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In bacteria, Lon is a large hexameric ATP-dependent protease that targets
misfolded and also folded substrates, some of which are involved in cell divi-
sion and survival of cellular stress. The N-terminal domain of Lon facilitates
substrate recognition, but how the domains confer such activity has remained
unclear. Here, we report the full-length structure of Lon protease from Ther-
mus thermophilus at 3.9 A resolution in a substrate-engaged state. The six
N-terminal domains are arranged in three pairs, stabilized by coiled-coil seg-
ments and forming an additional channel for substrate sensing and entry into
the AAA+ ring. Sequence conservation analysis and proteolysis assays con-
firm that this architecture is required for the degradation of both folded and
unfolded substrates in bacteria.
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Lon is a ubiquitous ATP-dependent protease that pro-
vides housekeeping functions via the degradation of
misfolded proteins and also coordinates key processes
through targeted proteolysis of folded proteins [1]. In
Escherichia coli, and most Gram-negative bacteria,
Lon controls cell division in response to DNA damage
by targeting SulA, an inhibitor of FtsZ polymerization
[2]. In Caulobacter crescentus, Lon governs the cell
cycle by modulating the concentration of the DNA
replication initiation factor DnaA [3-5]. Moreover,
Lon is involved in the regulation of bacterial metabo-
lism and toxin—antitoxin systems, and it is critical in
many cells for survival and virulence under stress con-
ditions [6-8]. It follows that bacteria in which /on has
been deleted show cell division phenotypes and also a
high sensitivity to antibiotics and UV radiation, mak-
ing Lon a potential target for the development of
antimicrobial agents [9,10]. Eukaryotic Lon protease is
of bacterial origin, it is located in mitochondria and
plays a crucial role in ageing, transcription and other

Abbreviations

fundamental organelle functions in health and disease
[11]. Archaeal Lon is the only family member bound
to the membrane and it is important for cell viability
[12,13].

Lon protease is composed of three major domains:
(a) the N-terminal domain (NTD) recognizing sub-
strates, (b) the hexameric AAA+ (A) domain with
unfolding activity and iii) the C-terminal serine pro-
tease (P) domain, which hydrolyses substrates [14].
Previously determined structures of bacterial and
eukaryotic hexameric A-P Lon truncations without the
NTD show that, in the absence of substrate, Lon’s
hexameric ring adopts an open conformation, while
upon substrate engagement, it changes into a closed
but asymmetric ring conformation [15,16] In the
closed, substrate-engaged form, sequential ATP
hydrolysis in contiguous subunits around the ring
drives the progressive translocation of unfolded sub-
strates from the AAA+ channel towards the protease
domains via the binding to a ‘staircase’ of aromatic

AAA+, ATPases Associated with diverse cellular Activities; AMP-PNP, adenylyl-imidodiphosphate; Cryo-EM, electron cryo-microscopy;
EclLon, Lon protease from Escherichia coli; FSC, Fourier shell correlation; hLon, Lon protease from Homo sapiens; NTD, N-terminal domain;
TRIS, Tris(Hydroxymethyl)aminomethane; TtLon, Lon protease from Thermus thermophilus; YplLon, Lon protease from Yersinia pestis.
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residues. This mechanism is likely to be conserved in
all Lon proteases and is related to the rotary tread-
milling mechanism of other AAA+ translocases [17].
The N-terminal domains show much larger sequence
divergences across species and kingdoms than the A
and P domains, and this is possibly related to
organism-specific substrate recognition requirements.
The crystal structure of the E. coli NTD [18] shows a
globular domain followed by a long a-helical region,
the ‘connecting helix’ (comprising approximately 50
residues), while no atomic structures of eukaryotic
Lon NTDs are available. Although the importance of
the NTDs has been characterized by biochemical stud-
ies in relation to a set of specific substrates (such as
HspQ, DnaA and SulA), its arrangement and role
within the enzyme’s overall structure and reaction
cycle have remained unclear [3,19,20].

Here, we have determined the complete three-
domain structure of Thermus thermophilus Lon at an
overall resolution of 3.9 A by cryo-EM in a closed
hexameric, substrate-engaged state. While clearly being
less well ordered, the cryo-EM data enabled us to
model the position of all six N-terminal domains. The
NTDs form a pseudo threefold ensemble on top of the
AAA+ ring and control access to the AAA+ transloca-
tion channel. In addition, we performed degradation
assays of known unfolded and folded substrates of
E. coli Lon, verifying the importance of the NTD.

Materials and methods

Protein expression and purification

Synthetic genes for full-length Lon protease from Ther-
mus thermophilus ~ (Uniprot  Q72KS4, TtLon) and
Escherichia coli (Uniprot POA9MO, EcLon) were subcloned
into the bacterial expression vector pOPINS-UBE3C, bear-
ing an N-terminal 6X-histidine tag followed by SUMO
[21]. The plasmids were transformed into chemically com-
petent C41(DE3) E. coli cells and 4L culture were grown in
2xYT medium at 37 °C in the presence of 50 pgmL~'
kanamycin. Protein expression was induced at ODgqq of 0.6
with 1 mMm IPTG, and cells were grown overnight at 16 °C.
Cells were harvested by centrifugation at 5000 xg, re-
suspended in 100 mL buffer A: 50 mm Tris/HCI, 200 mm
NaCl, pH 8.0, supplemented with lysozyme, DNAse,
RNase (Sigma-Aldrich/Merck Millipore, Burlington, MA,
USA) and lysed with a cell disruptor (Constant Systems).
The soluble fraction was isolated by centrifugation at
100 000xg for 1 h and loaded onto a gravity column pre-
packed with 2 mL of Ni-NTA beads (Qiagen, Hilden, Ger-
many) pre-equilibrated with buffer A. After extensive
washes with buffer A, the beads were incubated with the
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recombinant GST-tagged SENP protease [21], at 4 °C for
2 h, to cleave the SUMO tag. Subsequently, untagged and
unmodified Lon protease was recovered in the flow-
through via several column washes with buffer A. Com-
plete tag removal was verified by SDS/PAGE. Untagged
Lon protease was concentrated by ultrafiltration to
SmgmL™" and further purified by size-exclusion chro-
matography using a Superose 6 Increase 10/300 GL column
(Cytiva, Marlborough, MA, USA), equilibrated in buffer
A, resulting in a pure homo-hexameric complex, according
to a column calibration and as verified by negative staining
electron microscopy. Since EcLon formed a mixture of hex-
amers and dodecamers on EM grids, cryo-EM analysis was
pursued using TtLon, while activity assays were performed
using EcLon. The N-terminally truncated mutant
EcLon7" was produced as described for full-length
EcLon and resulted in a purely hexameric assembly, with-
out dodecamers, as previously reported for other similar
mutants [16].

Cryo-EM grid preparation

3 pL of Lon at a concentration of 0.8 mg-mL~', in buffer
A supplemented with 1 mm AMP-PNP and 5 mm MgCl,
were applied to freshly glow-discharged (40 mA, 1 min)
Quantifoil Cu/Rh 200 mesh R2/2 grids. The same Lon
sample, diluted 10 times in buffer A (Lon concentration
0.1 mg-mL '), was applied to graphene oxide (GO) grids,
prepared as previously reported [22] using as support
Quantifoil Cu/Rh 200 mesh R2/2 grids. The grids were
blotted and plunge-frozen in liquid ethane using a Vitrobot
Mark IV (Thermo Fisher Scientific, Waltham, MA, USA).
For both grid types, images were acquired on a K2 Summit
detector (Gatan) in counting mode mounted on a Titan
Krios G3 (Thermo Fisher Scientific) electron microscope at
300 kV. A Quantum GIF energy filter (Gatan) was used
with a slit width of 20 eV to remove inelastically scattered
electrons. Forty movie frames were recorded per image,
using a fluency of 1.0 electron per A2 per frame, for a total
accumulated dose of 40 electrons per A2 per image, at a
pixel size of 1.1 A on the specimen. Further details are pre-
sented in Table 1.

Cryo-EM image processing

The image-processing procedures are graphically repre-
sented in Fig. 1. Movie frames were corrected for gain
using a reference, motion-corrected and dose-weighted
using MOTIONCOR? [23]. Aligned micrographs were used
to estimate the contrast transfer function (CTF) in Getf
[24]. All subsequent image-processing steps were performed
using single-particle reconstruction methods in RELION
3.0 [25,26]. Particles were initially manually picked to gen-
erate 2D class references for automated picking in
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Table 1. Cryo-EM and model data.

Statistics
Sample Lon from T. Thermophilus
NCBI Database Ids Uniprot: Q72KS4
Construct Full-length, untagged
Method Cryo-EM
Data collection
Microscope Titan krios G3
Detector K2 Summit
Acceleration energy 300 kV
Symmetry C1
Data
Resolution (A) 3.91
Images 44449
Pixel Size (A) 1.1
Defocus Range (um) 0.5-4
Fluence 40 electrons/A2
Applied B-factor —96.81
Model Refinement
Rwork/Rfree 0.40/0.40
Bond length rmsd (A) 0.007
Bond angle rmsd (°) 1.374
Ramachandran (%)
Favoured 93.66
Outliers 0.06
MolProbity Clashscore 7.14 (86th percentile)
PDB, EMDB Ids 7P6U, EMD-13232

RELION. The whole dataset of automatically picked
images was extracted with 4 x 4 binning, and two rounds
of reference-free 2D classifications were performed. In
order to compensate for preferred orientation adopted by
Lon on the grids, we combined two datasets collected on
unsupported ice and on graphene oxide-supported grids.
The particles belonging to the best 2D classes were

extracted with 2 x 2 binning and subjected to 3D
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classification using as initial model the structure of Bacil-
lus subtilis Lon A-P domains (PDB ID 3M6A) [27]. The
majority of the particles presented an open-ring conforma-
tion, similar to previously reported substrate-free Lon
structures [15,16]. About 15% of the dataset presented a
closed conformation very similar to the substrate-engaged
structure of Yersinia pestis (PDB ID 60N2) [15], but show-
ing additional map regions likely accounting for the six N-
terminal domains. After further 3D classification, and over-
all refinement at a pixel size of 1.1 A (unbinned), we per-
formed Bayesian polishing, per-particle CTF and tilt
correction, achieving a map at an overall resolution of
42 A (Fourier shell correlation (FSC) at 0.143), much bet-
ter resolved on the C-terminal portion 250-795. Further-
more, we performed focussed refinement with a mask to
reach an overall resolution of 3.9 A. From this map, we
tried to improve the N-terminal domain resolution by
focussed refinement and signal subtraction, but this did not
significantly improve the map, probably due to the small
size of the N-terminal domain and pseudo 3-fold symme-
try.

Model building and refinement

Model building was conducted using two separate maps: (a)
map 1, at 3.9 A resolution, masked around a small portion
of the N-terminal domains, the AAA+ and protease
domains; (b) map 2, at 4.2 A, obtained with a larger mask
enclosing all of the N-terminal domains, which was blurred
applyinga 1.1 A Gaussian filter in chimera [28]. A homology
model of the TtLon A-P domains (residues 247-775) was
generated from PDB ID 60N2 [15] in SWISS MODEL [29],
followed by a rigid body fit in Chimera [28] in map 1 (map
to model correlation 0.8). A peptide substrate of unknown
sequence (indicated as polyalanine, chain S) was identified in
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Fig. 1. Cryo-EM image processing of Lon from TtLon. (A) Typical micrograph of Lon from T. thermophilus (TtLon) on graphene oxide (GO)
grids. The dark lines are the edges of GO flakes. (B) Representative 2D class averages. (C) Image-processing workflow to obtain maps for
atomic model building (overall 4.2 A resolution; 3.9 A resolution within A-P and parts of the NTDs). (D) Local resolution of the substrate-
engaged TtLon map (E) Fourier shell correlation (FSC) of masked and unmasked maps, the dotted line indicates FSC = 0.143.
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Fig. 2. Architecture of the N-terminal domains (NTDs) of Ttlon. (A) Cartoon representation of the closed TtLon structure. The substrate in
the channel is coloured in black and shown as spheres. (B) Schematic of the arrangement of the NTDs: in consecutive chains, the
connecting a-helix (residues190-240) points alternatingly inwards and outwards the central axis, thereby forming three pairs of NTD domains
with a pseudo 3-fold symmetry, and an additional channel above the main AAA+ channel, named here the ‘collar’. (C) Coiled-coil probability
within the NTD: the major CC regions are between residues 129-142 (CC1) and 197-227 (CC2). (D) Close-up of one of the three NTD pairs
composed of chains A and D, fitted into the TtLon map (at 4.2 A, Gaussian filtered). The interaction between CC1(blue) of chain D and CC2
(red) of chain A is shown with an asterisk and drives the bending of the connecting helix composed of residues 190-240. The same straight

helix from the isolated EcLon NTD crystal structure (PDB ID 3LJC) [18] does not fit the map (white ribbon).

the central AAA+ pore. The bound nucleotidle AMP-PNP
was clearly visible and replaced ATP and ADP moieties pre-
sent in the starting reference structure of YpLon [15]. To
interpret the N-terminal region (residues 1-246), a rigid body
fit in map 1 was performed with a homology model gener-
ated with SWISS MODEL, starting from the structure of the
E. coli N-terminal domain (PDB ID 3LJC) [18]. While the
last helical portion (residues 229-240) fitted map 1 well, the
rest of the helix and the globular domain (residues 1-189) did
not fit map 2. From the map and the coiled-coil probability
calculated in COILS [30], we surmised a superhelical twist of
the ‘connecting’ a-helix 190-240 of the NTDs. We thus calcu-
lated a theoretical coiled-coil structure for this portion using
CCbuilder 2.0 [31] and replaced the straight o-helix present

in the initial model. The new model containing a coiled-coil
a-helix describes map 2 well. Since the side chains of the
region 1-247 were not well defined due to resolution limita-
tions, we set occupancy to zero for this region to indicate a
degree of uncertainty. The overall model of TtLon was
refined in COOT [32] and Phenix [33] (phenix.real_space_re-
fine) and deposited in the Protein Data Bank (PDB ID
7P6U, EMD-13232).

Sequence conservation analysis

A set of 100 sequences for bacterial Lon proteases was
aligned with BLAST [34]. We discarded redundant
sequences and performed further alignment with MSA-
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probs [35]. Per-residue conservation scores were calculated
according to Capra et al. [36] and a custom Python script
was used to visualize them in pymoL 2.3.0 (Fig. 3A).

Degradation assays

Peptide degradation by EcLon'™ and EcLon®**7% was
assayed by SDS/PAGE after incubation at 37 °C for 1 h.
Reactions contained: Lon (hexamer 200 nm), 10 uM of
protein substrate, an ATP regeneration system (16 mwm cre-
atine phosphate, 0.32 mgmL~' creatine phosphokinase
[both Sigma-Aldrich]), in a final buffer composed of 50 mm
Tris/HCI pHS8.0, 200 mm NaCl, 10 mm MgCl,, 5 mm ATP
(Jena Bioscience), 2 mm DTT. Casein was purchased from
Sigma-Aldrich, while HspQ from E. coli (Uniprot
POAB20), PinA (Uniprot P07068) and FolA-Sul20 were
produced recombinantly, as described previously [37-39].

Results

Architecture of Thermus thermophilus Lon
protease

In order to produce untagged Lon proteases, we fused
a set of bacterial Lon genes with an N-terminal
SUMO tag for bacterial overexpression, to obtain
completely unmodified proteins after cleavage with
SUMO protease. Amongst the screened recombinant
bacterial Lon proteases, the protein from T. ther-
mophilus (TtLon) provided the most stable and
homogenous hexameric assembly. We therefore used
TtLon for cryo-EM studies in the presence of the
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slowly hydrolysable ATP analogue AMP-PNP. An
overview of the cryo-EM data and image-processing
workflow is shown in Fig. 1. We collected two data-
sets, one on unsupported holey grids and one on gra-
phene oxide (GO)-supported grids (Fig. 1A) that,
when combined, produced a broad orientation distri-
bution of the resulting particles, as judged by the
appearance of 2D class averages (Fig. 1B). The 2D
averages show a clear hexameric density decorated
with an additional moiety, which we presumed was
formed by the NTDs. It was not possible to determine
whether Lon was in an open or closed ring conforma-
tion based on the 2D averages. We then used as start-
ing model the open A-P ring crystal structure of
Bacillus subtilistPDB ID 3M6A) [27] and could clearly
identify both open and closed conformations in the
dataset by 3D classification (Fig. 1C). However, only
the subset corresponding to the closed conformation
resulted in a well-resolved map at 4.2 A resolution.
This map showed six extra map areas accounting for
the NTDs’ globular domains at low map contour val-
ues (o =1.3). In contrast, the particles in the open
ring conformation were probably a mixture of many
different states, due to the flexibility of the less com-
pact A-P ring. To improve the resolution of the
closed-conformation TtLon map, we performed
focussed refinements centred on the A-P ring and also
the most resolved region of the NTDs, finally reaching
an overall resolution of 3.9 A, with highest resolutions
observed within the AAA+ domains (Fig. 1D-E). Both
TtLon maps from the focussed refinements were used

Fig. 3. The role of the Lon N-terminal domain (NTD) arrangement in substrate processing. (A) Cartoon of TtLon, colour-coded according to
residue conservation. The collar region formed by the intertwined connecting a-helices of the six NTDs is highly conserved, as are the AAA+
and protease domains. (B) Longitudinal section of the experimental cryo-EM map showing a map area that we presume is a substrate
crossing the NTD collar before reaching the AAA+ ring. (C) Sequence alignment of bacterial TtLon, EcLon, YpLon to hLon; Y228 in TtLon
corresponds to Y394 in hLon. (D) Substrate entry via the NTD into the AAA+ channel of TtLon. The "tyrosine doublets’ (Y228-Y229) from
chains B, D and F, forming the central pore of the collar, may facilitate or control substrate entry and translocation into the AAA+ channel,
where Y402 from consecutive chains A to D pull the substrate towards the protease domain for hydrolysis. (E) Top view, 90° rotated from
panel D.
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for model building and refinement, as detailed in the
Methods section and Table 1.

The A-P ring of TtLon closely resembles the
Yersinia pestis Lon (YpLon) structure (PDB ID
60N2), obtained previously in the presence of ATP
and a folded substrate (RMSD = 2.6 A). In our map,
(un-hydrolysed) AMP-PNP could be identified in all
ATPase pockets, except in chain F, which corresponds
to the site where ATP is completely hydrolysed to
ADP in YpLon (Fig. SIA). In addition, we could
identify an elongated map density that is most likely a
peptide or mix of peptides, entrapped in a similar posi-
tion to the suspected substrate in the YpLon structure
at the entrance of the AAA+ central pore (Fig. 2A-B).
The substrate-engaged hLon protease (PDB ID
7KSM) [40] is less similar, but both ATPase pockets
and suspected substrate binding are also highly con-
served (hLon RMSD with TtLon = 4 A), as shown in
Fig. SIB-E.

While the folded portion of the substrate and the
NTDs were not visible in the YpLon map, in our
TtLon maps we were able to locate all six NTDs,
which show a pseudo threefold arrangement. A simi-
larly shaped NTD portion had previously been
observed at low-resolution in human Lon (hLon) by
Kereiche et al. [41]. In TtLon’s consecutive chains
around the ring, the long o-helices connecting the
NTDsto the A domains (residues 190-240) point alter-
natingly inwards and outwards with respect to the cen-
tral AAA+ ring axis. This leads to i)the globular
domains of the NTDs from chain x and chain x+3-
coming close, forming three chain pairs: A-D, B-E, C-
F (Fig. 2B) and ii) the formation of a central open o-
helical ‘collar’ above the central axis. This arrange-
ment is stabilized by interactions between the two pre-
dicted coiled-coil regions in each NTD: 129-142 (CCl1)
and 197-227 (CC2). CC2 from chains A, C and E
interact with CC1 from chains D, F and B, respec-
tively, thereby inducing a kink in the NTD’s connect-
ing o-helix (Fig. 2C). While a rigid-body fit of the
E. coli NTD crystal structure (PDB ID 3LJC), con-
taining a straight connecting a-helix positions the glob-
ular domains outside our map, modelling the
connecting a-helix as a coiled-coil instead results in a
good fit (Fig. 2D and Fig. S2). Apart from major
interactions between the connecting helices in chains x
and x + 3, near the central pore, these two helices are
sandwiched by a short portion of the connecting helix
in chain x + 5 (Fig. S2). In the collar region, the posi-
tions of the amino acid residues in the model are
indicative, only, due to low local resolution, and con-
sequently, the occupancies of those residues have been
set to zero. According to the NTD TtLon model, the
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residue E240 (corresponding to E. coli Lon E240) is
located at the interface between the NTDs’ connecting
helices (Fig. S2C). It has been shown previously that
E240K is defective in proteolysis and we suggest that
the mutant likely destabilizes the collar structure. This
could also explain the formation of more dodecameric
Lon by the same mutant [41-43].

The role of the N-terminal domain in substrate
processing

The coiled-coil a-helical collar portion of the NTDs,
assembled from the NTDs’ connecting helices, is
highly conserved in bacterial, as well as in eukaryotic
Lon protease sequences (Fig. 3A), suggesting that this
region adopts a similar conformation to the one deter-
mined here and also suggesting a general role for the
collar in Lon substrate processing.

Inspecting our TtLon maps at low contour values,
we noticed that a continuous substrate density departs
down from the NTD collar pore (with the NTDs at
the top), reaching the AAA+ channel (Fig. 3B). We
surmise that the ‘tyrosine doublets’ Y228/Y229 from
chains B, D and F, forming the central pore of the
collar, may facilitate substrate entry and possibly also
help with translocation into the AAA+ channel. The
Y228/Y229 tyrosine doublet is highly conserved in
bacteria. The first Y228 corresponds to Y394 in
human Lon, which, when mutated to alanine, severely
alters Lon activity [44] (Fig. 3C). In the TtLon AAA+
channel, the staircase of the Y402 residues from the
consecutive chains A-D presumably pulls the substrate
towards the protease domains for hydrolysis, as sug-
gested for example by the YpLon structure [15], and
in agreement with other AAA+ translocases
[15,40,45,46] (Fig. 3D,E and Fig. S1B-E). The struc-
tural features observed here suggest a direct coupling
between the NTD collar ‘sensing and holding’ the sub-
strate, with its progressive unfolding and translocation
driven by ATP hydrolysis in the A domains. Indeed,
previous studies showed that removal of the a-helical
region 232-252 in E. coli Lon compromises ATPase
activity and ATP-dependent peptide translocation abil-
ities [47].

Protein degradation by EcLon

Our map showed that a copurified unfolded peptide or
peptide mix seems to cross the collar pore to reach the
AAA+ ring. Based on this, we asked whether the col-
lar structure is necessary for the processing of both
unfolded and folded proteins and how the pseudo
threefold arrangement of the NTDs’ globular domains
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is involved in the recognition of EcLon-specific inter-
actors. We therefore performed degradation assays in
the presence of Lon substrates and the known Lon ‘ac-
tivity enhancer’ HspQ, which is also itself a Lon sub-
strate [19]. We used the widely used model of a folded
Lon substrate, FolA-Sul20 (dihydrofolate reductase,
fused to the SulA C-terminal peptide degron, as
described by Gur et al. [37]), unstructured casein [48]
and the phage-derived Lon inhibitor PinA [38,49]
(Fig. 4).

Apart from being a Lon substrate itself, HspQ is
known to accelerate the degradation of other folded
and unfolded substrates [19,39]. In our assay, HspQ
accelerated degradation of non-folded casein, and to
a larger extent of folded FolA-Sul20, thereby con-
firming its enhancer function (Fig. 4B-C). However,
in the absence of the NTD (EcLon truncation includ-
ing residues 253 to 784, which does not include the
collar), both the degradation of HspQ and casein
were impaired, making it likely that binding of HspQ
is mediated by the NTD and that the collar is essen-
tial for unfolded substrates to be translocated
towards the protease domains (Fig. 4D). Based on
these data and on the structures of Lon and HspQ,
we speculate that the HspQ trimer might bind
directly to the pseudo threefold NTDs, to affect
ATPase and translocation by the AAA+ ring and/or
to enhance substrate access, for example by modify-
ing the collar pore. Interestingly, PinA, binding Lon
directly [50], inhibits HspQ and FolA-Sul20 degrada-
tion while inhibiting casein degradation to a some-
what lesser extent. This could suggest that PinA

Complete structure of Lon from Thermus thermophilus

competes for Lon binding with HspQ through over-
lapping binding sites.

Discussion

In bacteria, ATP-dependent Lon proteases control
directly the intracellular concentrations of many
important proteins, for example modulating cell divi-
sion and survival in response to metabolic, chemical,
thermal and DNA damage stress [S1]. A range of sub-
strates and their interactions with Lon have been stud-
ied; however, many of the substrates are also degraded
by other protease systems, for example Clp [52,53], sig-
nificantly complicating analyses. A key challenge is
thus to identify Lon-specific substrates and their mech-
anism of recognition. The full-length bacterial Lon
structure presented here provides insights into the
unique mechanism of substrate processing involving
the enigmatic N-terminal domains. In Lon, unlike in
most other ATP-dependent size-exclusion protease sys-
tems, the NTD is part of the same polypeptide chain
as the AAA+ and protease domains. As shown here,
the NTD arrangement in the Lon hexamer consists of
two structural features: a collar formed by the con-
necting helices in a coiled-coil-like arrangement, and a
pseudo 3-fold triplet of globular domain pairs, pre-
sumably involved in specific substrate recognition,
such as with HspQ. Previous studies showed that the
NTD does not form dimers in vitro or in the crystals
of the reported structures; therefore, this arrangement,
enforced by the AAA+ hexameric assembly, only
occurs within the complete Lon quaternary structure

(A) (B) C) (D)
Casein + + + + + FolA-Sul20 + + + + +
HspQ - - + + + HspQ - - + - + HspQ - - 4+ - + HspQ + + + Casein + o+ o+
PinA  + + - - + PinA - - - + + PinA - = = + + Eclon?*7 — _ 4+ EclLon®7® _ _ 4
Eckon - + - + + EcLon — + + + + EclLon -+ 4+ + + Edlon™ — + © Edon - + * ypa
—180
—130
Eeton—= - . 9 . e . g S i, i Eclon— &= P 100
253.784 4—70
EclLon | o5
c— U gum— —" T —— s — e | [
ATP reg —— — —— . ATP reg — — c— %
system Casein = S8 system Casein = 35
PinA = ot Q| FOIA-SUI() = ———-— —— - o5
HspQ = — — — - HspQ | 15

Fig. 4. Protein degradation by EclLon is dependent on the N-terminal domains, highlighting a role of the collar region. Proteolysis in the
presence of an ATP regeneration system (reactions ran at 37 °C for 1 h) of unstructured casein and folded HspQ and FolA-Sul20 substrates,
and inhibition by the phage-derived PinA protein were assayed by SDS-PAGE. (A) Pin A is not degraded by Lon and inhibits degradation of
HspQ. Casein (B) and FolA-Sul20 (C) degradation is accelerated by HspQ and inhibited by PinA. In the presence of both HspQ and casein,
the latter is preferentially degraded. (D) The NTD, including the collar portion containing the tyrosine doublets, is required for the
degradation of both folded (HspQ) and non-folded (casein) substrates.
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[18,27]. We show that the collar is an integral part of
the translocation machinery, threading the substrate
towards the AAA+. Our and previous biochemical
studies on EcLon also show that this region is essential
for processing of both unfolded and folded proteins
[47]. As such, the collar could provide an access gating
mechanism that allows, or disallows access to the
AAA+ channel, depending on whether the globular
domains of the NTDs have engaged with substrates.

While the amino acid sequences of the globular
domains of the NTDs are often longer and are also
more diverse in eukaryotes, the collar structure is
likely to be conserved, as is also highlighted by the
two recently reported structures of hLon protease that
resolve the positions of the NTDs [44,54]. These stud-
ies also reported a similar architecture of the NTDs
and the aromatic residues within the collar channel. In
one of those studies, in line with our hypothesis, muta-
tion of one tyrosine belonging to the NTD tyrosine
doublet to alanine (Y228 in TtLon, Y394 in hLon)
dramatically impairs Lon activity [44].

It remains to be established how the NTDs discrimi-
nate between potentially many different Lon-specific
protein targets [55]. It seems unlikely to us that a small
globular domain such as the one present in the NTD
of Lon could recognize and discriminate between a
large number of different substrates. A different, or
perhaps indirect targeting strategy, or using more gen-
eral motifs or degrons, seem more likely. Along those
lines, HspQ enhances Lon activity for many substrates.
Interestingly, the HspQ trimer presents a surface com-
plementarity with the solvent-exposed part of the col-
lar and NTD (top). A possible explanation of HspQ’s
enhancing function could be that it docks onto the
NTD and ‘pushes apart’ the collar and the connecting
helixes causing a constant or wider opening of the cen-
tral channel, which possibly facilitates the entry of cer-
tain substrates (and itself). For this to work, HspQ
itself would have to open up a central pore to let sub-
strates access the Lon channel. Alternatively, it is also
possible that HspQ shuttles substrates to Lon, acting
as an ‘adaptor’ protein. However, these hypotheses
will need to be investigated since there is currently no
evidence to support one or the other. Our proteolysis
assays suggest that the T4 phage inhibitor protein
PinA could be at least partly sharing its Lon binding
region with HspQ. Starting with the complete TtLon
structure we report here, it will be crucial to obtain
structural information on both HspQ and PinA inter-
actions and to obtain comprehensive substrate speci-
ficity data to unravel the secrets of the Lon protease
machine further.
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