

1
2
3
4

5 **Divisome core complex in bacterial cell division 6 revealed by cryo-EM**

7
8

9 Lisa Käshammer*, Fusinita van den Ent*, Magnus Jeffery, Nicolas L. Jean, Victoria L. Hale,
10 Jan Löwe

11

12 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK

13 * authors contributed equally

14 Corresponding author: Jan Löwe, jyl@mrc-lmb.cam.ac.uk

15
16
17

18 **Keywords:** cell division, divisome, elongasome, cryo-EM, membrane proteins

19 Cell division, or cytokinesis is a fundamental process of life and, in most bacteria, is driven by
20 peptidoglycan synthesis at the septum¹. It is catalysed by the divisome, a multi-protein complex
21 with more than 20 components that spans the cell envelope in bacteria harbouring a cell wall².
22 Central to the divisome is the peptidoglycan-synthesising protein complex FtsWI, with the
23 transglycosylase (TG) FtsW polymerising glycan strands from its substrate Lipid II^{3,4}, and the
24 transpeptidase (TP) FtsI crosslinking peptide stems, thus forming a covalent mesh between
25 glycan strands^{5,6} (Fig. 1a). Septal peptidoglycan synthesis occurs after activation of the
26 divisome glycosyltransferase-transpeptidase pair FtsWI³, in particular through an interaction
27 with the heterotrimer FtsQBL⁷.
28 Here, we present the cryo-EM structure of the catalytic divisome core complex FtsWIQBL from
29 *Pseudomonas aeruginosa* at 3.7 Å resolution. The structure reveals the intricate details of the
30 periplasmic interfaces within FtsWIQBL, including the positioning of FtsI by the coiled coil of
31 FtsBL, as well as a transmembrane domain containing FtsWIBL but not FtsQ. With our
32 structure we are able to provide molecular mechanisms of a multitude of known mutations that
33 interfere with divisome activation and regulation. Finally, we reveal a large conformational
34 switch between presumably inactive and active states of the FtsWI core enzymes.
35 Our work is foundational for further structural, biochemical and genetic studies elucidating the
36 molecular mechanisms of bacterial cell division. Since the divisome peptidoglycan synthase is
37 essential for cell division in most bacteria, and is absent in eukaryotic cells entirely, it is a key
38 target of important antibiotics and antibiotic development⁸, and we suggest that our structure
39 will help to accelerate these efforts.

40

41 **Cryo-EM structure of the core divisome complex FtsWIQBL**

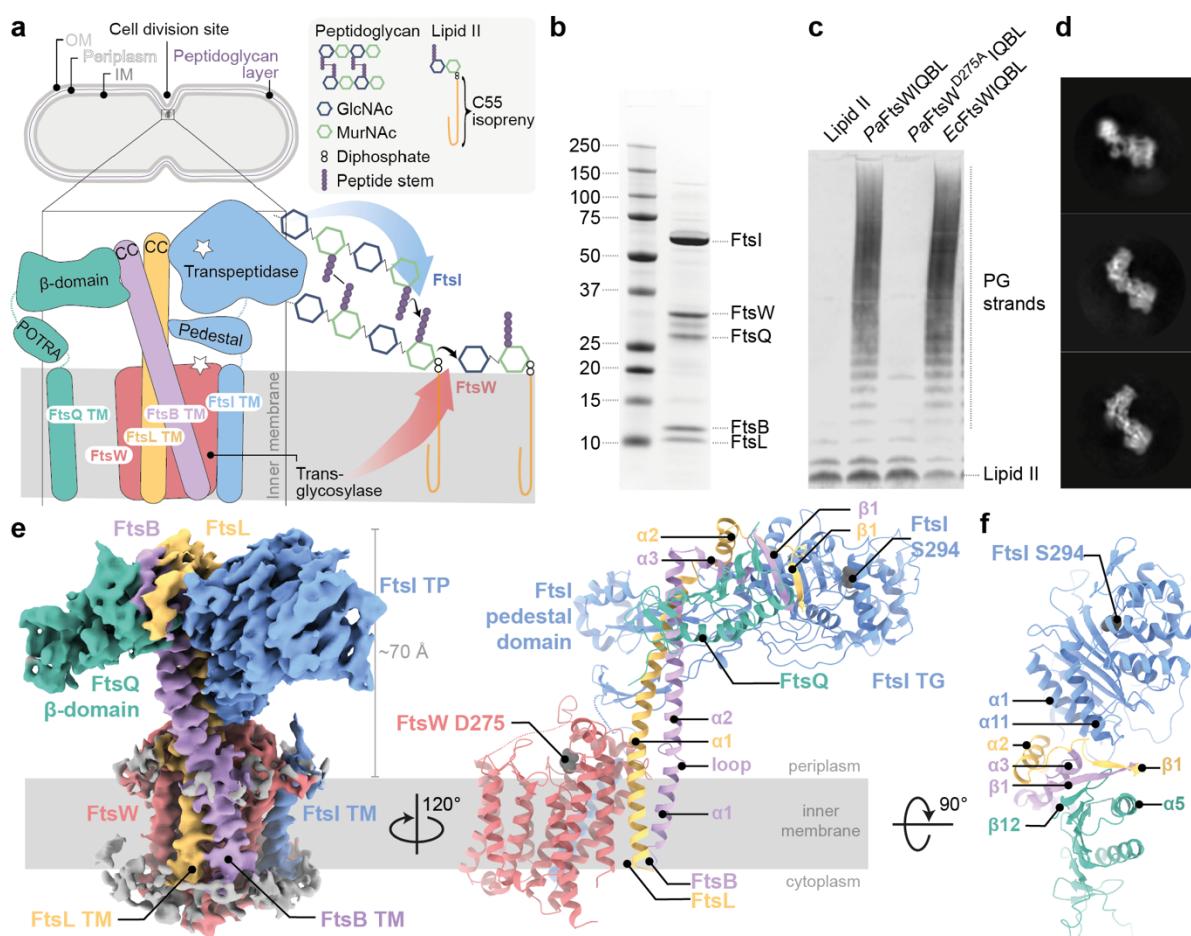
42 To solve the structure of the core divisome complex, we initially purified the *Escherichia coli*
43 *EcFtsWIQBL* complex expressed in insect cells (Fig. S1a). As the *EcFtsWIQBL* sample was

44 heterogeneous, we were unable to solve its structure and hence purified the *Pseudomonas*
45 *aeruginosa* *PaFtsWIQBL* complex expressed in *E. coli* (Fig. 1b and S1b). Both *EcFtsWIQBL*
46 and *PaFtsWIQBL* possess comparable transglycosylase activity, while the putative active site
47 mutant *PaFtsW^{D275A}IQBL* is inactive (Fig. 1c). This is in accordance with previous data where
48 the *PaFtsW^{D275A}IQBL* mutation caused filamentation in *P. aeruginosa* cells when
49 overexpressed and displayed reduced transglycosylase activity *in vitro*³. Having confirmed that
50 the purified *PaFtsWIQBL* complex produced peptidoglycan strands, we proceeded with single-
51 particle averaging cryo-EM and determined the structure of *PaFtsWIQBL* to a final overall
52 resolution of 3.7 Å (Fig. 1d, e, S1c-e, Table S1).

53 **General architecture of the FtsWIQBL complex**

54 All five proteins are resolved in the final cryo-EM reconstruction (Fig. 1d, e), with FtsQ being
55 partially disordered. The density for the membrane domain of *PaFtsWIQBL* reveals 13
56 transmembrane (TM) helices, including ten helices from FtsW plus one from each of FtsI, FtsB
57 and FtsL (Fig. S2a). Density for the FtsQ transmembrane helix (FtsQTM) was not observed (Fig.
58 S2b). The detergent micelle density was subtracted from the final reconstruction and the
59 position of the complex in the membrane was approximated using the Orientations of Proteins
60 in Membranes (OMP) webserver⁹ (Fig. 1e, S1b, c).

61 The periplasmic domains of the *PaFtsWIQBL* complex extend about 70 Å away from the
62 membrane in a Y-shape, with the FtsI transpeptidase domain (FtsI^{TP}) and the FtsQ β-domain
63 (FtsQ^β) located on opposite arms of the Y, and FtsBL connecting them (Fig. 1e, f). Interestingly,
64 only FtsQ^β is well-resolved, while density for the FtsQ polypeptide-transport-associated domain
65 (FtsQ^{POTRA}) is only visible in low-resolution maps at high contour level, and density for FtsQTM
66 is completely absent (Fig. S2d). FtsQ^{POTRA} adopts a slightly different orientation relative to
67 FtsQ^β compared to previously determined X-ray structures¹⁰⁻¹² (Fig. S2d). Taken together, this
68 shows that FtsQ is tethered to FtsWILB only via its FtsQ^β-FtsB interaction, while FtsQ^{POTRA}


69 and FtsQTM are flexibly attached in the current complex (Fig. 1f). As FtsQTM is not visible, we
70 assume it is not in the micelle that contains the other TM segments but might be surrounded by
71 detergent molecules separately. While it has been previously reported that FtsB dimerises and
72 could thus facilitate the dimerisation of core divisome components^{13,14}, we find no evidence for
73 higher oligomeric species in our cryo-EM data, and in our current structure dimerisation would
74 be hindered by the presence of FtsI or FtsQ.

75 FtsL and FtsB have similar folds, each consisting of a long α -helical coiled coil, followed by a
76 short α -helix and a β -strand. Interestingly, the FtsB α -helical coiled coil is interrupted by a
77 small, conserved loop just above FtsBTM that might aid with sterically maintaining the correct
78 insertion depth in the membrane (Fig. 1e, 2a). FtsB and FtsL interact with each other over their
79 entire lengths through mainly hydrophobic interactions, e.g. between FtsL ^{α 1} and FtsB ^{α 2} (Fig. 2a
80 and S3a).

81 The transglycosylase FtsW and transpeptidase FtsI share two interfaces. The first interface is in
82 the membrane, where FtsITM interacts with TM8 and TM9 of FtsW – an interaction that closely
83 resembles that of the previously reported RodA-PBP2 elongasome complex from *Thermus*
84 *thermophilus*¹⁵. The second interaction site is located between the extracellular loop 4 of FtsW
85 (FtsW^{EC4}) and the linker between FtsITM and FtsI^{pedestal}. Due to the flexibility of FtsI in this
86 region, not all contacts could be determined unambiguously.

87 It has been previously reported that the cytoplasmic tail of *E. coli* FtsL is required for the
88 recruitment of FtsW¹⁶. In the structure presented here, the FtsL cytoplasmic tail could not be
89 traced unambiguously. This could either point towards a transient interaction during
90 recruitment or species-specific differences in the recruitment due to the size of the cytoplasmic
91 tail (11 residues in *P. aeruginosa* vs. 34 residues in *E. coli*). However, we clearly observe FtsL-
92 FtsW interactions in the periplasm (FtsW^{EC1} and FtsL ^{α 1}), and within the membrane through

93 FtsW^{TM1} and the upper three turns of FtsLTM. In the latter, the lower part of FtsLTM twists away
94 from FtsW, due to its gyrating coiled-coil interaction with FtsB (Fig. S3b).

95
96 **Fig. 1: Biochemical and structural characterisation of the core divisome complex**
97 **FtsWIQBL from *P. aeruginosa*.**

98 **a)** Septal peptidoglycan synthesis by FtsWIQBL during Gram-negative bacterial cell division.
99 The transglycosylase FtsW (red), and transpeptidase FtsI (blue) bind the non-enzymatic
100 subcomplex FtsQBL (green, violet and yellow, respectively). The complex contains 14
101 transmembrane helices – ten from FtsW and one each from FtsIQLB. The transglycosylase
102 FtsW catalyses the polymerisation of GlcNAc-MurNAc disaccharides from Lipid II. The
103 transpeptidase FtsI crosslinks the peptides from the nascent chain to adjacent peptides in the
104 peptidoglycan layer between residues three and four. OM: outer membrane, IM: inner

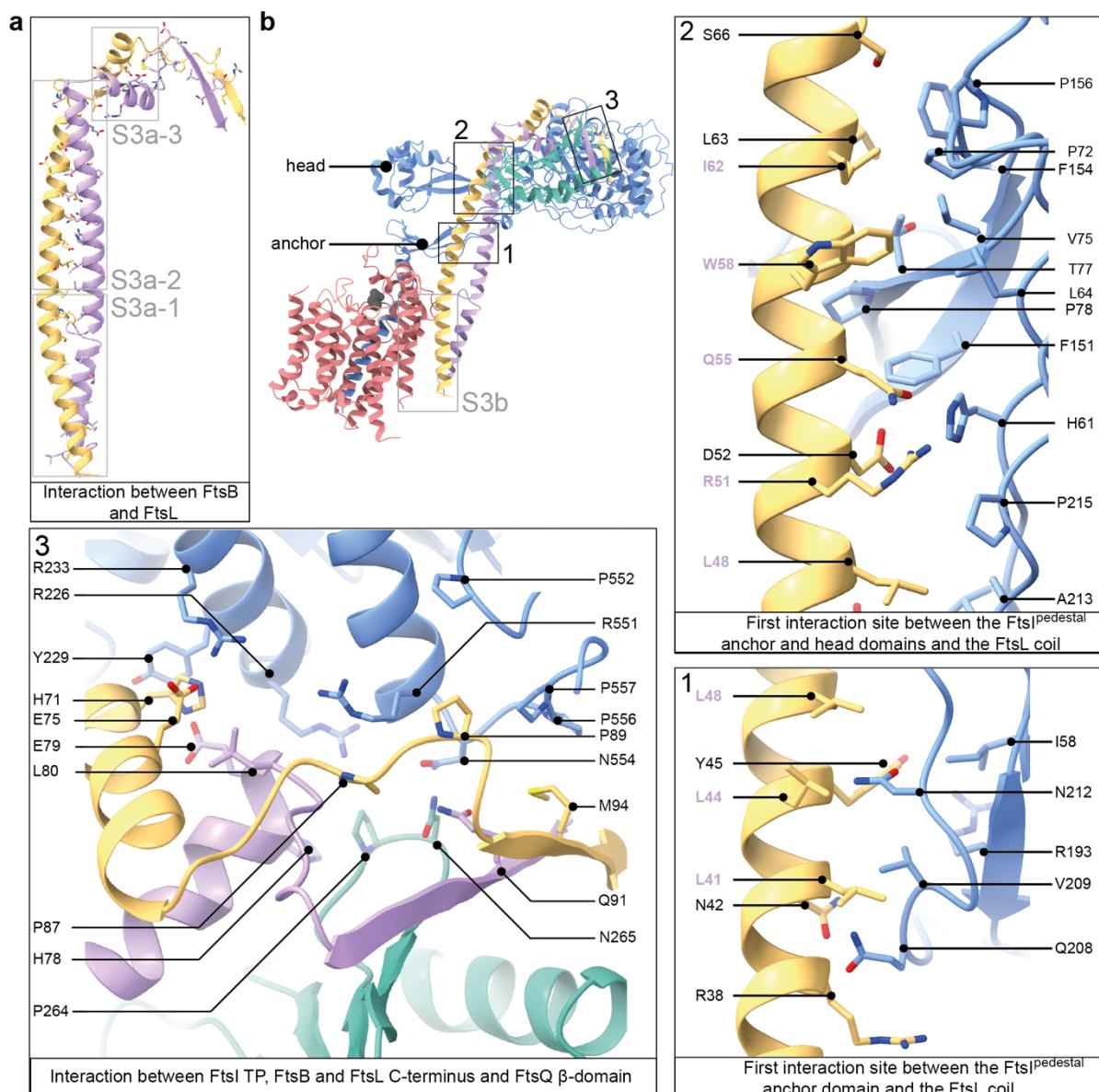
105 membrane, GlcNAc: N-acetylglucosamine, MurNAc: N-acetylmuramic acid, CC: coiled coil,
106 TM: transmembrane.

107 **b)** SDS-PAGE of the co-purified *PaFtsWIQBL* complex after size-exclusion chromatography.
108 **c)** Western blot showing glycan strand ladders synthesised by divisome core complexes from
109 Lipid II, demonstrating transglycosylase activity. The negative control does not contain any
110 *FtsWIQBL* (lane 1). WT *P. aeruginosa* and *E. coli* *FtsWIQBL* complexes (lanes 2 and 4) are
111 active transglycosylases, while the *P. aeruginosa* putative active site mutant *FtsW*^{D275A}*IQBL*
112 (lane 3) is inactive.

113 **d)** Three representative 2D classes of our *PaFtsWIQBL* cryo-EM data.
114 **e)** Left panel: side-view of the *PaFtsWIQBL* cryo-EM density at an overall resolution of 3.7 Å.
115 Protein colours are the same as those in a). Residual density from the detergent micelle is visible
116 around the transmembrane domain in grey. Right panel: model of *PaFtsWIQBL*, rotated by
117 120° with respect to the density on the left-hand side. The putative *FtsW* active site residue
118 D275 is indicated, as is the *FtsI* active site residue S294. The *FtsW* loop 219-233 and *FtsI* loop
119 45-50 are shown as a dotted line as they were too flexible to build. *FtsQ*TM and *FtsQ*^β were not
120 resolved and are not shown.

121 **f)** Top view of the periplasmic domain, showing interactions between *FtsI*, *FtsL*, *FtsB* and *FtsQ*.

122


123 **FtsIQBL interactions in the periplasm**

124 *FtsL* and *FtsI* form an extensive interface in the periplasm, with a total buried surface area of
125 1035 Å². The *FtsL*-*FtsI* interaction is facilitated by two sites: *FtsL*^{α1}-*FtsI*^{pedestal}, involving anchor
126 and head subdomain residues in *FtsI*^{pedestal}, and *FtsL*^{α2,β1}-*FtsI*^{TP} (Fig. 2b). Moving along the *FtsL*
127 coil, the first mainly hydrophobic and neutral interactions occur between *FtsL*^{α1} (residues L41-
128 L48) and the anchor subdomain of *FtsI*^{pedestal} (residues I58, R193, Q208-215, R193, Fig. 2b,
129 panel 1). *FtsI*^{pedestal} slightly wraps around *FtsL*^{α1}, forming a hydrophilic interaction site (*FtsI*
130 H61 with *FtsL* R51, D52 and Q55, Fig. 2b panel 2). The final, and mainly hydrophobic,

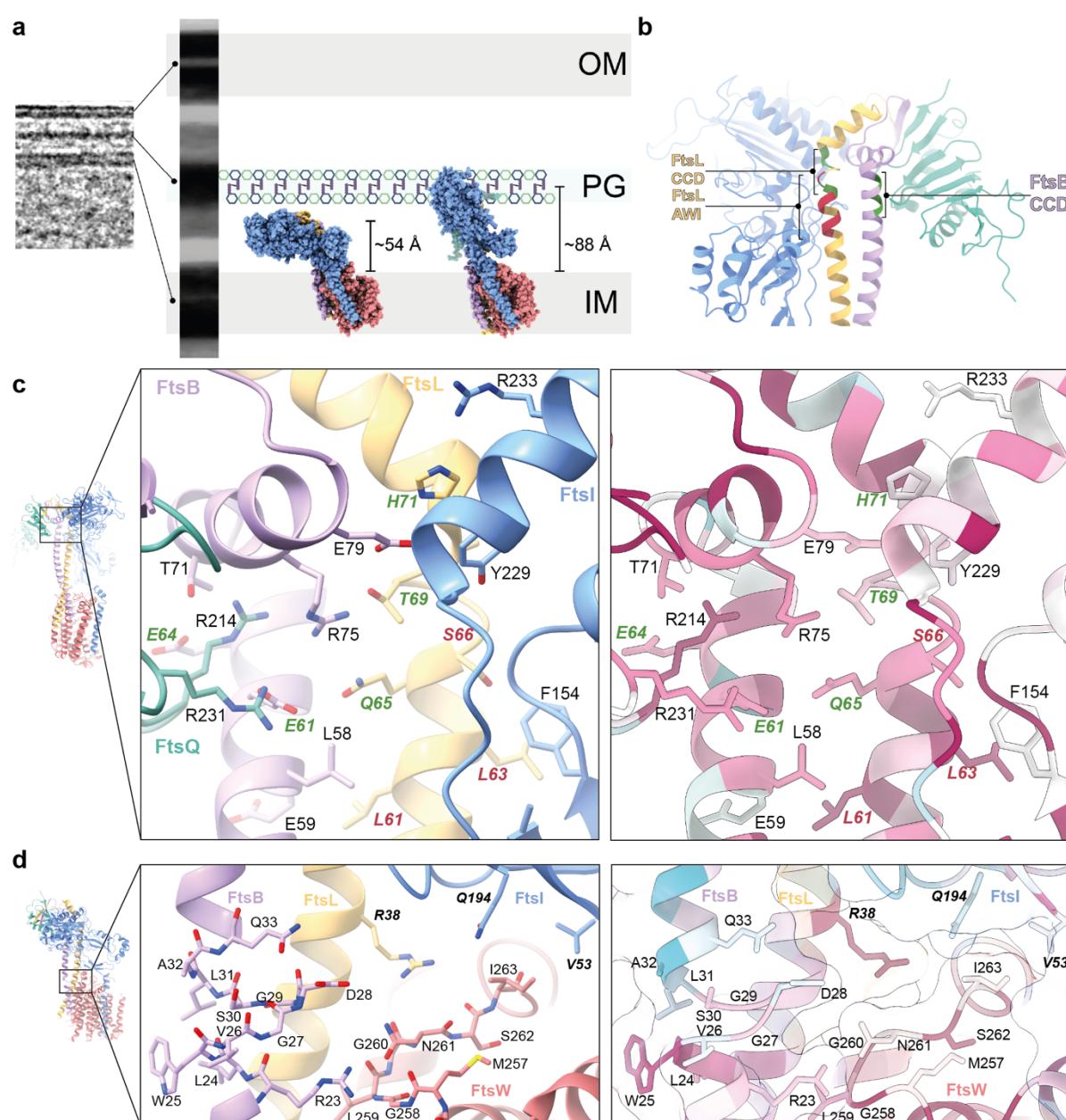
131 interaction site on FtsL^{α1} involves residues A56-S66 and residues located mainly in the
132 FtsI^{pedestal} head subdomain (L64, P72-P78, F151-P156, Fig. 2b panel 2). Importantly, no direct
133 interaction was observed between the FtsB coiled coil and FtsI (Fig. 2b, S3a).

134 The second FtsL–FtsI interaction site is located on top of the periplasmic domain (Fig. 2b panel
135 3): FtsL^{α2,β1}-FtsI^{TP}. H71 of FtsL^{α2} stacks against Y229 of FtsI^{TP} and is flanked by additional
136 residues in FtsB (E79, L80), FtsI (R233) and FtsL (E75). An additional hydrophobic interface
137 site is formed by several proline residues in both FtsL and FtsI^{TP} [P556, P557 (FtsI) – M94
138 (FtsL); P557, G478, P477 (FtsI) – P89 (FtsL); R551 (FtsI) - P87 (FtsL)]. Interestingly, FtsB^{α3}
139 and FtsB^{β1} frame a loop in FtsQ between β-strands 11 and 12, forming the only interaction site
140 between FtsI, FtsB and FtsQ [N554 (FtsI) – N265 (FtsQ) – Q91 (FtsB); R226 (FtsI) - P264
141 (FtsQ); R226 (FtsI) – H78 (FtsB, backbone), R551 (FtsI) – L80 (FtsB, backbone)]. FtsI adopts
142 a structure very similar to previously reported crystal structures¹⁷, with only minor changes in
143 the FtsI^{pedestal} domain, indicating that FtsL binding does not cause large rearrangements in FtsI^{TP}
144 (Fig. S4a).

145 Only a few FtsL-FtsQ contacts are present, however FtsL completes an extended β-sheet formed
146 between FtsQ^β strands β5 to β12 and FtsB^{β1}, by contributing its last β-strand (Fig. 1f, Fig. 2b
147 panel 3). The FtsB-FtsQ interaction recapitulates that of previously determined crystal
148 structures where only small parts of FtsB^{11,12} were resolved (Fig. S4a). In addition, the cryo-
149 EM structure shows an interaction between FtsB^{α2} (starting from E53) and FtsQ^β loops (R183,
150 S212-R214, R231). Interruption of the FtsB-Q interface with inhibitors based on the minimal
151 interface could be expected to also disrupt the interface in the context of the divisome core
152 complex¹⁸.

163

164 **Comparison with RodA-PBP2 structures and structure predictions**


165 Cell elongation in rod-shaped bacteria is facilitated by the elongasome that, like the divisome,
166 polymerises and crosslinks PG, but is positioned throughout the cell envelope by MreB
167 filaments¹⁹. RodA, the elongasome's transglycosylase is related to FtsW and has previously
168 been structurally characterised using X-ray crystallography both on its own and as a RodA-
169 PBP2 complex^{15,20} (the latter being homologous to FtsWI). The structures of *PaFtsW*
170 determined here and *TtRodA* are very similar, with the exception of TM7, which appears to be
171 somewhat flexible in the cryo-EM structure, straighter with respect to that of *TtRodA* and closer
172 to TM5 than in *TtRodA*-PBP2 (Fig. S4c). It has been postulated that the movement of TM7
173 could open a cavity for the binding of the lipid tail of Lipid II to RodA¹⁵ and the location of
174 TM7 in *PaFtsWIQBL* creates such a cavity. The putative catalytic residue D275A is located in
175 a deep, highly conserved cleft, as shown in Fig. S4d, that we suggest might harbour the sugar
176 moieties of Lipid II during the transglycosylase reaction.

177 The most striking observation when comparing *PaFtsWIQBL* with *TtRodA*-Pbp2 is the
178 difference in the relative orientations of the TP with respect to the TG domain, despite the fact
179 that the structures of the single proteins superimpose well on their own. Alignment of both
180 complexes on the FtsW/RodA subunits places *PaFtsI*^{TP} and *TtPBP2*^{TP} almost opposite to each
181 other, requiring a ~130° rotation of *PaFtsI*^{TP}/*TtPBP2*^{TP} for their interconversion (Fig. S5a). The
182 reason for this large difference is unclear, but is possibly caused by the presence of FtsQBL in
183 our divisome structure and the absence of binding partners such as MreCD in the elongasome
184 structure. Alternatively, the differences could be intrinsic to the elongasome and divisome
185 complexes or reflect different, distinct states in the regulatory/catalytic cycle of the enzyme
186 complexes.

187 We used AlphaFold 2 multimer²¹ (AF2) to predict *PaFtsWIQBL* and many large-scale and fine
188 features observed in the *PaFtsWIQBL* structure are predicted correctly by AF2, including the
189 lack of an interaction between the membrane-embedded FtsQTM and FtsWIBLTM. However, in
190 the AF2 model the periplasmic FtsIQBL interaction site is rotated upwards by about 30°,
191 moving FtsI^{TP} closer towards where the peptidoglycan layer is located (Fig. S5a). Furthermore,
192 a small rearrangement in the anchor subdomain FtsI^{pedestal}-FtsL^{u1} shifts the interacting residues
193 on FtsI^{pedestal} from 208-212 to 203-206. To understand the implications of these differences,
194 both structures were fitted into a to-scale model of the cell envelope of *E. coli*, produced from
195 a cellular electron cryo-tomogram (Fig. 3a). Using the cryo-EM structure, the active site of
196 FtsI^{TP} does not reach the peptidoglycan layer, but does so in the more extended AF2 model.
197 Since AF2 uses evolutionary couplings between amino acids²¹, in addition to protein structural
198 features that correlate with sequence, it more likely predicts the active state of FtsWIQBL that
199 one would expect to be selected for during evolution, and not the substrate-free form we
200 determined experimentally. Thus, the cryo-EM structure and AF2 prediction may represent the
201 inactive (apo) and active (catalytic) states of the divisome core complex, respectively. Since
202 our sample is active in vitro, we assume that substrate binding by Lipid II might play a key role
203 in the interconversion of the two states. Recently, a study on RodA-PBP2 reported a similar
204 upswinging mechanism²², which indicates that the concept of regulating the TP activity via
205 restricting its access to the PG layer might be conserved between the divisome and the
206 elongasome. However, significant differences exist between divisome and elongasome
207 regarding the conformation before the upswinging motion and most likely also between the
208 signals required to initiate this conformational change.

209 FtsN has been reported to trigger constriction in cells^{23,24}. It is the last protein to be recruited to
210 the division site in *E. coli* and its recruitment is dependent on the presence of earlier divisome
211 proteins, including FtsA, FtsQ and FtsI^{23,25-27}. However, we have not been able to generate a

212 biochemically-stable *E. coli* FtsN-FtsWIQLB complex and previous studies reported that the
213 addition of the FtsN periplasmic domain did not yield an increase in *P. aeruginosa* TG activity
214 *in vitro*⁷. Whether FtsN activates the core divisome beyond the TG activity levels seen here
215 through binding of FtsQLB, or whether the *in vitro* sample cannot be further activated will need
216 further investigations including addition of other divisome components, e.g. FtsA, FtsN and/or
217 DedD, as well as the substrate Lipid II. It is also possible that FtsN is involved in regulating TP
218 activity.

220 **Fig. 3: Interactions that affect divisome regulation.**

221 **a)** To-scale scheme of the *E. coli* cell envelope generated from a tomogram. The cryo-EM
222 FtsWIQBL atomic model (reported here, left) and the AlphaFold 2 prediction (right) are docked
223 into the inner membrane. The transpeptidase domain of FtsI does not extend to the
224 peptidoglycan layer in our structure, but does so using the AlphaFold 2 structure. The measured
225 distances of the active site residue FtsI^{S294} to the inner membrane plane are indicated.

226 **b)** The C-termini of the FtsB and FtsL coiled coils with highlighted Constriction Control
227 Domain (CCD) and Activation of FtsWI (AWI), showing the FtsB^{CCD} facing FtsQ and FtsL^{AWI}
228 facing FtsI.

229 **c)** Region around the activating mutations FtsL^{Q65} (homologous to E88K in *E. coli*) and FtsB^{E61}
230 (E56 in *E. coli*). Residues with known divisome activating mutations, which lead to smaller
231 cells, are shown in green. Residues with known loss-of-function mutations, which cause a
232 defect in cell division, are shown in red. Sequence conservation analysis (calculated with
233 ConSurf²⁸) shows a high degree of conservation for many residues in this area.

234 **d)** Residues surrounding the region of discontinuity in the FtsB coiled coil. This region contains
235 residues with known loss-of-function mutations (shown in bold). Many residues in this region
236 are highly conserved, including FtsL R38 (R61 in *E. coli*), which inserts between FtsI and FtsW
237 and is located close to a highly conserved loop in FtsW (M257-I263, Q279-V285 in *E. coli*)
238 that is in close proximity to the putative active site residue D275 (D297 in *E. coli*).

239

240 **Interactions that affect divisome regulation**

241 The Constriction Control Domain (CCD) of the divisome was identified previously from a set
242 of mutations that allow partial or complete bypass of the requirement for FtsN in *E. coli*^{29,30}. In
243 our structure these residues cluster at the top of FtsL^{α1} and FtsB^{α2}, with the FtsB CCD mutations
244 facing FtsQ^β. Furthermore, in close proximity are the Activation of FtsWI (AWI) residues on
245 FtsL^{α1} that display a dominant-negative phenotype when mutated¹⁶ (Fig. 3b).

246 The CCD residues of FtsB^{E56} (*Ec*E61G/A/K/V/H) and FtsL^{Q65} (*Ec*E88K/V) point inwards into
247 a positively charged cavity formed by three arginine residues (FtsQ^{R214}, FtsQ^{R231}, FtsB^{R75}),
248 flanked by FtsL^{T69} (*Ec*D93G, CCD residue) on one side and FtsB^{E64} (*Ec*D59V, CCD residue)
249 and FtsB^{T71} on the other side. This interface contains many charged and highly conserved
250 residues (Fig. 3c), and removal of a charge or introduction of the opposite charge could well
251 result in destabilisation of the interface and potentially increased flexibility of the protein. This
252 may allow FtsWIQBL to more readily adopt an elongated, a more active conformation, as
253 possibly indicated by the AF2 model, and with less or no activation signal, for example from
254 FtsN.

255 A dominant negative phenotype was previously reported for the AWI mutation *Ec*L86F¹⁶ and
256 its *P. aeruginosa* equivalent FtsL^{L63} interacts with FtsI^{F154} in FtsI^{pedestal} (Fig. 3c). Replacing the
257 leucine with the bulkier phenylalanine likely causes a steric clash that weakens the FtsI-FtsL
258 interaction. FtsL^{S66} (*Ec*N89S, *Pa*S66D) was classified as a CCD mutation in *E. coli*²⁹, but has
259 a dominant negative phenotype in *P. aeruginosa*, with reduced *in vitro* TG activity⁷, likely due
260 to a steric clash with FtsI^{F154}. Mutation of FtsL^{L61} (*Ec*84K/D) has a dominant-negative
261 phenotype and affects FtsL localisation to the septum^{16,31}, indicating that the integrity of the
262 FtsBL coiled-coil interaction is vital for a functional complex, as is well supported by our
263 structure where the FtsBL coiled coil is at the centre of the complex.

264 The AWI residue FtsL^{R38} (*Ec*R61C) is highly conserved and located between FtsW^{M257-I263} and
265 the anchor subdomain of FtsI^{pedestal} (Fig. 3d). Mutation of this residue causes a dominant-
266 negative phenotype in both *E. coli* and *P. aeruginosa* and reduced *in vitro* TG activity in *P.*
267 *aeruginosa*^{7,16}. FtsL^{R38} might interact with the highly conserved FtsW^{G260} and FtsW^{S262} residues
268 and stabilise FtsW^{M257-I263} together with FtsB^{R23}, a hypothesis supported by the fact that the
269 corresponding loop in RodA and RodA-PBP2 is disordered^{15,20}. The aforementioned FtsB
270 coiled-coil discontinuity, C-terminal of FtsB^{R23}, might be required to allow for some flexibility

271 of FtsB during the catalytic cycle of FtsW. *EcFtsI*^{L62P} and *TtPBP2*^{L43R} correspond to *PaFtsI*^{V53}
272 and result in a strong cell division defect and reduced TG activity *in vitro*, respectively^{15,32}.
273 *PaFtsI*^{V53} interacts with *PaFtsW*^{I257} in our structure, bringing the linker between FtsITM and
274 FtsI^{pedestal} in close proximity to FtsW. Thus, FtsW^{M257-I263} presents an interaction site for FtsL,
275 FtsB and FtsI in close proximity to the putative FtsW active site.

276 The recruitment of FtsQ to midcell requires FtsK^{10,26,33}. AF2 predicts that the interaction
277 between FtsK¹⁻²²² and FtsWIQBL, occurs through FtsQ^{POTRA} β 2 and α 3; this interaction is also
278 identified by coevolutionary coupling analysis using EVcouplings³⁴ as an FtsQ-FtsK interaction
279 hotspot (6/10 couplings, Fig. S6a, b). Residues previously identified as impairing FtsK
280 recruitment when mutated¹⁰ (*EcQ108*, *EcV92*, *EcV111*, *EcK113*) map onto this conserved
281 region (Fig. S6c). We copurified an FtsQK¹⁻²²² complex using *E. coli* proteins, which confirms
282 that the two proteins interact tightly and constitutively (Fig. S6d). To further our understanding
283 of divisome recruitment and regulation, in the future larger divisome complexes will need to be
284 assembled. For example, divisome interactions with FtsA, through FtsN, FtsK and possibly
285 FtsQ have the potential to modify the conformations, oligomeric states and activities of the core
286 complex and its enzymes.

287 We report the structure of the essential bacterial cell division complex and important antibiotic
288 target FtsWIQBL from *Pseudomonas aeruginosa* and show that *PaFtsWIQBL* forms a stable
289 Y-shaped complex that harbours intrinsic TG activity. Our *PaFtsWIQBL* structure is able to
290 explain many subunit contacts that have previously been shown to be important through loss-
291 of-function and bypass mutations. In addition, the generated AF2 model reveals a different,
292 likely catalytically competent state that allows for peptidoglycan crosslinking by FtsI. While
293 our analysis hints at the nature of the catalytic state, further research is needed to resolve more
294 states and their associated conformation changes, which possibly requires the addition of
295 activating proteins such as FtsA and/or FtsN as well as the substrate Lipid II and its derivatives

296 or products as ligands. It will be particularly exciting to resolve the enzymatic mechanism of
297 the FtsW TG since it is a very promising drug target for novel antibiotics. To gain a deeper
298 understanding of the mechanism of the divisome, the inclusion of upstream and downstream
299 proteins e.g., FtsEX, FtsK, PBP1b, and DamX will also be necessary. Our work is an important
300 milestone in the 25-year quest for a molecular understanding of the ancient, near ubiquitous
301 and medically important process of FtsZ-based bacterial cell division.

302 **Acknowledgements**

303 We thank all members of the MRC LMB electron microscopy facility for excellent EM support
304 and T. Darling and J. Grimmett for computing support. We are grateful to Dougal Ritson and
305 Meng Su for their help and advice during the Lipid II preparation and to Holger Kramer (1979-
306 2022) for LC-MS and MALDI-TOF of Lipid II samples (all MRC LMB). N-terminal His-
307 tagged *SaPbp4*(aa21-383) was a kind gift of the Walker lab (Harvard, MA). We thank Tanmay
308 Bharat and Stephan Tetter for their feedback on the manuscript. This work was funded by the
309 Medical Research Council (U105184326) and the Volkswagen Stiftung “Life?” programme
310 (both to J.L.).

311 **Author Contributions**

312 L.K., F.v.d.E and M. J. purified the *PaFtsQBLWI* complex. L.K. collected and processed the
313 cryo-EM data. F.v.d.E and M. J. purified the *EcFtsQBLWI* complex. F.v.d.E performed the
314 FtsWIQBL activity assays. N.J. cloned and purified the FtsQ-FtsK complex. V.H. prepared,
315 measured and processed the tomogram. J.L. provided the concept and L.K., M. J. and J.L.
316 prepared the manuscript. All authors contributed to the materials and methods section and to
317 editing the manuscript.

318 **Declaration of Interests**

319 The authors declare no competing interests.

320 **Additional Information**

321 Supplementary Information is available for this paper.

322 Correspondence and requests for materials should be addressed to Jan Löwe, [jyl@mrc-lmb.cam.ac.uk](mailto:jyl@mrc-
323 lmb.cam.ac.uk).

324 **Data Availability**

325 The final cryo EM map has been deposited in the Electron Microscopy Data Bank (EMDB)
326 with the accession code EMD-16042. The final model has been deposited with the Protein Data
327 Bank (PDB) with the accession code 8BH1.

328 References

329 1 Daley, D. O., Skoglund, U. & Soderstrom, B. FtsZ does not initiate membrane constriction at
330 the onset of division. *Sci Rep* **6**, 33138, doi:10.1038/srep33138 (2016).

331 2 Lutkenhaus, J., Pichoff, S. & Du, S. Bacterial cytokinesis: From Z ring to divisome. *Cytoskeleton*
332 (*Hoboken*) **69**, 778-790, doi:10.1002/cm.21054 (2012).

333 3 Taguchi, A. *et al.* FtsW is a peptidoglycan polymerase that is functional only in complex with
334 its cognate penicillin-binding protein. *Nat Microbiol* **4**, 587-594, doi:10.1038/s41564-018-
335 0345-x (2019).

336 4 Kumar, S., Mollo, A., Kahne, D. & Ruiz, N. The Bacterial Cell Wall: From Lipid II Flipping to
337 Polymerization. *Chem Rev* **122**, 8884-8910, doi:10.1021/acs.chemrev.1c00773 (2022).

338 5 Egan, A. J., Biboy, J., van't Veer, I., Breukink, E. & Vollmer, W. Activities and regulation of
339 peptidoglycan synthases. *Philos Trans R Soc Lond B Biol Sci* **370**, doi:10.1098/rstb.2015.0031
340 (2015).

341 6 Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and
342 remodelling. *Nat Rev Microbiol* **18**, 446-460, doi:10.1038/s41579-020-0366-3 (2020).

343 7 Marmont, L. S. & Bernhardt, T. G. A conserved subcomplex within the bacterial cytokinetic ring
344 activates cell wall synthesis by the FtsW-FtsI synthase. *Proc Natl Acad Sci U S A* **117**, 23879-
345 23885, doi:10.1073/pnas.2004598117 (2020).

346 8 Liu, Y. & Breukink, E. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets.
347 *Antibiotics (Basel)* **5**, doi:10.3390/antibiotics5030028 (2016).

348 9 Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM
349 web server: resources for positioning of proteins in membranes. *Nucleic Acids Res* **40**, D370-
350 376, doi:10.1093/nar/gkr703 (2012).

351 10 van den Ent, F. *et al.* Structural and mutational analysis of the cell division protein FtsQ. *Mol*
352 *Microbiol* **68**, 110-123, doi:10.1111/j.1365-2958.2008.06141.x (2008).

353 11 Kureisaite-Ciziene, D. *et al.* Structural Analysis of the Interaction between the Bacterial Cell
354 Division Proteins FtsQ and FtsB. *mBio* **9**, doi:10.1128/mBio.01346-18 (2018).

355 12 Choi, Y. *et al.* Structural Insights into the FtsQ/FtsB/FtsL Complex, a Key Component of the
356 Divisome. *Sci Rep* **8**, 18061, doi:10.1038/s41598-018-36001-2 (2018).

357 13 Khadria, A. S. & Senes, A. The transmembrane domains of the bacterial cell division proteins
358 FtsB and FtsL form a stable high-order oligomer. *Biochemistry* **52**, 7542-7550,
359 doi:10.1021/bi4009837 (2013).

360 14 Condon, S. G. F. *et al.* The FtsLB subcomplex of the bacterial divisome is a tetramer with an
361 uninterrupted FtsL helix linking the transmembrane and periplasmic regions. *J Biol Chem* **293**,
362 1623-1641, doi:10.1074/jbc.RA117.000426 (2018).

363 15 Sjodt, M. *et al.* Structural coordination of polymerization and crosslinking by a SEDS-bPBP
364 peptidoglycan synthase complex. *Nat Microbiol* **5**, 813-820, doi:10.1038/s41564-020-0687-z
365 (2020).

366 16 Park, K. T., Du, S. & Lutkenhaus, J. Essential Role for FtsL in Activation of Septal Peptidoglycan
367 Synthesis. *mBio* **11**, doi:10.1128/mBio.03012-20 (2020).

368 17 Han, S. *et al.* Structural basis for effectiveness of siderophore-conjugated monocarbams
369 against clinically relevant strains of *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* **107**,
370 22002-22007, doi:10.1073/pnas.1013092107 (2010).

371 18 Paulussen, F. M. *et al.* Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome
372 Complex. *J Am Chem Soc* **144**, 15303-15313, doi:10.1021/jacs.2c06304 (2022).

373 19 Egan, A. J., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. Regulation of bacterial cell
374 wall growth. *FEBS J* **284**, 851-867, doi:10.1111/febs.13959 (2017).

375 20 Sjodt, M. *et al.* Structure of the peptidoglycan polymerase RodA resolved by evolutionary
376 coupling analysis. *Nature* **556**, 118-121, doi:10.1038/nature25985 (2018).

377 21 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
378 589, doi:10.1038/s41586-021-03819-2 (2021).

379 22 Shlosman, I. *et al.* Allosteric activation of cell wall synthesis during bacterial growth. *bioRxiv*,
380 2022.2011.2007.515454, doi:10.1101/2022.11.07.515454 (2022).

381 23 Gerding, M. A. *et al.* Self-enhanced accumulation of FtsN at Division Sites and Roles for Other
382 Proteins with a SPOR domain (DamX, DedD, and RlpA) in *Escherichia coli* cell constriction. *J*
383 *Bacteriol* **191**, 7383-7401, doi:10.1128/JB.00811-09 (2009).

384 24 Weiss, D. S. Last but not least: new insights into how FtsN triggers constriction during
385 *Escherichia coli* cell division. *Mol Microbiol* **95**, 903-909, doi:10.1111/mmi.12925 (2015).

386 25 Wissel, M. C. & Weiss, D. S. Genetic analysis of the cell division protein FtsI (PBP3): amino acid
387 substitutions that impair septal localization of FtsI and recruitment of FtsN. *J Bacteriol* **186**,
388 490-502, doi:10.1128/JB.186.2.490-502.2004 (2004).

389 26 Chen, J. C. & Beckwith, J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with
390 FtsZ during *Escherichia coli* cell division. *Mol Microbiol* **42**, 395-413, doi:10.1046/j.1365-
391 2958.2001.02640.x (2001).

392 27 Addinall, S. G., Cao, C. & Lutkenhaus, J. FtsN, a late recruit to the septum in *Escherichia coli*.
393 *Mol Microbiol* **25**, 303-309, doi:10.1046/j.1365-2958.1997.4641833.x (1997).

394 28 Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize
395 evolutionary conservation in macromolecules. *Nucleic Acids Res* **44**, W344-350,
396 doi:10.1093/nar/gkw408 (2016).

397 29 Liu, B., Persons, L., Lee, L. & de Boer, P. A. Roles for both FtsA and the FtsBLQ subcomplex in
398 FtsN-stimulated cell constriction in *Escherichia coli*. *Mol Microbiol* **95**, 945-970,
399 doi:10.1111/mmi.12906 (2015).

400 30 Tsang, M. J. & Bernhardt, T. G. A role for the FtsQLB complex in cytokinetic ring activation
401 revealed by an ftsL allele that accelerates division. *Mol Microbiol* **95**, 925-944,
402 doi:10.1111/mmi.12905 (2015).

403 31 Ghigo, J. M. & Beckwith, J. Cell division in *Escherichia coli*: role of FtsL domains in septal
404 localization, function, and oligomerization. *J Bacteriol* **182**, 116-129,
405 doi:10.1128/JB.182.1.116-129.2000 (2000).

406 32 Li, Y. *et al.* Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a
407 conserved activation mechanism for SEDS-bPBP complexes. *PLoS Genet* **17**, e1009366,
408 doi:10.1371/journal.pgen.1009366 (2021).

409 33 Goehring, N. W., Gueiros-Filho, F. & Beckwith, J. Premature targeting of a cell division protein
410 to midcell allows dissection of divisome assembly in *Escherichia coli*. *Genes Dev* **19**, 127-137,
411 doi:10.1101/gad.1253805 (2005).

412 34 Hopf, T. A. *et al.* The EVcouplings Python framework for coevolutionary sequence analysis.
413 *Bioinformatics* **35**, 1582-1584, doi:10.1093/bioinformatics/bty862 (2019).

414

415

416 **Materials and methods**

417 **Cloning**

418

419 *P. aeruginosa FtsWIQLB*

420 Cloning, expression and purification of *PaFtsWIQLB* (Uniprot: Q9HW00 (FtsW), G3XD46
421 (FtsI), G3XDA7 (FtsQ), Q9HVZ6 (FtsL), Q9HXZ6 (FtsB)) were adapted from a previously
422 published protocol¹. FtsW and FtsI were expressed on a pET-Cola vector, and FtsQ, FtsL, and
423 FtsB were expressed on a pET-Duet vector. The genes encoding *P. aeruginosa* FtsI and FtsL
424 were obtained by PCR from the strain PAO1 using primers PaFtsI.fwd/rev and PaFtsL.fwd/rev
425 respectively (primers: Table S1). The codon-optimised sequences for FtsB-His₆, His₆-SUMO-
426 FtsQ, and His₆-SUMO-FLAG-FtsW were ordered as gBlocks (IDT). These fragments were
427 extended by PCR to generate overhangs for Gibson assembly using primers PaFtsQB.fwd/rev
428 and SUMO-PaFtsW.fwd/rev, respectively. The FtsI, FtsW and pET-Cola (amplified using
429 primers pET-Cola.fwd/rev) fragments were assembled by Gibson assembly forming the
430 plasmid pLK2. Later, the FLAG-tag was exchanged for a Twin-Strep-tag using PCR with
431 primers Strep-PaFtsWI.fwd/rev and blunt-end ligation (plasmid pLK4). The mutant FtsW^{D275A}
432 was generated from the pLK4 plasmid by site directed mutagenesis using primers
433 PaFtsW_D275A.fwd/rev. The pET-Duet plasmid carrying FtsQ, FtsL, and FtsB was generated
434 in two consecutive Gibson assembly reactions. First, the extended FtsQ, FtsB and pET-Duet
435 (amplified using pET-Duet_FtsQB.fwd/rev) fragments were assembled by Gibson assembly
436 and the generated plasmid was isolated, and opened with primer pET-Duet_FtsL.fwd/rev.
437 Second, the opened plasmid and extended FtsL fragments were assembled by Gibson assembly
438 forming plasmid pLK1. The DNA for the His-tagged catalytic subunit of *S. cerevisiae* SUMO
439 protease Ulp1 (residues 403-612) was ordered as a gBlock (IDT) and introduced into a pBad
440 vector using Gibson assembly forming the plasmid pLK3. pLK3 contains an arabinose
441 inducible promoter, a chloramphenicol resistance gene and a p15A origin. All constructs were
442 confirmed by sequencing.

443

444 *E. coli FtsWIQLB*

445 The *E. coli* FtsWIQLB complex (Uniprot: P0ABG4 (FtsW), P0AD68 (FtsI), P06136 (FtsQ),
446 P0AEN4 (FtsL), P0A6S5 (FtsB)) was expressed in insect cells through a single baculovirus
447 vector, which was assembled using the biGBac system². To ensure equal expression levels, a
448 fusion of FtsW and FtsI, as is found naturally in some organisms (data not shown), was created
449 with a GSGASG cytoplasmic linker between the FtsW C-terminus and FtsI N-terminus. All
450 genes were ordered as gBlocks (IDT). An NdeI site was introduced downstream of the BamHI

451 site of pLIB (AddGene) by site-directed-mutagenesis (SDM) resulting in pFE661. The *E. coli*
452 FtsI gene, with overhangs for Gibson assembly, was introduced into pLIB using Gibson
453 assembly forming pFE668. The *E. coli* FtsW gene, with an N-terminal Twin-Strep-tag and NdeI
454 site, was amplified using primers MTAstrep.for and WlinkerI.rev and introduced into pFE668
455 by Gibson assembly. The gene expression cassette (GEC), containing the polyhedron promoter
456 and Twin-Strep-FtsW-GSGASG-FtsI coding sequence, was amplified using primers casI.for
457 and casv.rev² and introduced into SwaI-opened pBig1b (Addgene) by Gibson assembly,
458 resulting in pFE756. The *E. coli* FtsQ gene was cloned into NdeI/HindIII of pLIB, resulting in
459 pFE686. The *E. coli* FtsB gene was amplified using primers EcB_acebac1.for/rev and
460 introduced into pACEBac1 (Geneva Biotech) by Gibson assembly, resulting in pFE658. The *E.*
461 *coli* FtsL gene, with an N-terminal 10xHis site followed by a TEV site, was introduced into
462 pLIB by Gibson assembly forming pFE674. To increase expression levels of FtsL, the
463 mutations S3N, R4K and V5L were introduced by SDM using primers Ltripple.for/rev³. The
464 GECs of FtsQ, FtsB and His₁₀-TEV-FtsL were amplified by PCR using casI.for/rev,
465 casII.for/rev and casIII.for/rev, respectively and introduced into SwaI-opened pBig1a by
466 Gibson assembly, resulting in pFE749. In a final Gibson assembly reaction the PmeI fragments
467 of pFE756 (Twin-Strep-FtsW-FtsI in pBig1b) and pFE749 (FtsQ-FtsB-10xHisFtsL in pBig1a)
468 were combined with PmeI-opened pBIG2ab resulting in pFE758. All constructs were
469 confirmed by sequencing.

470

471 *E. coli* FtsQK¹⁻¹²²

472 The genes encoding *E. coli* FtsQ-His₆ (Uniprot P0613) and TwinStrep-FtsK¹⁻²²² (Uniprot
473 P46889) were ordered as gBlocks (IDT) and cloned into pLIB using Gibson assembly. The
474 GECs were amplified and inserted into pBIG1a² forming pNJ069.

475

476 **Baculovirus generation**

477 Baculoviruses were created containing pFE758 and pNJ069 for insect cell expression of *E. coli*
478 FtsWIQLB and FtsQK¹⁻²²² respectively. Recombinant baculoviral genomes were generated by
479 TN7 transposition in DH10bacY cells⁴. This bacmid was used to transfect Sf9 cells (Thermo
480 Scientific) using FuGENE (Promega). After 3-5 days, the culture was centrifuged and the virus-
481 containing supernatant harvested and stored till use with 1% fetal bovine serum (FBS) added.

482

483 **Bacterial expression**

484 *P. aeruginosa* FtsWIQLB was expressed in *E. coli* cells. pLK1, pLK2 and pLK3 were
485 sequentially transformed into *E. coli* C43(DE3) cells. 120 mL of overnight culture were added

486 to 12 L TB media with 2 mM MgCl₂, containing kanamycin (25 µg/mL), chloramphenicol (25
487 µg/mL) and ampicillin (50 µg/mL), and grown at 37°C to an OD₆₀₀ of 0.7. Protein expression
488 was induced with 1 mM IPTG and 1 g arabinose/L and continued at 18°C overnight. Cells were
489 harvested by centrifugation for 20 min at 4,000 rpm and 4°C, then flash frozen in liquid nitrogen
490 and stored at -80°C.

491

492 **Insect cell expression**

493 *E. coli* FtsWIQLB and FtsQK¹⁻²²² were expressed in insect cells. Sf9 cells were grown in Insect-
494 Xpress medium (Lonza) to a density of 1.5-2 million cells/ml. They were infected with ~1%
495 amplified baculovirus and harvested by centrifugation after 60-70 hrs, at a cell viability of
496 ~80%. Cell pellets were washed with phosphate buffered saline (PBS), flash frozen in liquid
497 nitrogen and stored at -80°C.

498

499 **Protein purifications**

500 All purifications were done at 4°C.

501

502 *P. aeruginosa* FtsWIQBL

503 Cells from 12 L of *E. coli* culture were resuspended in a final volume of 300 ml Lysis Buffer
504 (20 mM HEPES, 150 mM NaCl, 20 mM MgCl₂, pH 7.5, 1 mM DTT) containing DNase (Sigma)
505 and RNase (Sigma) and passed through a cell disruptor (Constant Systems) at 25,000 psi twice.
506 Subsequently, the lysate was centrifuged for 1 hr at 4°C and 45,000 rpm (Type 45 Ti rotor,
507 Beckmann). The membranes were homogenised using a dounce tissue grinder (Whaeton) in
508 Solubilisation Buffer (20 mM HEPES, 500 mM NaCl, 20 % glycerol, pH 7.0). Lauryl maltose
509 neopentyl glycol detergent (LMNG, Anatrace) was added to a final concentration of 1% (w/v)
510 to solubilise the membrane-bound proteins while rotating for at least 1 hour at 4°C. The volume
511 was doubled with Solubilisation Buffer and 12 µl benzonase (Merck) were added. The solution
512 was centrifuged for 1 h at 4°C and 45,000 rpm (Type 45 Ti rotor, Beckman) and the supernatant
513 was bound to 2 mL (CV) of equilibrated Strep XT4 Flow beads (IBA) while rotating at 4°C for
514 2 h. Beads were collected in a column and washed with 50 mL of Wash Buffer 1 (20 mM
515 HEPES, 500 mM NaCl, 20 % glycerol, pH 7.0, 0.1% LMNG) and 50 ml of Wash Buffer 2 (20
516 mM HEPES, 500 mM NaCl, 20% glycerol, pH 7.0, 0.01% LMNG). Protein was eluted from
517 the Strep beads over 10 CV in 2 mL fractions with Elution Buffer (20 mM HEPES, 500 mM
518 NaCl, 20% glycerol, 50 mM biotin, pH 7.0, 0.005% LMNG). All elution fractions were pooled
519 and concentrated to 50 µL using 100 kDa centrifugal concentrators (Vivaspin). The

520 concentrated sample was further purified using a Superose 6 Increase 3.2/300 size-exclusion
521 column (Cytiva), equilibrated in Size Exclusion Buffer (20 mM HEPES, 300 mM NaCl, pH
522 7.0, 0.005% LMNG). Fractions were either used directly for cryoEM grid preparation or flash
523 frozen in liquid nitrogen, before being stored at -80°C. For the activity assay (see below) protein
524 concentration was determined using Bio-Rad Protein Assay dye reagent concentrate (Bio-Rad).

525

526 *E. coli FtsWIQBL*

527 Sf9 Cells were resuspended in Lysis Buffer (20 mM HEPES pH 8.0, 500 mM NaCl, 10%
528 glycerol, 2 mM TCEP), containing 1 mM PMSF, protease inhibitor tablets (cOmplete EDTA-
529 free PI (Roche), 1 per 25 mL), DNase (Sigma), RNase (Sigma) and sonicated for 2 min (1 s
530 pulse on, 10 s pulse off, 70% intensity), after which 2 mM EDTA was added. The lysate was
531 centrifuged for 1 h at 235,000 xg. The pellet was homogenised using a dounce tissue grinder
532 (Whaeton) in Solubilisation Buffer (20 mM HEPES pH 8.0, 10 mM MgCl₂, 500 mM NaCl,
533 20% glycerol), containing 1 mM PMSF, and PI tablets. Detergent glyco-diosgenin (GDN,
534 Anatrace) was added to a final concentration of 1% to solubilise the membrane-bound proteins
535 while rotating at 4°C for 2 h. The mixture was centrifuged for 10 min at 3,200 xg, 4°C to remove
536 nuclei. The supernatant was 5-fold diluted with Strep Buffer (20 mM HEPES, pH 8.0, 350 mM
537 NaCl, 10% glycerol, 1 mM TCEP) in the presence of Benzonase (Merck) and the NaCl
538 concentration was brought down to 350 mM before centrifuging for 45 min at 142,000 g. The
539 supernatant was recycled over a 5 mL StrepTrap-HP column (Cytiva) overnight. The
540 StrepTrap-HP column was washed with 50 column volumes of Strep Buffer including 0.01 %
541 GDN at 5 mL/min. The protein complex was eluted in Strep Buffer supplemented with 2.5 mM
542 desthiobiotin (Sigma) at 1 mL/min. Fractions containing the complex were pooled and
543 concentrated to 50 µL using 100 kDa centrifugal concentrators (Vivaspin) and further purified
544 using a Superose 6 Increase 3.2/30 size-exclusion column (Cytiva) in SEC buffer (20 mM
545 HEPES pH 8.0, 350 mM NaCl, 10% glycerol, 1 mM TCEP, 0.01% GDN). Protein
546 concentration was determined using Bio-Rad Protein Assay dye reagent concentrate (Bio-Rad)
547 and fractions were aliquoted, then flash frozen in liquid nitrogen before being stored at -80°C.

548

549 *E. coli FtsQK*

550 Cells from 1 L of culture were resuspended in 50 mL Lysis Buffer (50 mM Tris, 500 mM NaCl,
551 pH 8.0) supplemented with DNase (Sigma), RNase (Sigma), and protease inhibitor tablets
552 (cOmplete EDTA-Free PI (Roche), 1 per 25 mL) and sonicated for 2 min (1 sec on, 10 sec off,
553 70% intensity). The lysate was centrifuged for 25 min at 4°C and 25,000 g (25.50 rotor,

554 Beckmann) and its supernatant subsequently for 1 h at 4°C and 200,000 g (Ti 45 rotor,
555 Beckmann). The membranes were homogenised with a Dounce homogeniser and solubilised in
556 35 mL Solubilisation Buffer (50 mM Tris, 350 mM NaCl, pH 8.0, 1% GDN, 10% glycerol) for
557 2 h at 4°C. The solution was diluted to 50 mL with Dilution Buffer (50 mM Tris, 350 mM NaCl,
558 pH 8.0, 10% glycerol) and centrifuged for 30 min at 4°C and 80,000 g (Ti 75 rotor, Beckmann).
559 The supernatant was diluted to 500 mL with dilution buffer and recycled overnight over a 1 mL
560 StrepTrap-HP column (Cytiva). The column was washed with 70 mL of buffer A1 (50 mM
561 Tris, 350 mM NaCl, 0.006% GDN, 10% glycerol, pH 8.0) and the complex was eluted with 20
562 mL of Buffer A2 (50 mM Tris, 350 mM NaCl, 0.006% GDN, 10% glycerol, 2.5 mM
563 desthiobiotin, pH 8.0) in 2 mL fractions, and fractions containing FtsQK were pooled. This
564 eluate was bound to an equilibrated 1 mL HisTrap (Cytiva) column and eluted using a step
565 gradient from Buffer B1 (50 mM Tris, 350 mM NaCl, 0.006% GDN, 10% Glycerol, 20 mM
566 imidazole, pH 8.0) to Buffer B2 (50 mM Tris, 350 mM NaCl, 0.006% GDN, 10% glycerol, 1
567 M imidazole, pH 8). The HisTrap elution was concentrated to 50 µL using a 100 kDa cutoff
568 centrifugal concentrator (Vivaspin). The complex was purified further using a Superose 6
569 Increase 3.2/300 size-exclusion column in SEC buffer (50 mM Tris, 100 mM NaCl, 0.006%
570 GDN, 10% glycerol, pH 8.0).

571

572 *S. aureus* PBP4

573 His-tagged PBP4²¹⁻³⁸³ from *Staphylococcus aureus* (*SaPbp4*) was expressed as described
574 previously⁵ and purified as follows. Cells were lysed in Buffer A (50 mM Tris pH 7.5, 500 mM
575 NaCl) containing 1 mM PMSF, DNase, RNase and PI tablets using a cell disruptor (Constant
576 Systems) at 25 kpsi. The lysate was centrifuged at 100,000 g for 30 min. The supernatant was
577 supplemented with 1% Buffer B (Buffer A + 1 M imidazole, pH 7.5) and recycled twice over a
578 5 mL HisTrap-HP column (Cytiva). The column was washed with 150 mL 1% B, 550 mL 2%
579 B and eluted in steps of 5%, 30% and 50% B. Fractions containing *SaPbp4* were concentrated
580 by centrifugal filtration (Vivaspin) and further purified over a Superdex 200 PG 16/60 size-
581 exclusion column (Cytiva) in SEC buffer (20 mM MES pH 6.0, 300 mM NaCl). The fractions
582 of the monomer peak were combined and concentrated to 52 g/L by centrifugal filtration
583 (Vivaspin), then flash frozen in aliquots before being stored at -80°C.

584

585 **Cryo-EM single particle structure determination**

586 *Grid preparation*

587 Grids were prepared with freshly purified protein (*PaFtsWIQBL*) from the peak fraction of the
588 SEC elution at a final concentration of 1.2-1.3 g/L, diluting with SEC buffer if necessary. 3 μ L
589 of sample were pipetted onto a freshly glow discharged (PELCO easiGlow, 25 mA, 45 sec) 300
590 mesh Cu 0.6/1 grid (Quantifoil) and blotted for 4 s at strength 4, 100% humidity and 4°C, before
591 plunge-freezing in liquid ethane using a Vitrobot Mark IV (Thermo Fisher Scientific, TFS).

592

593 *Data collection*

594 Data from 5531 micrographs was collected on a Titan Krios G3 (TFS) equipped with a Gatan
595 K3 camera and a Gatan Quantum energy filter (20 eV slit width). TFS's EPU software was used
596 to collect the micrographs with fringe-free imaging in counting mode at a nominal pixel size of
597 1.09 \AA . The exposure time was 2.5 sec at a dose of 21 e/px/s, defocus between -1.2 and -3 μ m,
598 and 40 fractions per micrograph were collected.

599

600 *Data processing*

601 Unless stated otherwise, all processing was done in RELION 4.0⁶. Motion correction was
602 performed using RELION's own implementation of the MotionCor2 algorithm⁷ with 5x5
603 patches. Subsequently, CTFFind-4.1⁸ was used for CTF estimation. The initial reference was
604 generated in CryoSPARC⁹ from a different dataset of the same sample (not used for the final
605 reconstruction). Particles were picked with Topaz¹⁰ 7,276,623 particles total, (1,398 per
606 micrograph on average) and extracted 4x binned with a boxsize of 70 px and a pixel size of
607 4.36 $\text{\AA}/\text{px}$. The particles were split into seven subsets for initial 3D classification into three
608 classes. The best classes of each job were selected and refined. The refined particles were
609 combined into two sets of particles and subjected to 3D classification without alignment. The
610 best classes from each alignment were selected (1,997,326 and 2,922,553 particles total),
611 combined and subjected to a 3D refinement. Subsequently, a mask (extended by 2 px and added
612 soft edge of 2 px) was used to subtract the micelle density from the complex. The subtracted
613 particles were subjected to a 3D classification without alignment and two classes were selected
614 (344,300 and 461,499 particles), re-extracted (2x binned with a boxsize of 140 pix and a pixel
615 size of 2.18 $\text{\AA}/\text{px}$) and subjected to 3D refinement. A 3D classification without alignment was
616 run and the best class (160,615 particles) was selected. The particles were re-extracted (no
617 binning, 280 pix, 1.09 $\text{\AA}/\text{px}$). The particles were subjected to one round of polishing, 3D
618 refinement, CTF refinement and 3D refinement. The micelle was subtracted from the particles
619 and the particles were subjected to a round of 3D refinement and 3D classification without
620 alignments. From this 3D classification, the best class was selected (136,364 particles) and 3D
621 refined two times, the second time using a mask that excluded the POTRA domain of FtsQ.

622 After postprocessing with the calibrated pixel size (see below) the final reconstruction had an
623 overall resolution of 3.7 Å as determined by Fourier shell correlation (FSC, cutoff 0.143).

624

625 *Model building*

626 The pixel size was calibrated using Chimera¹¹ and a published crystal structure of *PaFtsI*
627 (PDB:3OCN). The pixel size was adjusted to 1.05 Å/px during postprocessing in RELION.
628 This map was used to fit a model of *PaFtsWIQBL* predicted with AlphaFold2^{12,13} and manually
629 adjusted using MAIN¹⁴ and Coot¹⁵ (Version: 0.9.8.3), and real-space refined using Phenix¹⁶
630 (Version: 1.19.2-4158). Figures of the structure were prepared using ChimeraX-1.4¹⁷.

631

632 **Lipid II extraction**

633 Lipid II was extracted from *Enterococcus faecalis* (DSMZ 2570) as described before¹⁸. Briefly,
634 an overnight culture of *E. faecalis* was diluted 1:100 into 3 L of Brain heart infusion (BHI,
635 Merck) and grown at 37°C, 180 rpm to an OD₆₀₀ of 0.7. Vancomycin (Sigma) and moenomycin
636 (Santa Cruz) were added at 10 µg/mL and 5 µg/mL, respectively, and cells were centrifuged 20
637 min later in pre-cooled bottles at 4,500 g for 20 min. The cell pellets were resuspended in BHI,
638 spun again in Falcon tubes at 3,200 g for 10 min, flash frozen in liquid nitrogen and stored at -
639 20°C overnight. Frozen cell pellets were thawed in a total of 30 mL phosphate-buffered saline
640 (PBS), divided equally into two glass 250 mL Erlenmeyer flasks and 17.5 mL chloroform and
641 35 mL methanol were added. After 2 h of vigorously stirring at room temperature, the mixture
642 was spun in Teflon tubes for 10 min at 4,000 g at 4°C and the supernatant from each Erlenmeyer
643 was combined with 30 mL chloroform and 22.5 mL PBS. The mixture was stirred vigorously
644 for 2 h at room temperature, then spun for 10 min at 4,000 g at 4°C. The tubes were left at room
645 temperature for 1 h until the supernatant was clear. The interface was then transferred with a
646 glass Pasteur pipette to a 25 mL separatory funnel and left to settle overnight at 4°C. The lower
647 organic phase was discarded and the interface dried in a 25 mL round bottom flask on a rotary
648 evaporator at 40°C. The dried interface was resuspended in 7.5 mL pyridinium acetate:n-
649 butanol (1:2) (PB) and 7.5 mL n-butanol-saturated water. Pyridinium acetate was previously
650 prepared by adding 51.5 mL glacial acetic acid dropwise to 48.5 mL pyridine and filtered before
651 use. The Lipid II extract was transferred to a 25 mL separatory funnel and the bottom phase
652 was re-extracted with 5 mL PB. The top phase from the re-extraction was added to the top phase
653 in the separatory funnel and extracted three times with 5 mL n-butanol-saturated water. The top
654 phase was dried using a rotary evaporator at 40°C and resuspended in chloroform:methanol
655 (1:1), partially dried under a stream of nitrogen gas and then transferred to a 250 µL non-stick
656 glass vial (Agilent), in which it was dried completely. This was repeated 4 times to ensure

657 efficient transfer before resuspending the Lipid II extract in 210 μ L chloroform:methanol (1:1).
658 The Lipid II extract was assessed by spotting 1-2 μ L on a HPTLC silica gel 60F254 plate
659 (Merck). The TLC plate was developed in a mixture of chloroform:methanol:water:ammonia
660 (88:48:10:1) and Lipid II was visualised by heating the plate after soaking in phosphomolybdic
661 acid (PMA) as described previously¹⁹.

662

663 **Deprotection of FMOC-BDL**

664 D-Lys-Biotin (BDL) was prepared following a standard deprotection protocol⁵. Briefly, 15 mg
665 Fmoc-D-Lys(Biotin)-OH (Santa Cruz Biotechnology) was stirred in 3.1 mL of 20%
666 piperidine/dimethylformamide and 466 μ L toluene for 40 min at room temperature, then dried
667 in vacuum at 50°C. The sample was resuspended in 5 mL water, stirred for 2 h at room
668 temperature and then filtered through a 0.22 μ m filter. The filtrate was pipetted into a tared
669 tube, frozen on dry ice and then freeze dried. The residue was dissolved in water to make a 10
670 mM stock, aliquoted and stored at -20°C.

671

672 **Transglycosylase activity assay**

673 Lipid II used to monitor glycosyltransferase activity of the protein complex was dried using a
674 nitrogen stream and dissolved in an equal volume of dimethyl sulfoxide (DMSO). The reaction
675 and detection of glycan strands was adopted from previously published protocols^{5,20-22}. Briefly,
676 *PaFtsWIQLB* and *EcFtsWIQLB* were mixed at a final protein concentration of 1 μ M in 10 μ L
677 with 1 μ L 10x Reaction Buffer (500 mM Tris pH 7.5, 200 mM MnCl₂), 1 μ L DMSO and 1 μ L
678 Lipid II and incubated for 30 min at 25°C. Proteins were heat inactivated for 2 min at 95°C.
679 Lipid II and glycan strands were labelled by incubating the reaction with 26 μ M *SaPbp4* and
680 20 mM BDL for 1 h at 25°C. An equal volume of Laemmli SDS-PAGE buffer was added and
681 the mixtures were heat inactivated for 3 min at 95°C. Glycan strands were separated from Lipid
682 II on a 4-20% Criterion TGX polyacrylamide gel (Bio Rad), run for 45 min at 200 V. After
683 blotting onto PVDF membrane, the blot was incubated for 2 h in Superblock blocking buffer
684 TBS (Thermo Scientific), followed by incubation with a 1:5000 dilution of IRDye800CW
685 Streptavidin (LI_COR Bioscience) in TBS buffer at room temperature for 1 hr. The blot was
686 washed three times in PBS buffer and bands were visualised using an Odyssey CLx imaging
687 system (Li-COR Bioscience).

688

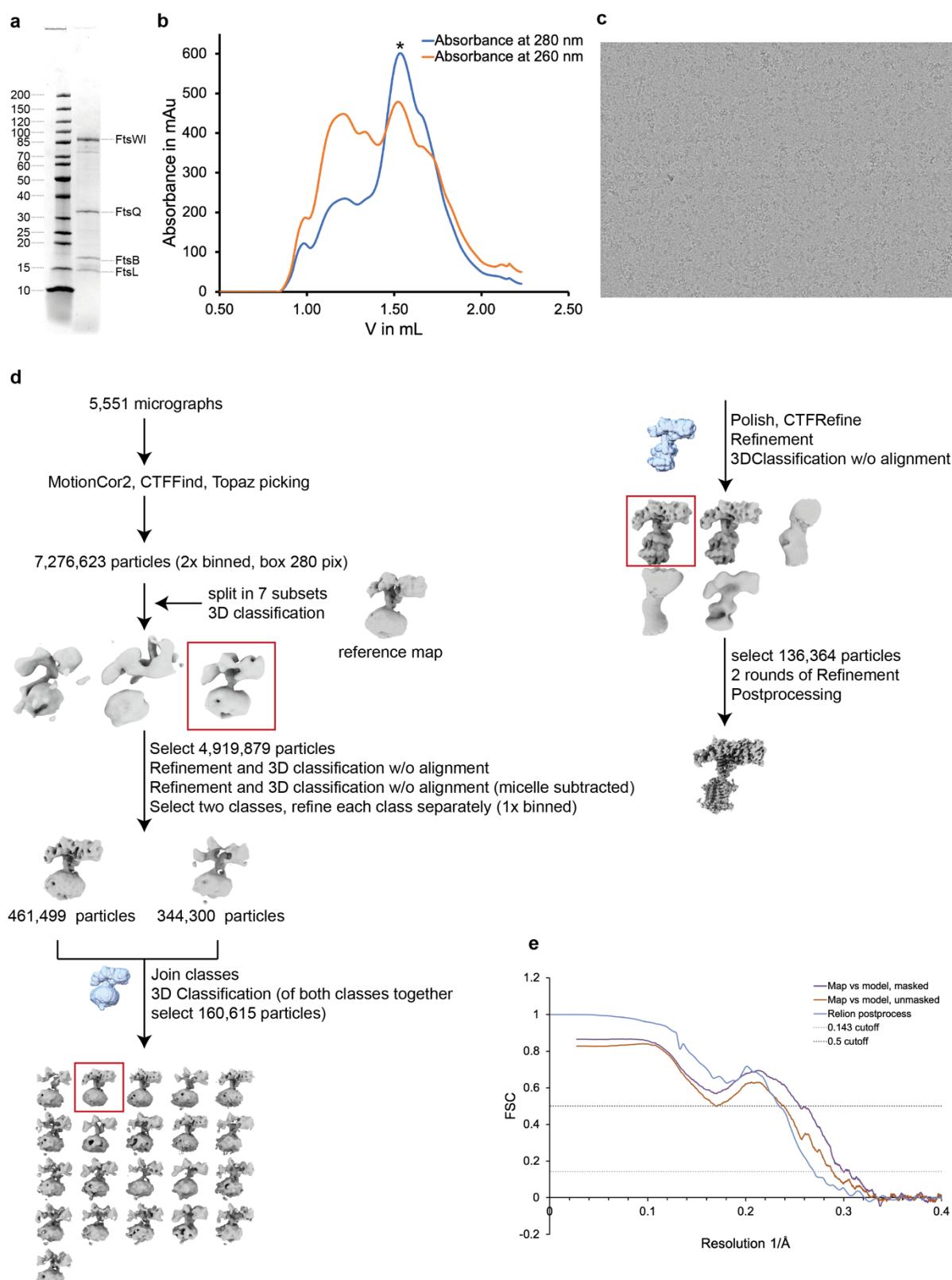
689 **Electron cryo-tomography of *E. coli* cells**

690 A culture of *E. coli* strain B/r H266 expressing plasmid pRBJ212²³ were grown in LB media at
691 37°C, 180 rpm to an OD₆₀₀ of 0.6. Cells were concentrated 10x by centrifugation and mixed
692 with 10 nm protein A gold fiducials in a 1:10 ratio. 4 µL of this mixture was applied to 200-
693 mesh copper grids with a Quantifoil R2/2 support film, back-blotted and plunge-frozen in liquid
694 ethane using a manual plunger. Cells were thinned for electron cryo-tomography by cryo-
695 focused ion beam milling (cryoFIB) using a Scios dual beam FIB-SEM (FEI). Before milling,
696 grids were sputtered with a protective layer of organic platinum using the gas injection system.
697 Lamellae were milled in a stepwise fashion, gradually reducing the beam current as the lamellae
698 were thinned, starting at 1 nA and polishing at 30 pA and at a nominal milling angle of 10°.
699 CryoET was carried out on a Krios microscope (ThermoFisher) equipped with a Gatan imaging
700 filter and K2 camera. Tilt series were collected using serialEM software²⁴, using a bidirectional
701 tilt scheme from -10° (to flatten the lamella) with a 2° increment and a total dose of 112 e⁻/Å²,
702 divided over 56 images, each with 10 frames. The pixel size was 3.7 Å and the defocus target
703 was -5 µm. Frame alignment and tilt series alignment were performed using IMOD²⁵ and a 2x
704 binned aligned tilt series was generated. The aligned tilt series were used to generate a SIRT
705 reconstruction using tomo3D²⁶, which was then low-pass filtered to 20 Å.

706 **Table S1: Primers.**

707

Name	Sequence 5'-3'
Ndeintolib.for	ATGCGGTCCGAAGCGCGC
Ndeintolib.rev	ATGCGGATCCGCGCCCGATG
MTAstrep.for	GGGCGCGGATCCGCAATGACAGCATGGTCACATCCGAGTTG
WlinkerI.rev	TCGCCGCTGCTTCATACCTGATGCGCCGCTCCTCGTGAACCTCGTACAAACG
CasI.for	AACGCTCTATGGTCTAAAGATTAAATCGACCTACTCCGGAATATAATAGATC
CasI.rev	AACGCTCTATGGTCTAAAGATTAAATCGACCTACTCCGGAATATAATAGATC
CasII.for	AAACTGGATACTATTGCACGTTAAATCGACCTACTCCGGAATATAATAGATC
CasII.rev	AAACATCAGGCATCATTAGTTTATTAAATGGTTATGATAGTTATTGCTCAGCG
CasIII.for	AAACCTAATGATGCCTGATGTTAAATCGACCTACTCCGGAATATAATAGATC
Casv.rev	AACCCGATTGAGATATAGATTATTAAATGGTTATGATAGTTATTGCTCAGCG
pACEBac1.rev	GGATCCCGCCCCGATGGTG
pACEbac1.for	AAGCTTGTGAGAAGTACTAGAGGATCATAATCAGC
EcB_acebac1.rev	CTAGTACTTCTCGACAAGCTTTATCGATTGTTGCCCGCAG
EcB_acebac1.for	CATCGGGCGCGGATCCATGGTAAACTAACGCTGCTGTTG
EcL_pAcebac.for	CATCGGGCGCGGATCCATGATCAGCAGAGTGACAGAAGCTC
EcL_pAcebac.rev	GTACTTCTCGACAAGCTTTATTTGCACTACGATATTTCTTGTGACGG
Ltripple.for	ATTAACAGAAGCTTAAGCAAAG


Ltripple.rev	TTATTGATCATATGGGACTGAAAATAC
PaFtsL.fwd	ATTAGTTAAGTATAAGAAGGAGATATACATATGAGCCGTCTTC GTCAAGCG
PaFtsL.rev	CGCAGCAGCGGTTCTTCATGGCGCCACCACCTGAC
pET-Duet_FtsL.rev	TATGTATATCTCCTTCTTATACTTAACTAATATACTAAGATGGGA A
pET-DuetFtsLfwd	AAAGAAACCGCTGCTGCGA
PaFtsQB.fwd	TTTGTTAACCTTAAGAAGGAGATACCATGCATCACCATCAC CACCACG
PaFtsQB.rev	ACTTCTGTCGACTTAAGCATTAGTGGTGGTGGTGGTGGTGGCT
pET-Duet_FtsQBfwd	ATGCTTAAGTCGAACAGAAAGTAATCGTATTG
pET-Duet_FtsQB.rev	GGTATATCTCCTCTTAAAGTTAAACAAAATTATTCTAGAGGG
SUMO-PaFtsW.fwd	TTTGTTAACCTTAATAAGGAGATACCATGCATCATCACACC ACCACG
SUMO-PaFtsW.rev	AATTCAAGTTCATATGTATATCTCCTTCTTAACTTAACAAATA CTAAGATGGGAAT
PaFtsI.fwd	AGTTAACGTTAACAGAAGGAGATACATATGAAACTGAATTATTTC CAGGGCGCC
PaFtsI.rev	GCAGCAGCCTAGGTTAATTATCAGCCACGCCCTCTTGC
pET-Colafwd	TAATTAACCTAGGCTGCTGCCACC
pET-Cola.rev	GGTATATCTCCTTATTAAAGTTAAACAAAATTATTCTACAGGGG
Strep_PaFtsWI.rev	ACTACCTGCGCTACCTTTCAAACCTGCGGATGTGACCATGCTGTC ATGCCACCAATCTGCTCTATG
Strep_PaFtsWI.fwd	GCAGCAGGTAGCGGTGCAGGTTGGAGCCATCCTCAGTTGAGAA AGGCCTGGAAGTGTGTT
PaFtsW_D275A.fwd	CCAGAGGCGCATACCGCTTTGTGTTGCGGTTC
PaFtsW_D275A.rev	GAACCGCAAACACAAAAGCGGTATGCGCCTCTGG

708 **Table S2: Plasmids**

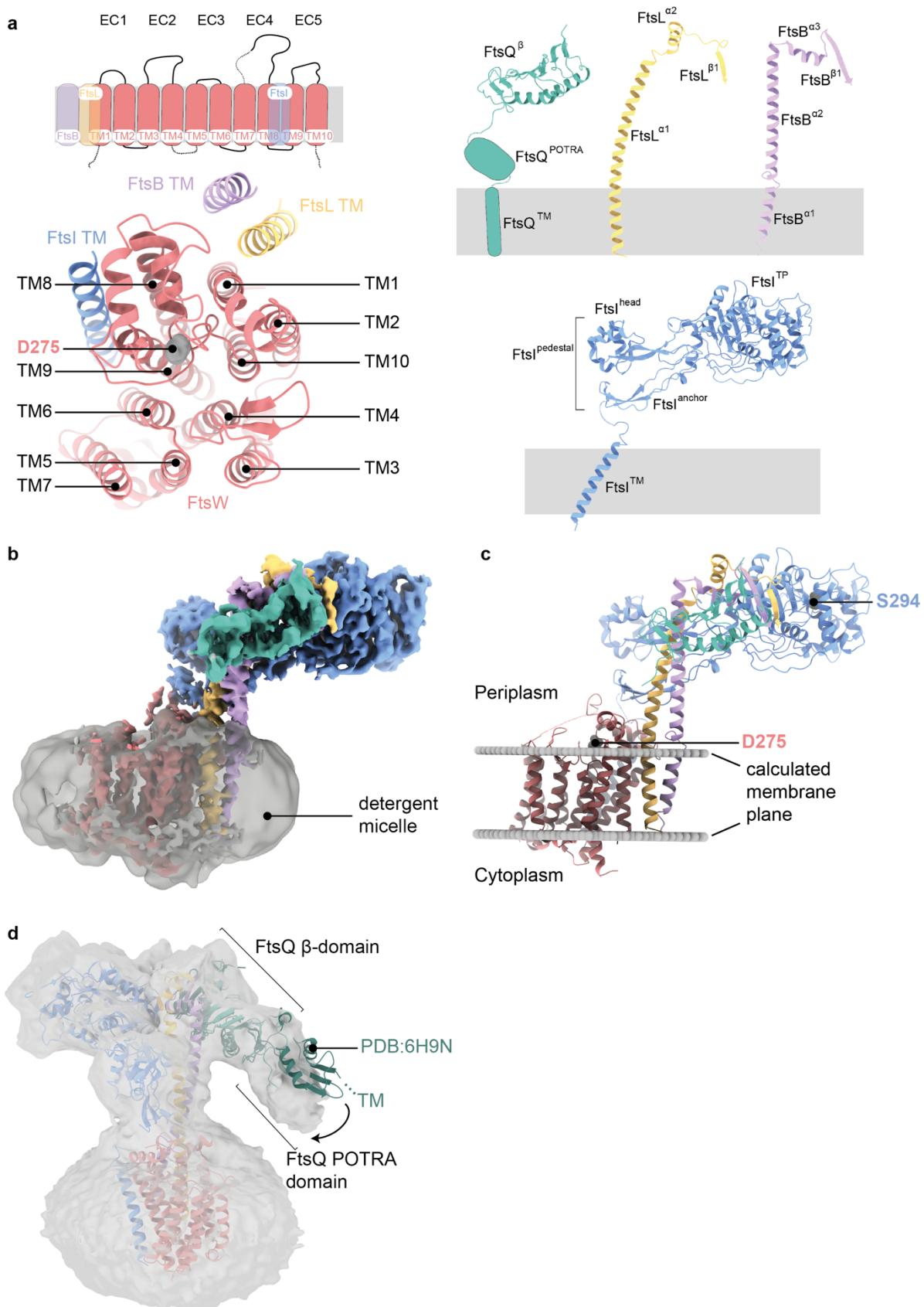
Plasmid	Description	Reference
pLK1	pET-Duet expression vector containing His ₆ -SUMO- <i>PaFtsQ</i> , <i>PaFtsB</i> -His ₆ and <i>PaFtsL</i> , AmpR	This study, based on ¹
pLK2	pET-Cola expression vector containing His ₆ -SUMO-FLAG-3c- <i>PaFtsW</i> and <i>PaFtsI</i> , KanR	This study, based on ¹
pLK3	expression vector containing His ₆ <i>ScUlp1</i> ⁴⁰³⁻⁶¹² , CmrR	This study, based on ¹
pLK4	pET-Cola expression vector containing His ₆ -SUMO-Strep-3c- <i>PaFtsW</i> and <i>PaFtsI</i> , KanR	This study
pLK9	pLK4 with <i>FtsW</i> ^{D275A} mutation	This study
pFE658	<i>EcFtsB</i> in pACEBac1, GenR	This study
pFE661	Addition of gCATATG at 5' end of BamHI in pLIB, GenR/AmpR	This study
pFE668	<i>EcFtsI</i> in pFE661, GenR/AmpR	This study
pFE674	HisTEV_ <i>EcFtsL</i> in pLib, GenR/AmpR	This study
pFE686	<i>EcFtsQ</i> in pFE661, GenR/AmpR	This study
pFE749	<i>EcFtsQ</i> + <i>EcFtsB</i> + His-TEV- <i>EcFtsL</i> in pBig1a, SpecR/GenR/AmpR	This study
pFE756	TwinStrep- <i>EcFtsW</i> - <i>FtsI</i> in pBig1b, SpecR/GenR/AmpR	This study
pFE758	TwinStrep- <i>EcFtsW</i> - <i>FtsI</i> + <i>EcFtsQ</i> + <i>EcFtsB</i> + His-TEV- <i>EcFtsL</i> in pBig2ab, CmrR/GenR/AmpR	This study
pNJ069	Strep-TEV- <i>EcFtsK</i> ¹⁻²²² , <i>EcFtsQ</i> -His ₆ in pBig1a, AmpR/SpecR/GentaR	This study

709

710 **Supplementary figures**

711

712 **Figure S1: Protein purification and cryo-EM data processing.**


713 **a)** SDS-PAGE gel of the co-expressed and purified *EcFtsWIQBL* divisome core complex after
714 size-exclusion chromatography. FtsW and FtsI are joined by a short linker in this construct.

715 **b)** Size-exclusion chromatogram of *PaFtsWIQBL*. The measured absorbances at 260 nm and
716 280 nm are shown in orange and blue, respectively. The peak fraction of the size exclusion run,
717 indicated with an asterisk, was used for grid preparation.

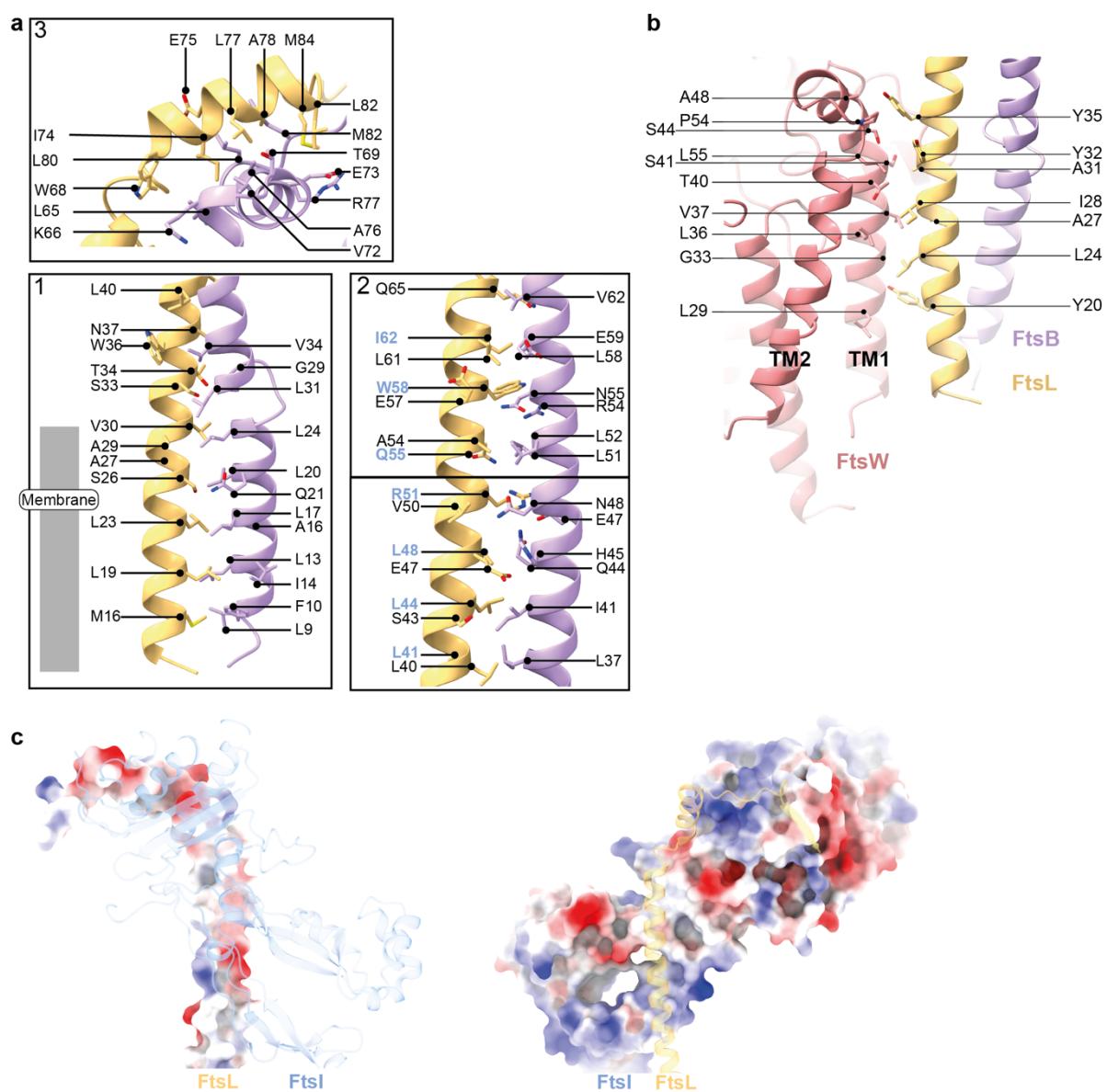
718 **c)** Representative micrograph of *PaFtsWIQBL* used for the final reconstruction.

719 **d)** Cryo-EM processing scheme for *PaFtsWIQBL*.

720 **e)** Fourier Shell Correlation (FSC) curves for the *PaFtsWIQBL* cryo-EM maps and structures.

721

722 **Figure S2: Architecture of the *PaFtsWIQBL* complex.**

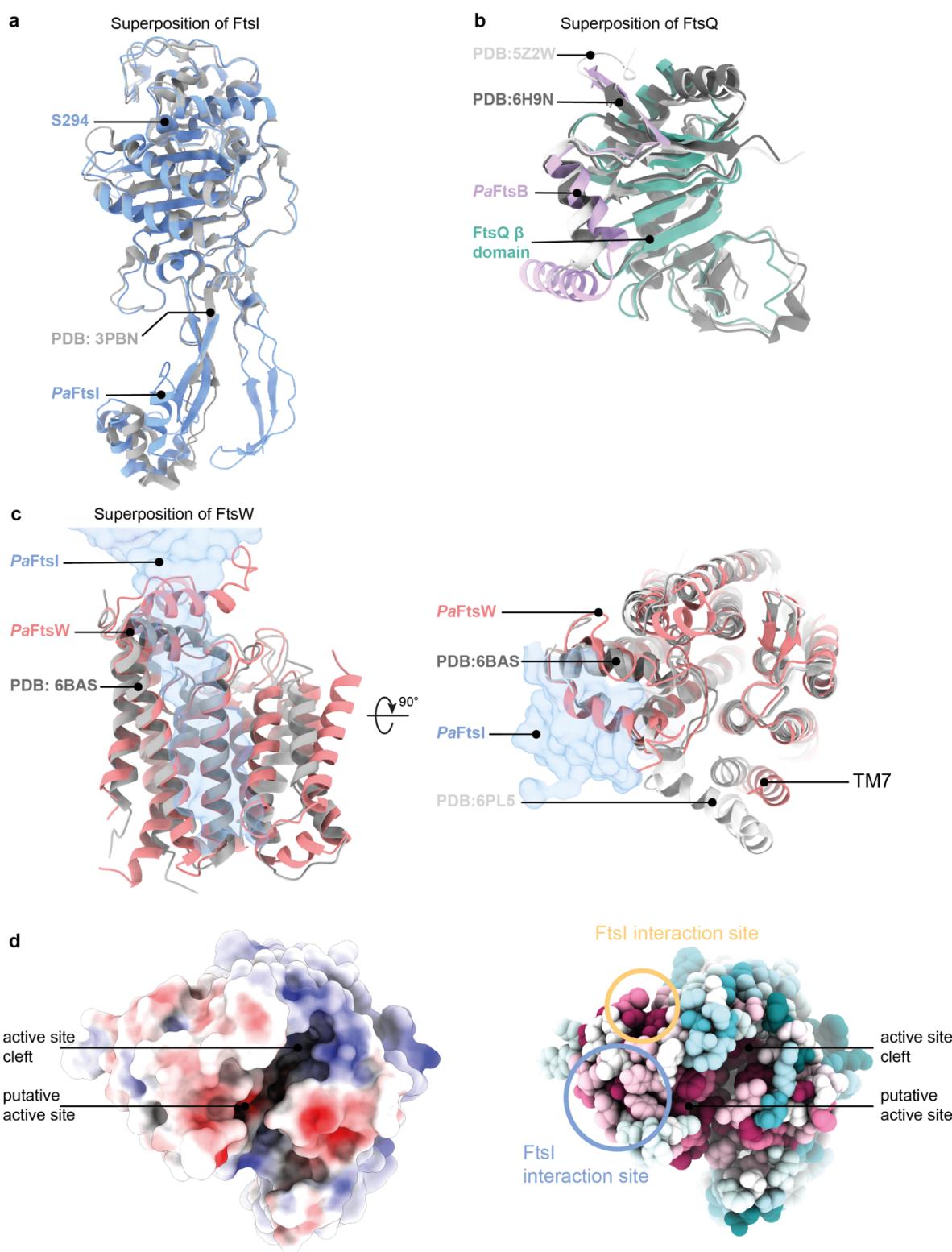

723 **a)** Upper left panel: schematic of the transmembrane helices of FtsW, FtsI and FtsL. Two
724 extracellular loops of FtsW that could not be build due to missing density and the N- and C-
725 terminal tails of FtsW are indicated by doted lines. Lower left panel: top view of the
726 transmembrane domain, with FtsW transmembrane helices consecutively numbered based on
727 the sequence (identical to numbering of helices in a previous RodA structure²¹). FtsW's putative
728 active site residue D275 is indicated. Right panel: Labelling of the different domains in FtsQ,
729 FtsL, FtsB and FtsI that was used throughout the paper.

730 **b)** Cryo-EM density showing *Pa*FtsWIQBL within the Lauryl Maltose Neopentyl Glycol
731 (LMNG) detergent micelle, which was subtracted during the later processing stages.

732 **c)** Prediction of the position and orientation of the divisome core complex transmembrane
733 segments in the lipid bilayer using the Orientations of Proteins in Membranes webserver²⁷. The
734 membrane plane is indicated with two grey discs and the active sites of FtsW and FtsI are
735 labelled.

736 **d)** A low-resolution structure obtained after fewer 3D classifications shows additional density
737 for FtsQ^{POTRA} at low contour levels and indicates that the transmembrane segment of FtsQ is
738 most likely not part of the micelle that contains the other TM segments. Alignment of a previous
739 FtsB:FtsQ crystal structure (PDB: 6H9N) on FtsQ^β shows that FtsQ^β and FtsQ^{POTRA} adopt
740 different conformations relative to each other.

741

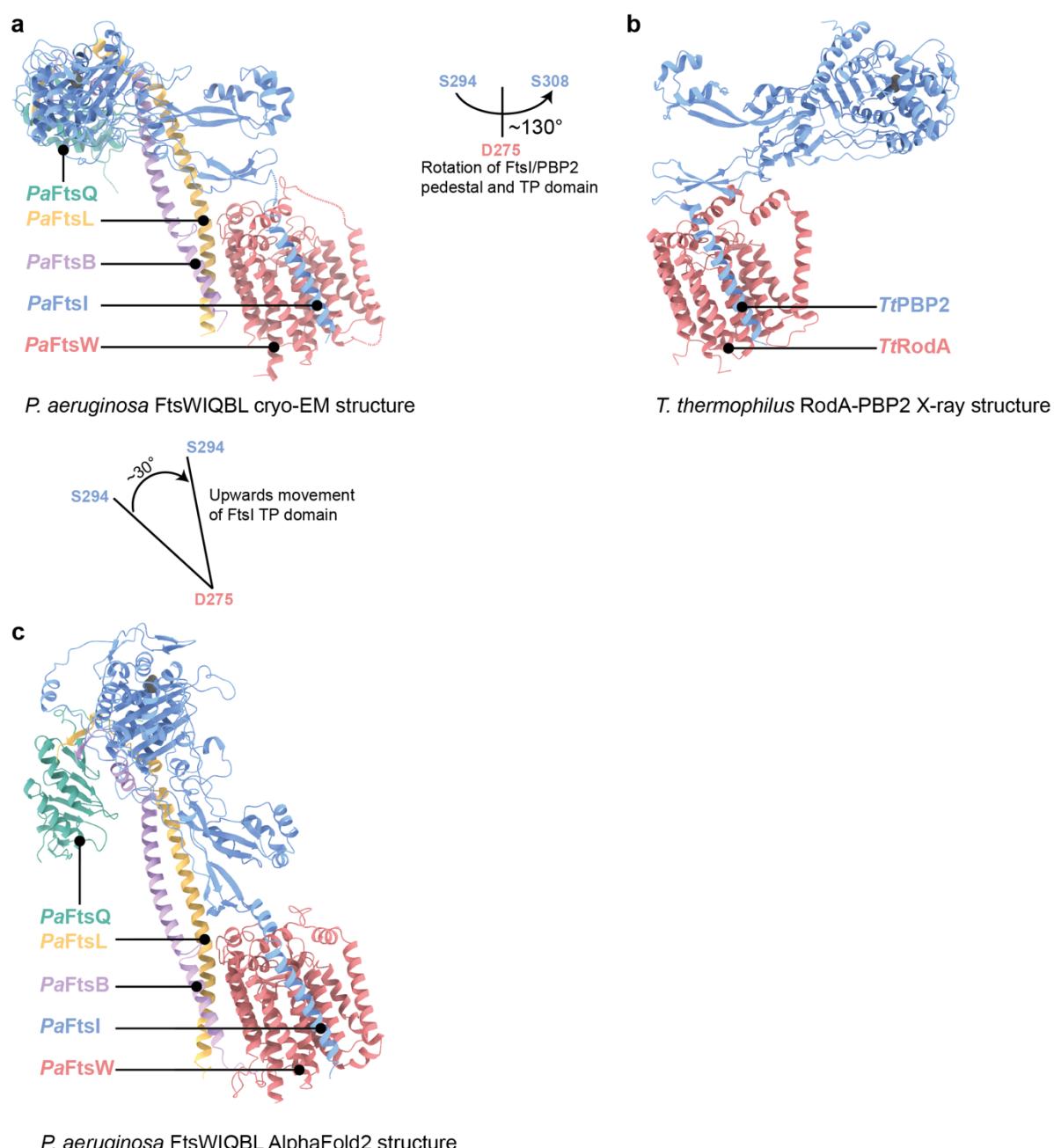

742

743 **Figure S3: Detailed analysis of the interactions between FtsB and FtsL, FtsW and FtsL**
744 **and FtsI and FtsL.**

745 **a)** Interaction sites between FtsB and FtsL, as also indicated in Figure 2a. Residues of FtsL that
746 also interact with FtsI are highlighted in blue.

747 **b)** Analysis of the interaction sites between FtsL and FtsW in their transmembrane region. The
748 coiled coil conformation of FtsL means that the interaction surface is not as extended as it would
749 be if it were straighter and not in a coiled coil.

750 **c)** Electrostatic analysis of the interactions between FtsI and FtsL shows that the interaction site
751 in the coiled coil area is mainly hydrophobic/neutral.


Figure S4: Comparison of *PaFtsWIQBL* cryo-EM structure with previous crystal structures of FtsI, FtsQ and FtsW/RodA.

a) Superposition of FtsI determined by X-ray crystallography (PDB: 3PBN, grey) with the FtsI part of PaFtsWIQBL cryo-EM structure. The TP active site residue S294 is indicated (RMSD of 0.708 Å across 372 pruned atom pairs).

b) Superposition of FtsQB determined by X-ray crystallography (PDB: 6H9N in dark grey, PDB: 5Z2W in light grey) with the same area in the cryo-EM structure determined here (For alignment of FtsQ: RMSD (FtsQ-6H9N) of 1.186 Å across 86 pruned atom pairs, RMSD (FtsQ-5Z2W) of 1.118 Å across 95 pruned atom pairs).

c) Superposition of RodA determined by X-ray crystallography (PDB: 6BAS in dark grey (left and right), PDB: 6PL5 in light gray (right)) and FtsW in the cryo-EM structure. The position of FtsI is indicated as a transparent blue outline. Apart from transmembrane helix 7, the structures align very well (RMSD (FtsW-6PL5) of 1.188 Å across 202 pruned atom pairs; RMSD (FtsW-6BAS) of 1.126 Å across 206 pruned atom pairs).

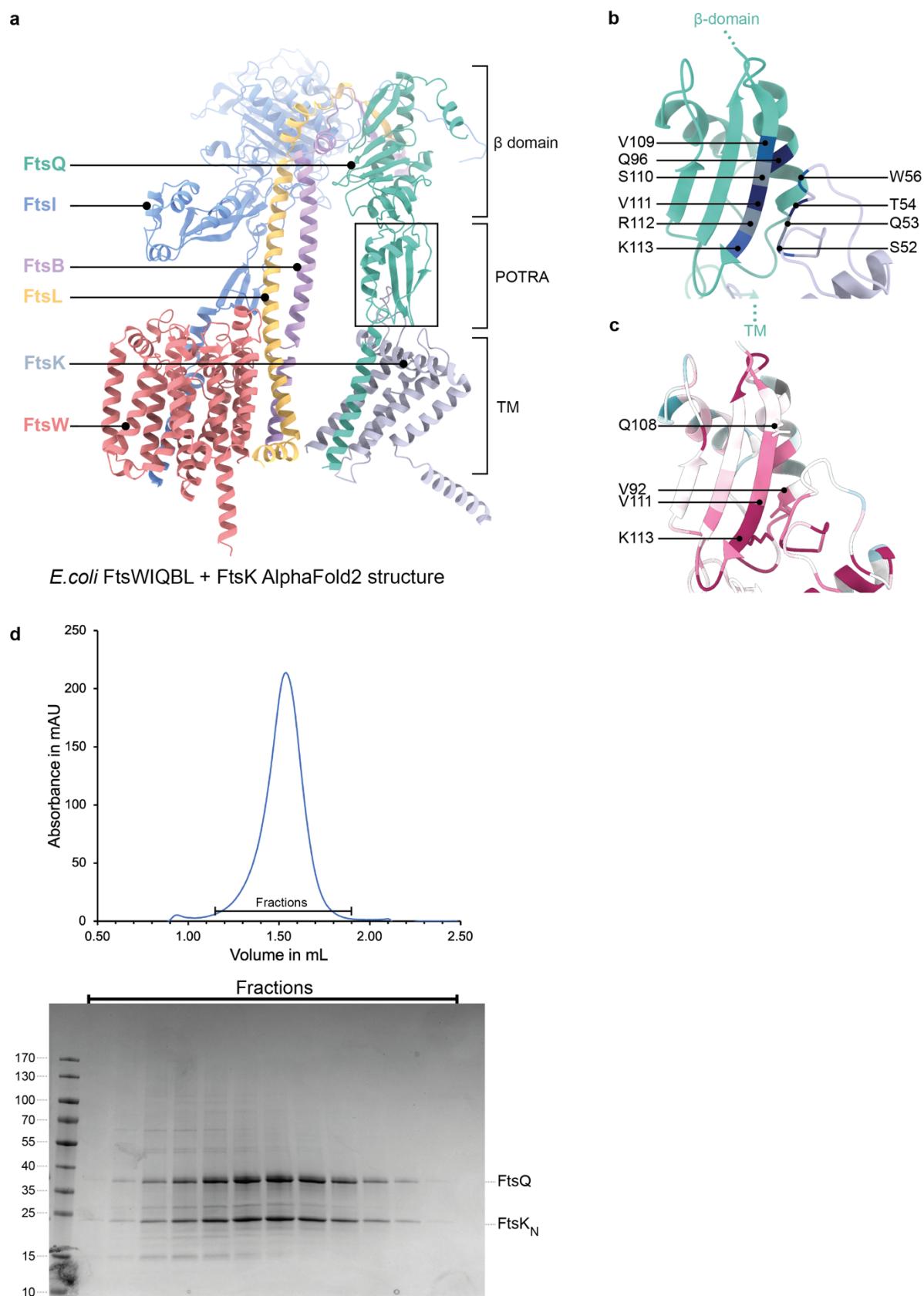

d) Electrostatic surface representation of *PaFtsW* viewed from the periplasmic side. A deep cleft is visible that contains the putative active site residue D275. The same representation showing sequence conservation of FtsW mapped onto the surface representation shows that this cleft is highly conserved. Additionally, interaction sites with FtsI and FtsL are indicated; these also show above average levels of sequence conservation.

Figure S5: Comparison of the *PaFtsWIQBL* cryo-EM structure with RodA-PBP2 structure and AlphaFold2 structure prediction.

Comparison of the cryo-EM structure *PaFtsWIQBL* (a), the *Thermus thermophilus* RodA-PBP2 crystal structure (PDB: 6PL5, b) and the AlphaFold2 prediction of *PaFtsWIQBL* (c). All three structures were aligned on FtsW/RodA. The FtsQ^{POTRA} and FtsQTM of the AlphaFold2 model were removed for clarity. The FtsI/PBP2 periplasmic domains show a large 130° lateral rotation between the *P. aeruginosa* FtsWI and *T. thermophilus* RodA-PBP2 models (a-b). The

rotation was measured around an axis perpendicular to the membrane plane and intersecting the FtsW active site. The distance between both active sites in FtsI (S294) and PBP2 (S308) is 125 Å. A 30° vertical rotation of the periplasmic FtsI domains is visible between the cryo-EM and AlphaFold2 models of *PaFtsWIQBL* (a-c). The angle was measured between the FtsW active site (D275) and the FtsI active sites (S294). The distance between the FtsI active sites in the cryo-EM and AlphaFold2 models is 46 Å.

Figure S6: Interactions of FtsQ with FtsK.

a) AlphaFold2 model of *E. coli* FtsWIQBL + FtsK N-terminal domain (residues 1-222; FtsK¹⁻²²², grey), showing a predicted interaction between FtsQ^{POTRA} and a periplasmic loop from FtsK (FtsK^{W51-H57}).

b) Co-evolutionary coupling analysis calculated with EVcouplings²⁸ finds six out of the ten residue pairs located between FtsQ^{POTRA} and FtsK^{W51-H57} in the AF2 model in a): FtsQ^{V109} – FtsK^{W56} (blue), FtsQ^{Q96} – FtsK^{T54} (dark blue), FtsQ^{S110} – FtsK^{Q53} (gray), FtsQ^{V111} – FtsK^{T54} (dark blue), FtsQ^{R112} – FtsK^{Q53} (grey), and FtsQ^{K113}-FtsK^{S52} (blue).

c) Sequence conservation analysis (calculated using ConSurf webserver²⁹) of the same area shows that the β -strands of FtsQ and FtsK^{W51-H57} that are predicted to interact are highly conserved. Amino acid residues that abolish FtsQ localisation (which is dependent on FtsK septum localisation in cells) when mutated are shown as sticks and are labelled³⁰.

d) Size-exclusion trace and SDS-PAGE gel of the co-expression and purification of *E. coli* FtsQ and FtsK¹⁻²²² shows clear co-migration of the proteins.

Table S1: Imaging statistics cryo-EM

Data collection and processing	PaFtsWIQBLEMD-16042, PDB 8BH1
Magnification	75,000x
Voltage (kV)	300
Electron fluency (e/Å ²)	41
Defocus range (μm)	-1.2 to -3
Pixel size (Å)	Nominally 1.09, refined to 1.05
Symmetry	C1
Initial particles (number)	7,276,623
Final particles (number)	136,364
Map resolution (Å)	3.7
FSC threshold	0.143
Model	
Initial model used	AlphaFold2 model
Model resolution (Å)	3.9
FSC threshold	0.5
Map sharpening B factor (Å ²)	-127
<i>Model composition</i>	
Non-hydrogen atoms	9,269
Protein residues	1,195
RMSD bond lengths (Å)	0.004
RMSD bond angles (°)	0.722
<i>Validation</i>	
MolProbity score	1.98
Clashscore	16.71
Rotamers outliers (%)	0.0
Ramachandran plot	
Favored (%)	96.18
Allowed (%)	3.82
Disallowed (%)	0

References

- 1 Marmont, L. S. & Bernhardt, T. G. A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. *Proc Natl Acad Sci U S A* **117**, 23879-23885, doi:10.1073/pnas.2004598117 (2020).
- 2 Weissmann, F. *et al.* biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. *Proc Natl Acad Sci U S A* **113**, E2564-2569, doi:10.1073/pnas.1604935113 (2016).
- 3 van den Berg van Saparoea, H. B. *et al.* Fine-mapping the contact sites of the Escherichia coli cell division proteins FtsB and FtsL on the FtsQ protein. *J Biol Chem* **288**, 24340-24350, doi:10.1074/jbc.M113.485888 (2013).
- 4 Bieniossek, C., Richmond, T. J. & Berger, I. MultiBac: multigene baculovirus-based eukaryotic protein complex production. *Curr Protoc Protein Sci Chapter 5*, Unit 5 20, doi:10.1002/0471140864.ps0520s51 (2008).
- 5 Qiao, Y. *et al.* Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. *J Am Chem Soc* **136**, 14678-14681, doi:10.1021/ja508147s (2014).
- 6 Scheres, S. H. A Bayesian view on cryo-EM structure determination. *J Mol Biol* **415**, 406-418, doi:10.1016/j.jmb.2011.11.010 (2012).
- 7 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).
- 8 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).
- 9 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296, doi:10.1038/nmeth.4169 (2017).
- 10 Bepler, T. *et al.* Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. *Nat Methods* **16**, 1153-1160, doi:10.1038/s41592-019-0575-8 (2019).
- 11 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 12 Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat Methods* **19**, 679-682, doi:10.1038/s41592-022-01488-1 (2022).
- 13 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
- 14 Turk, D. MAIN software for density averaging, model building, structure refinement and validation. *Acta Crystallogr D Biol Crystallogr* **69**, 1342-1357, doi:10.1107/S0907444913008408 (2013).
- 15 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).
- 16 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877, doi:10.1107/S2059798319011471 (2019).
- 17 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sci* **30**, 70-82, doi:10.1002/pro.3943 (2021).
- 18 Welsh, M. A. *et al.* Identification of a Functionally Unique Family of Penicillin-Binding Proteins. *J Am Chem Soc* **139**, 17727-17730, doi:10.1021/jacs.7b10170 (2017).
- 19 Schneider, T. *et al.* In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of *Staphylococcus aureus*. *Mol Microbiol* **53**, 675-685, doi:10.1111/j.1365-2958.2004.04149.x (2004).
- 20 Barrett, D. *et al.* Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. *J Biol Chem* **282**, 31964-31971, doi:10.1074/jbc.M705440200 (2007).
- 21 Sjødt, M. *et al.* Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. *Nature* **556**, 118-121, doi:10.1038/nature25985 (2018).

22 Taguchi, A. *et al.* FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. *Nat Microbiol* **4**, 587-594, doi:10.1038/s41564-018-0345-x (2019).

23 Salje, J. & Lowe, J. Bacterial actin: architecture of the ParMRC plasmid DNA partitioning complex. *EMBO J* **27**, 2230-2238, doi:10.1038/emboj.2008.152 (2008).

24 Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. *J Struct Biol* **152**, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005).

25 Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. *J Struct Biol* **116**, 71-76, doi:10.1006/jsbi.1996.0013 (1996).

26 Agulleiro, J. I. & Fernandez, J. J. Fast tomographic reconstruction on multicore computers. *Bioinformatics* **27**, 582-583, doi:10.1093/bioinformatics/btq692 (2011).

27 Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. *Nucleic Acids Res* **40**, D370-376, doi:10.1093/nar/gkr703 (2012).

28 Hopf, T. A. *et al.* The EVcouplings Python framework for coevolutionary sequence analysis. *Bioinformatics* **35**, 1582-1584, doi:10.1093/bioinformatics/bty862 (2019).

29 Ashkenazy, H. *et al.* ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucleic Acids Res* **44**, W344-350, doi:10.1093/nar/gkw408 (2016).

30 van den Ent, F. *et al.* Structural and mutational analysis of the cell division protein FtsQ. *Mol Microbiol* **68**, 110-123, doi:10.1111/j.1365-2958.2008.06141.x (2008).