ III) schiebt TubZ replizierte Plasmide in
die Tochterzellen (Abb. 2B).

BtubA/B bilden in vitro dimere Filamente,
die sich zu einem Komplex aus 20 bis 30 Fila-
menten bündeln können. BtubA- und BtubB-
Dimere sind den Tubulin-Dimeren in ihrer
Aminosäuresequenz sowie strukturell er-
staunlich ähnlich, weshalb angenommen
wird, dass BtubA/B das Resultat horizonta-
len Gentransfers ist. Trotz dieser Ähnlichkeit
benötigen sie keine Kofaktor-Maschinerie zur
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˚ Abb. 1: Die cytomotive filament-Systeme des bakteriellen Zytoskeletts. Links: Tubulin-ähnliche
Proteine; rechts: Aktin-ähnliche Proteine. FtsZ bildet einen Ring um die Mitte der Zelle. MreB-Fila-
mente sind möglicherweise helikal und kleiden die Membraninnenseite aus. TubZ und ParM bilden
doppelhelikale Filamente, die Plasmide durch die Zelle schieben. Die Filamentstrukturen von
BtubA/B und der WACAs sind noch unbekannt.
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Proteinfaltung, die für Tubulin so essenziell
ist. Die biologische Funktion von BtubA/B ist
unbekannt, und es ist auch unklar, welche
Filamente BtubA/B in Zellen bildet.

Die prokaryotische Aktin-

Proteinfamilie

Der prokaryotischen Aktin-Klasse gehören
folgende Proteine an: MreB, ParM, FtsA,
MamK, AlfA und Alps. Die strukturelle Ver-
wandtschaft zu Aktin wurde zuerst für MreB
berichtet (Abb. 3, [6]). Aktinproteine erfah-
ren eine deutliche Konformationsänderung
während der Hydrolyse, nach der – aufgrund
der dann geöffneten Monomerstruktur – kei-
ne Polymerisation mehr möglich ist.

Die longitudinalen Protofilamentkontakte
von MreB sind nahezu identisch zu denen
von polymerisiertem Aktin (Abb. 3A). MreB
ist in allen „nicht-runden“ Bakterien zu finden
und zeigt in einigen Studien Spiralen, die sich
entlang der Innenseite der Zellmembran
erstrecken (Abb. 3B, [7]). Hierdurch werden
die Integrität der Zelle von innen stabilisiert
und gleichzeitig Proteinkomplexe assembliert,
die für die Zellwandsynthese und damit das
laterale Zellwachstum verantwortlich sind
(Elongasom).

Zwei ParM-Protofilamente bilden eine
Doppelhelix, die (im Gegensatz zu Aktin)
linksgängig ist (Abb. 3A, [8]). Die Polymeri-
sation folgt jedoch nicht dem Aktin-tread-
milling-Prinzip, stattdessen bildet ParM
durch NTP-Kappen stabilisierte Polymere.
Diese sind wie Tubulin dynamisch instabil
und zerfallen bei Hydrolyse der Kappen.
ParM ist Teil des ParM/ParR/parC(ParMRC)-
Plasmid-Partitionierungssystems (Typ II)
und damit verantwortlich für die korrekte
Verteilung von Plasmiden in die Tochterzel-
len [8]. Von großem Vorteil ist dabei die
dynamische Instabilität der ParM-Filamente:
Die sich schnell wiederholende Abfolge von
Filamentbildung und -zerfall (ungefähr 200-
mal schneller als bei Aktin) ermöglicht es
ParM, nach den Plasmiden zu „suchen“
(search and capture-Modell, Abb. 3B, [9]).
Das ParMRC-System hat viele Gemeinsam-
keiten mit TubZRC einschließlich der dop-
pelhelikalen Filamente, jedoch bestehen die
Filamente aus Aktin-ähnlichen Proteinen.
Dies ist ein offensichtliches Beispiel für kon-
vergente Evolution, die doppelhelikalen Fila-
mente scheinen sich sehr gut für die Plas-
midverteilung in der Zelle zu eignen und
sind gleich zweimal, unter der Benutzung
verschiedener Proteine, während der Evolu-
tion entstanden.

Über die Funktion der weiteren bakteriel-
len Aktinproteine ist bislang wenig bekannt.
FtsA zeigt, von einer Subdomäne abgesehen,
die gleiche Aktinstruktur und bildet wahr-
scheinlich auch Aktin-ähnliche Filamente
(Abb. 3A, [10]). AlfA und Alps (actin-like pro-
teins) sind ebenfalls an Plasmidpartitionie-
rungen beteiligt. MamK bildet in Magnetos-
pirillium eine Doppelhelix, die für die lineare
Anordnung von Magnetosomen zur Magnet-
feld-Sensorik benötigt wird.

Gibt es weitere prokaryotische

Zytoskelett-Proteine?

Crescentinfilamente verursachen die typische
Bananenform von Caulobacter crescentus

durch Ausbildung eines Polymers auf einer
Seite der Zelle, dessen coiled coil-Struktur an
eukaryotische Intermediärfilamente wie
Vimentin erinnert [11]. Eine andere Klasse,
Bactofiline, bildet ebenfalls IF-ähnliche Struk-
turen und ist in C. crescentus an der Regula-
tion der Mureinsynthese beteiligt.

Die große Klasse der WACA-Proteine (Wal-
ker A cytoskeletal proteins: Soj, ParA, MinD
etc.) führen durch Nukleotid-abhängige Poly-
merisation komplexe Aufgaben wie Chromo-
somsegregation (Soj), Plasmidaufteilung (Typ
I, ParA) oder Definition der Zellmitte für die
Ausbildung des Z-Rings (MinD) aus. Ent-
sprechend müssen sie ebenfalls den cytomo-
tive filaments zugeordnet werden [12].

˚ Abb. 2: Tubulin-ähnliche Proteine und Filamentsysteme. A, Strukturen der Tubulin-ähnlichen
Proteine. Die 3D-Struktur und longitudinale Interaktionen sind strikt konserviert. Die divergenten
lateralen Interaktionen führen zur Vielfalt der Filamente. B, Fluoreszenzmikroskopische Aufnah-
men von verschiedenen prokaryotischen Tubulin-ähnlichen Filamentsystemen. (Bilder aus Sontag
et al. (2005) J. Cell. Biol. 169, den Blaauwen et al. (2003) Mol. Microbiol. 47 und Larsen et al.
(2007) Genes Dev. 21.)
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Fazit

Das Zytoskelett von Bakterien ist ein hoch-
dynamischer Verbund aus einer Vielzahl von
Proteinen. Die Evolution verfolgte hier einen
eher pragmatischen Ansatz: Die Strukturen

der cytomotive filaments [2] sind entweder
Aktin- oder Tubulin-ähnlich und die Protofi-
lamentstrukturen sind in allen Fällen kon-
serviert. Die Eigenschaften wurden jedoch so
modifiziert, dass sie nicht mehr eindeutig

einer Proteingruppe zuzuordnen sind, son-
dern optimal der jeweiligen Funktion ange-
passt wurden.

Demnach entstand die Vielfalt der Proteine
wahrscheinlich aus den gleichen zwei Urfal-
tungen (Aktin und Tubulin), die sich anschlie-
ßend bei Prokaryoten durch konvergente und
divergente Evolution eine Vielzahl neuer
Eigenschaften erschlossen haben. Bei den
Eukaryoten erfolgte stattdessen eine Reduk-
tion der cytomotive filaments auf zwei Struk-
tur-bildende Filamente (Aktinfilamente und
Mikrotubuli) bei gleichzeitiger Explosion in
der Anzahl der Bindungspartner, die eine
überwältigende Vielfalt an regulierenden Fak-
toren und Motorproteinen hervorbrachte. ó
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˚ Abb. 3: Aktin-ähnliche Proteine und Filamentsysteme. A, Strukturen der Aktin-ähnlichen Pro-
teine. Auch hier führen verschiedene laterale Interaktionen zu unterschiedlichen Filamentstruktu-
ren, bei konservierten longitudinalen Kontakten und konservierten Strukturen. B, Fluoreszenz-
mikroskopische Aufnahmen von verschiedenen prokaryotischen Aktin-ähnlichen Filamentsyste-
men. (Bilder aus Vats et al. (2007) PNAS 104, Møller-Jensen (2003) Mol. Cell 12 und Ma et al.
(1996) PNAS 93.)
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