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Accurate DNA partition at cell division is vital to all living
organisms. In bacteria, this process can involve partition
loci, which are found on both chromosomes and plasmids.
The initial step in Escherichia coli plasmid R1 partition
involves the formation of a partition complex between the
DNA-binding protein ParR and its cognate centromere site
parC on the DNA. The partition complex is recognized by a
second partition protein, the actin-like ATPase ParM,
which forms filaments required for the active bidirectional
movement of DNA replicates. Here, we present the 2.8 A
crystal structure of ParR from E. coli plasmid pB171. ParR
forms a tight dimer resembling a large family of dimeric
ribbon-helix-helix (RHH), site-specific DNA-binding
proteins. Crystallographic and electron microscopic data
further indicate that ParR dimers assemble into a helix
structure with DNA-binding sites facing outward. Genetic
and biochemical experiments support a structural arrange-
ment in which the centromere-like parC DNA is wrapped
around a ParR protein scaffold. This structure holds
implications for how ParM polymerization drives active
DNA transport during plasmid partition.
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Introduction

Faithful inheritance of genetic information requires accurate
partition of replicated DNA molecules into daughter cell
compartments before cell division. Akin to mitosis in eukar-
yotes the process of DNA partition in prokaryotes is a highly
dynamic process in which the DNA replicates are separated
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and transported to opposite sides of the cell division plane
(Gerdes et al, 2004). To a large extent, our knowledge about
DNA partition in bacteria is derived from studies of how low-
copy-number plasmids are segregated. Such plasmids rely
exclusively on partition loci (par) for their specific distribu-
tion to progeny in every cell cycle. In addition, partition loci
have been identified on a large number of bacterial chromo-
somes and appear to play an important role in the spatial
organization of chromosomal DNA as well (Gerdes et al,
2000; Yamaichi and Niki, 2000; Hayes, 2000; Wu and
Errington, 2003; Errington et al, 2005; Fogel and Waldor,
2006; Lee and Grossman, 2006; Yamaichi et al, 2007).
Partition systems are generally composed of three essential
elements, all specified by the same genetic locus: two pro-
teins, an ATPase and a DNA-binding adaptor protein, that act
together on a cis-acting centromere-like region on the DNA.
When classified according to the nature of their ATPase
component, partition systems fall into two main categories:
type I systems that employ Walker-type ATPases termed
ParA, ParF or SopA, and type II systems whose ATPases,
termed ParM, are homologs of actin. Type I partition systems
further fall into two subgroups type Ia and type Ib based on
the size of the Walker ATPases. The adaptor proteins of
type Ia, type Ib and type II partition systems (termed ParB,
ParG and ParR, respectively) show no homology even though
they have similar functions in the partition process, and the
centromere-like sites they recognize are diverse (Gerdes et al,
2000; Hayes, 2000).

The earliest step in a general mechanistic outline of
plasmid partition involves the formation of a partition com-
plex between the adaptor protein and its cognate centromere-
like site on the DNA. In parMRC from plasmid R1, which is
typical of partitioning systems with actin-like ATPases (type II),
the dimeric ParR adaptor protein, which is present in less
than 1000 copies in the cell (Meller-Jensen et al, 2002), binds
cooperatively to two sets of five 11-bp direct repeats denoted
parC (Dam and Gerdes, 1994; Moller-Jensen et al, 2003).
The parC DNA region has been shown to be intrinsically
curved (Hoischen et al, 2004). Apart from its function in
plasmid partition, ParR binding serves to autoregulate the
expression of partition proteins as the parC site overlaps with
the par-promoter (Jensen et al, 1994). A minimum of two
direct repeats of DNA is required for binding of ParR and
footprinting analysis have shown that the partition complex
extends over the entire parC region (Moeller-Jensen et al,
2003). Formation of the ParR/parC DNA partition complex
has been shown by electron microscopy to mediate pairing of
plasmid replicates (Jensen et al, 1998).

In the parABS system of plasmid P1, which employs a
Walker type ATPase (type Ia), the partition complex is formed
by association of a ParB dimer and the host-encoded Integration
Host Factor with specific recognition sequences in the centro-
meric DNA region, parS (Bouet et al, 2000). Formation of the
partition complex is thought to mediate specific pairing of
plasmid replicates at parS sites (Edgar et al, 2001). A recent
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crystal structure of ParB bound to DNA provided mechanistic
insight into how ParB-mediated plasmid pairing might occur
by demonstrating that ParB dimers bound to DNA via their
N-terminal helix-turn-helix (HTH) domain could associate
in trans with a different DNA molecule via their dimerization
domain and thus serve as a molecular linkage between two
plasmid centromers (Schumacher and Funnell, 2005).

The partition complexes are recognized by partition
ATPases that convert energy from ATP hydrolysis into active
intracellular transport of plasmid molecules. Both ParA and
ParM type ATPases have been shown to form filamentous
structures, although ATP-dependent dynamics remain to be
demonstrated for ParA proteins (Meller-Jensen et al, 2002,
2003; Barilla et al, 2005; Leonard et al, 2005; Lim et al, 2005;
Becker et al, 2006; Ebersbach et al, 2006; Bouet et al, 2007).
In vitro ParM filaments nucleate spontaneously in the pre-
sence of ATP and extend bidirectionally. In the absence of
ParR and parC DNA, the ParM filament growth phase is
succeeded by rapid unidirectional collapse, a phenomenon
reminiscent of the dynamic instability displayed by micro-
tubules in eukaryotes (Garner et al, 2004). In a recent study,
active DNA segregation was reconstituted from purified
ParM, ParR and parC DNA components, indicating that
these essential components are sufficient to form a bipolar,
plasmid-segregating spindle (Garner et al, 2007). ParR/parC
complexes interacted with both ends of the ParM filaments in
the reconstituted plasmid segregation assay thereby stabiliz-
ing them against depolymerization, while allowing for inser-
tion of new ParM monomers at the filament tip (Garner et al,
2007). This finding is consistent with previously proposed
insertional polymerization models for plasmid movement
(Moller-Jensen et al, 2003; Garner et al, 2004).

An important question concerns the overall architecture of
partition complexes and how they interact with the force-
generating ATPases during the DNA partition process. In this
work, we present the crystal structure of the adaptor protein
ParR from plasmid pB171. This protein binds to the parCl
centromere-like region of the double partition locus of
Escherichia coli pB171 (Ebersbach and Gerdes, 2001) and the
binding site is characterized by two identical 10-bp high-
affinity sequences separated by 31 bp (Ringgaard et al, 2007).
ParR forms a tight dimer, which further assembles into a ring
or helix structure with putative DNA-binding regions facing
outward. The position of the DNA-binding domain is con-
firmed by introduction of site-specific amino-acid substitutions
on ParR, followed by functional analysis in vivo and in vitro.
Electron microscopic examination of ParR/parC DNA com-
plexes further reveal the formation of ParR rings, suggesting
that the crystalline packing of ParR protein into a helix is
physiologically relevant. This partition complex architecture
leads us to propose a model for active plasmid movement in
which ParR protein encircle or bind to growing ParM filament
tips either as a helix or a ring through interactions involving
the ParR C-terminus, while parC DNA is wrapped on the
outside through interactions with the ParR N-terminus.

Results

ParR forms ring-like structures on parC DNA
In a previous study, plasmid R1 ParR was shown by electron
microscopy (EM) to bind to plasmid parC regions and
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mediate site-specific pairing of DNA molecules (Jensen
et al, 1998). Here, we further examine the ParR/parC
DNA partition complex structure using improved staining
techniques for EM imaging. Specifically, we have omitted
the use of aldehyde fixatives before negative staining. We
now demonstrate that plasmid R1 ParR forms ring-shaped
complexes on pre-linearized DNA containing parC regions.
Images of ParR/parC DNA complexes shown in Figure 1 were
obtained by rotary shadowing (panels B-J) and negative
staining (panels K-R). Figure 10-R shows enlarged images
of negatively stained ParR rings on DNA. Ring structures
always formed at the parC site as judged from the conserved
distance to the Scal restriction site and they never formed on
control DNA without the parC region or in the absence of
DNA (data not shown). Also, no ring structures were ob-
served on parC DNA in the absence of ParR protein
(Figure 1A). The ParR rings measured between 15 and
20nm in diameter, which is consistent with the 15nm ParR
helix diameter shown in Figure 2A plus the DNA wrapped
around it. Figure 11 and J shows examples of DNA pairing by
close association of ParR rings.

ParR belongs to the MetJ/Arc superfamily of DNA
binding proteins

Attempts to determine the structure of plasmid R1 ParR by
X-ray crystallography proved unsuccessful as the protein
formed needle-shaped crystals of insufficient size and quality
for structure determination. Instead, we have determined the
structure of the homologous ParR from E. coli plasmid pB171.
This protein has 25% sequence identity and 44 % similarity
over all residues to plasmid R1 ParR (Figure 3). The structure
contains two monomers in the asymmetric unit, each
consisting of a short N-terminal B-strand, followed by four
or five o-helices (Figure 2A). The two monomers of the
asymmetric unit are related by a pseudo-two-fold axis
and form a tight antiparallel homodimer in which one
monomer is distinguishable by a short a-helix H5 near the
C-terminus. The polypeptide chains were traceable in the
electron density from Lys6 to Leu95, leaving the C-terminal
35 amino acids disordered. The dimer N-termini form a
ribbon-helix-helix (RHH), structure in which a short two-
stranded antiparallel B-ribbon (S1) is flanked by two sets of
a-helices (H1 and H2). The compact RHH, motif, which is held
together by a core of hydrophobic interactions, is followed by
short a-helices (H3-H5). The side and top view of a ParR
dimer structure is shown in Figure 2A. The family of bacterial
RHH, proteins is typified by the MetJ and Arc transcriptional
repressors, both of which have been crystallized in complex
with their respective operator DNA (Somers and Phillips,
1992; Raumann et al, 1994b). These proteins contain a two-
stranded antiparallel f-ribbon structure that interacts
with base-determinants in the DNA major groove. This
interaction is stabilized by interactions between the DNA
backbone phosphates and a-helices H1 and H2 (Raumann
et al, 1994a). Other members of this protein family include
CopG, a repressor involved in plasmid copy-number-control
(Gomis-Ruth et al, 1998), and the plasmid-encoded partition
adaptor proteins ParG (Golovanov et al, 2003) and
Omega (Weihofen et al, 20006), the structures of which are
shown in Figure 2C.
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Figure 1 EM visualization of ParR/parC DNA partition complexes. Electron micrographs of ParR incubated with parC DNA. (A) No added
ParR. (B-J) Complexes between ParR and linearized pMD330 stained by rotary shadowing. (K-R) Negatively stained complexes of ParR and
a 383 bp parC PCR product. ParR forms ring-shaped complexes on parC-containing DNA and close association of rings mediate DNA pairing

(1, J). Size bars correspond to 25 nm.

ParR dimers multimerize to form a helical DNA-binding
scaffold

A unifying feature of RHH, proteins is the cooperative nature
of their DNA binding. In all cases, the minimum binding
entity is comprised by a dimer of dimers and the complexes
are stabilized by cooperative interdimer contacts. In our ParR
crystal lattice, the proteins assemble into a continuous helix
structure consisting of 12 ParR dimers per full 360° turn. ParR

©2007 European Molecular Biology Organization

dimers are arranged with their N-termini facing outward and
their C-termini pointing towards the helix center. As shown in
Figure 2B, a helical turn along the screw axis results in a
translation of 13 nm. The view along the screw axis demon-
strates that the ParR helix has a diameter of 15nm and is
made up from six symmetrical pairs of dimers such that every
ParR dimer is related to its nearest neighbor by a 30° rotation
and a two-fold symmetry axis. The dimers are held together

The EMBO Journal VOL 26 | NO 20 | 2007

4415



Partition complex structure
J Moller-Jensen et al

K6, R7, K8

A S1 N
HA1
H3 @;

{/\
()]

HS@
C

pB171 ParR monomer 6-95

H2

ParR dimer

Sideview Topview

Negative positive

r o 1 electrostatic potential

ParG RHH, family of DNA-
1P94 binding proteins

a
-

Arc dimer: DNA, 1BDT

Omega dimer:DNA, 2BNZ

Figure 2 Crystal structure of ParR. (A) Crystal structure of ParR from pB171. The monomer (left) contains an N-terminal B-strand S1 followed
by a-helices H1-H5. The protein crystallizes as a tight dimer with an N-terminal ribbon-helix-helix domain as seen from the side (middle) and
top (right). Amino acids subjected to mutagenesis are highlighted as white spheres. (B) ParR assembles into a helix with a 13 nm translation per
turn (top left) and a 15 nm diameter when viewed along the screw axis (top center). RHH, domains form regularly spaced basic patches on the
helix exterior (top right) and the distance between adjacent B-ribbon structures corresponds to one helical turn of DNA double helix (bottom
left). Dimers are related reciprocally in the helix mostly through interactions between residues in helices H3, H4 and HS5 (bottom right).
(C) Structures of the RHH, domain from the homologous Omega and ParG proteins (top) highlight their close structural similarity despite
the absence of detectable sequence similarity, even after structure-based alignments. Bottom: crystal structures of Omega and Arc proteins
in complex with their respective operator DNA. The proteins insert antiparallel B-strands into the DNA major groove and the dimers then
assemble into higher order assemblies that are quite different from each other. In ParR, this domain is positioned on the outside of the helix (B).
The different quaternary interactions reflect the diverse arrangements of the cognate DNA motifs and produce different complexes when more
proteins are added, sometimes spreading beyond the site-specific binding region in the DNA.
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mostly by interactions between amino-acid side chains in H3,
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Figure 4 The ParR RHH, domain is required for parC DNA binding
and plasmid partition. (A) Determination of partition function in
plasmids containing mutated parR171 genes. The fraction of plas-
mid-containing cells is plotted as a function of the number genera-
tions of nonselective growth. (A) pJMJ206, ParR171-K6E mutation;
(@) pJMJ207, ParR171-R7S mutation; () pJMJ208, ParR171-K8E
mutation; (O) pJMJ285, ParR171-K85E mutation; (A) pJMJ292,
ParR171-R92S mutation. (B) Gelshift assay of wild-type (wt) and
mutant ParR binding to DNA. A 2nM volume of parCIl or non-
specific control DNA was incubated in the absence (-) or presence
of 2uM wt or mutant ParR. Full binding by wt and R92S-mutated
ParR to the parCl DNA site is indicated by the black arrowhead,
whereas partial binding by ParR-K85E is indicated by a white
arrowhead. (C) Analysis of wt and mutant ParR171 binding to
parC1 by fluorescence anisotropy. () Wt ParR171; (A) ParR171-
KG6E; (@) ParR171-R7S; (M) ParR171-K8E; (O) ParR171-K85E; (A)
ParR171-R92S.

2001). For the plasmid stabilization assay, cells were grown in
nonselective medium and the fraction of plasmid-containing
cells was determined by plating on nonselective indicator
plates containing X-gal. As shown in Figure 4A, test plasmids
containing the ParR171 K6E, R7S and K8E mutations severely
impaired the function of ParR171. By contrast, ParR171 K85E
and R92S mutations seemed to have no effect on par activity
as the plasmids were stably maintained throughout the assay.
To correlate the observed deficiency of N-terminal mutants in
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ParR171 with lack of DNA binding, we purified mutant
versions of ParR and tested these for binding to parC1 DNA
by gelshift analysis and fluorescence anisotropy measure-
ments (Figure 4B and C). As reported previously, wt ParR
from pB171 associates specifically with parCI DNA
(Figure 4B, lanes 1-4) (Ringgaard et al, 2007). No retardation
was observed with a nonspecific control DNA fragment. The
introduction of K6E, R7S and K8E mutations abolished the
ability of ParR to bind to parCl DNA, whereas ParR with
K85E and R92S mutations could still bind to the DNA
(Figure 4, lanes 5-9). These findings are supported by
fluorescence anisotropy measurements showing impaired
DNA binding of the K6E, R7S and K8E mutant proteins and
retained binding capacity of the K85E and R92S mutant
proteins. The fact that K85E-mutated ParR did only display
partial retardation in the gelshift could be explained by a
disruptive effect of this amino-acid substitution on dimer-
dimer interaction such that spreading beyond high-affinity
sites is limited (white arrow head). This assumption is
corroborated by the fluorescence anisotropy data showing
reduced binding cooperativity of this mutant protein. In
conclusion, these results demonstrate that the N-terminal
RHH, domain is required for DNA binding and that disrup-
tion of the interactions to parCl DNA leads to impaired
plasmid partition.

Discussion

RHH, structures: variations on the same theme
Members of the MetJ/Arc protein superfamily include the
plasmid-encoded repressors Omega (Weihofen et al, 2006),
CopG (Gomis-Ruth et al, 1998), ParG (Golovanov et al, 2003)
and ParR. All share the same DNA-binding RHH, motif and
their mode of DNA recognition is similar. The binding
specificity is determined by interactions between side chains
of the antiparallel B-ribbon and bases in the DNA major
groove. This interaction is further stabilized by interactions
formed between the DNA phosphate backbone and side
chains of helix H1 and main chain amines of helix H2,
respectively. In most cases, the RHH, domain is located at
or near the N-terminus, but it can also be located C-termin-
ally, as in the case of ParG shown in Figure 2C (Golovanov
et al, 2003). Our crystal structure of ParR from pB171 showed
the presence of an N-terminal RHH, domain. Although
attempts to co-crystallize ParR with parCl DNA proved
unsuccessful, we confirmed the involvement of this domain
in DNA recognition and plasmid partition by genetic and
biochemical data shown in Figure 4.

Although RHH, proteins generally exist as dimers in solu-
tion, they bind to DNA in a cooperative fashion and form
tetramers or higher order oligomers through quaternary
dimer-dimer (protein-protein) interactions. These quatern-
ary relationships are quite diverse and reflect the different
compositions of their binding sites on the DNA. Thus,
protein-DNA complexes formed by this family display a
large degree of structural diversity as illustrated by the
structures of Omega (Weihofen et al, 2006) and Arc
(Raumann et al, 1994b) in complex with their respective
DNA operators in Figure 2C. Omega dimers bound to adjacent
heptad DNA sequences interact through hydrophobic side
chains in helix H1, forming a left-handed matrix around
straight DNA in which each dimer is related to its neighbor
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by a 7-bp translation and a 252° rotation (Weihofen et al,
20006). By contrast, two Arc dimers bound to a 21-bp operator
site interact using the loop between helices H1 and H2 to
form a tetramer that binds on one face of the double helix,
thereby inducing a 50° bend in the DNA (Raumann et al,
1994b). Thus, binding site length and spacing between
adjacent binding sites are important parameters in determin-
ing how RHH, domains interact on the DNA. Although the
RHH, domain structure is essentially conserved in proteins of
this family, they use it in different ways and for different
purposes.

ParR is a bifunctional protein, which acts both as a
transcriptional repressor and a partition protein. It blocks
transcription from the par promoter by binding cooperatively
to the iterated recognition sequences in parC of plasmid R1
(Dam and Gerdes, 1994; Ringgaard et al, 2007) and by
arranging the repressor/operator complex further into a
specialized hyperstructure that is capable of interacting
with polymerizing ParM, ParR functions in plasmid partition
as well. In ParR, hydrophobic residues in helices H3, H4 and
H5 form extensive dimer-dimer interactions, which shape the
scaffold. According to the crystal structure, pB171 ParR will
bind on one face of the parCI DNA and thereby induce a 30°
bend in the DNA per dimer. This is in accordance with the
31bp (or three helical turns of double helix) spacing of the
two high-affinity binding sites in the parCI centromere-like
region (Ringgaard et al, 2007).

ParR packed as a continuous helix in the crystals, but
appeared as a ring structure in the EM projections. The screw
axis in the crystal may be caused by packing restraints on the
one hand, but on the other hand, a ParR helix structure could
also be compressed into a closed ring upon application to EM
grids. Thus, the EM pictures are projections possibly hiding
the helical nature of the ParR arcs. Yet another possibility
could be that ParR from plasmids pB171 and R1 form
different superstructures. We find this unlikely, however,
given the close homology between the two proteins.
Despite considerable effort, we were unable to produce
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negatively stained complexes between ParR171 and DNA
for electron microscopic visualization in the absence of
aldehyde fixatives, thus making it impossible to discern
whether this protein formed ring-shaped complexes (data
not shown). Based on the present data, it is not possible to
distinguish between ring and helix structures and both would
function in the proposed mechanism of plasmid partition.
The diameter of a closed ParR ring structure would perhaps
be too small to encircle the ParM filament. A comparison of
the ParM filament cross-section and the ParR scaffold dia-
meter is shown in Figure 5B. Another point arguing in favor
of a helical ParR scaffold is the fact that wrapping of DNA
around a disc-shaped scaffold would result in a steric clash
between DNA entering and exiting the complex.

Implications for the plasmid partition mechanism

Previous studies of the partition system from plasmid R1
have provided detailed information about the mechanism of
active plasmid distribution in the cell. Pairing of replicated
plasmids by formation of the ParR/parC complex leads to the
formation of dynamic ParM filaments that push the plasmid
copies apart at the expense of ATP hydrolysis (Meller-Jensen
et al, 2002, 2003). The ParM filament structure is similar to
F-actin and employs essentially the same mechanism of ATP-
driven polymerization as actin (van den Ent et al, 2002). In
the absence of ParR and parC DNA, ParM filaments were
found to be extremely dynamic and transient, switching
between stages of bidirectional growth and shortening
(Garner et al, 2004). This dynamic instability of ParM fila-
ments led to the proposal that bidirectional plasmid transport
could involve capping of both filament ends by ParR/parC
complexes, which stabilize the growing ParM filament
(Garner et al, 2004). Bipolar stabilization of ParM filaments
by ParR/parC complexes has been shown directly in a
reconstituted DNA motility assay, which demonstrated the
rapid decay of ParM polymers with uncapped tips (Garner
et al, 2007). These findings are consistent with immunofluor-
escence-imaging of E. coli cells demonstrating that plasmids

ParM filament

6 nm

ParR ring

Figure 5 Model of R1 plasmid segregation. (A) Cartoon showing how ParR/parC DNA complexes interact with opposite ends of a growing
ParM filament. The ParR N-terminal RHH, domain binds specifically to parC DNA (red) and the ParR C-terminus interacts with ParM-ATP
(blue) at or near the filament tips. ATP hydrolysis is proposed to induce a structural rearrangement in ParM that leads to dislodging of ParR,
which in turn can reassociate further along the filament. (B) Cross-section of the ParM filament and the ParR helical scaffold viewed along the

six-fold symmetry axis.
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are indeed localized at the filament ends during partition
(Mgller-Jensen et al, 2003).

The structure of the ParR/parC partition complex pre-
sented here immediately suggests how the ParR protein
scaffold can serve as a link between plasmid DNA and the
dynamic ParM filament during active transport in the cell. We
propose that ParR interacts with ParM through its C-terminus
located in the helix or ring interior and thus encircle a
growing ParM filament, while contacting the plasmid DNA
with the helix/ring exterior. As the ring is quite small, it
might also be possible that the ring or arc of ParR binds via
the C-termini to the side of the filaments. Figure 5A shows a
model of ParM-mediated plasmid partition that takes the new
ParR structure into account. In Figure 5B, the ParM filament
and ParR helix cross-sections are shown for comparison.
With a diameter of about 6 nm, the ParM filament would fit
inside the inner ring formed by ParR alpha-helix 3. This
arrangement would require the flexible C-terminal part to
give way. Alternatively, the helix may open up to accommo-
date the ParM filament as shown in Figure 5A or it might just
bind to the side of the filament. Due to the ParR dimer
symmetry, the partition complex is identical in both orienta-
tions on the filament and hence will be able to interact with
both ends of the polar ParM filament, where ParM monomers
exist in the ATP-bound form. If the binding affinity of ParR for
ParM-ATP exceeds that for ParM-ADP, this would explain
how continuous sliding of partition complexes toward grow-
ing filament ends with ATP-bound ParM could take place. An
important part of this model is that the energy of ParM
ATP hydrolysis would be used for displacing the C-termini
from the ADP-containing filament, so that they can re-bind
the ATP caps, effectively driving ParR binding along the
filament like a motor. Having many ParM-binding sites on
the ParR superstructure makes this movement more proces-
sive, so ParR (and hence the plasmids) stick to the filament
ends at all times.

Materials and methods

Stains and plasmids

E. coli strain DH5a (Invitrogen) was used for cloning and plasmid
stability assays. E. coli strain BL21AI (Invitrogen) was used for
arabinose-induced protein overexpression from T7 promoters.
Genes encoding R1 ParR (GI:134956) and pB171 ParR
(GI:6009443) were cloned in vector pHis17 (without any additional
residues) (van den Ent and Lowe, 2000) resulting in plasmids
pJMJ100 and pJMJ101, respectively. Expression plasmids pJMJ106,
pJMJ107, pJMJ108, pJMJ185, pJMJ192 were derived from pJMJ101
by PCR mutagenesis. R1 test plasmids pJMJ206, pJMJ207, pJMJ208,

Table I Crystallographic data

pIMJ285, pJMJ292 were derived from pGE103, which contains a
functional parI locus from E. coli pB171 (Ebersbach and Gerdes,
2001) by PCR mutagenesis.

Protein expression and purification

R1 ParR and pB171 ParR proteins were overexpressed in E. coli
BL21-Al cells (Invitrogen). Cells were grown at 37°C in 2 x TY
medium supplemented with 100pg/ml ampicillin and 0.2%
glucose. At mid-exponential growth, protein expression was
induced by addition of 0.4% arabinose. After 6h of induction, the
cells were harvested, resuspended in buffer A (50 mM Tris-HCI, pH
7; 100 mM KCl; 1 mM EDTA; 1 mM DTT) containing 5 pg/ml DNasel
and 1mg/ml lysozyme, and lysed by sonication. The lysate was
cleared by centrifugation for 45min at 100000g. The cleared
lysate was then loaded on a Sml HiTrap (GE Healthcare) heparin
column and protein was eluted with a linear gradient of buffer B
(buffer A+ 1M NaCl). Fractions containing partially pure protein
were pooled, diluted 100-fold in Buffer A and loaded onto a 5ml
HiTrap SP HP cation exchange column. Again, protein was
eluted with a linear gradient of buffer B. Purified protein was
gel filtrated in buffer C (20 mM Tris-HCl pH 9; S0 mM KCl; 1 mM
EDTA; 1mM NaNj), concentrated to 10mg/ml and snap-frozen
in liquid nitrogen. Purified R1 ParR and pB171 ParR tend to
precipitate reversibly at pH below 8.5. The correct identity of the
purified protein was verified by electrospray ionization mass
spectrometry. The typical yields exceeded 10mg protein per liter
culture.

For purification of mutant pB171 ParR proteins, the pB171 parR
reading frame was cloned into pOP-TM (gift from Olga Perisic) to
create an in-frame MBP-ParR gene fusion containing a TEV cleavage
site between the two protein moieties. Site-specific amino-acid
substitutions were introduced by PCR. TEV cleavage leaves a
glycine-serine-histidine residual at the pB171 ParR amino terminus.
MBP-ParR was overexpressed using BL21-Al as described above.
The cells were lysed in buffer D (50 mM Tris-HCI pH 7.5; 500 mM
NaCl; 1mM EDTA; 1mM DTT) containing 5pg/ml DNasel and
1mg/ml lysozyme and lysed by sonication. Cleared lysates were
loaded onto amylose resin (New England Biolabs), washed in buffer
D and eluted by addition of 15mM maltose in buffer D. Purified
fusion protein was dialyzed into buffer E (50 mM Tris-HCI, pH 8.8;
25mM KCl; 1mM EDTA; 1mM DTT) and incubated with TEV
protease for 4h at room temperature. The cleavage products were
separated on a HiTrap Q HP ion exchange column using a linear
gradient from 25mM to 1M NaCl in buffer E. All mutant proteins
behaved similarly during purification and displayed similar column
elution profiles, indicating that overall protein folding was not
affected by the amino-acid substitutions. Fractions containing pure
mutant pB171 ParR protein were pooled dialyzed into buffer
E, concentrated and frozen.

Crystallization, data collection and structure determination

Initial crystallization conditions were found using our in-house
100nl high-throughput crystallization screen of 1500 standard
conditions (Stock et al, 2005). Crystals were subsequently
grown by sitting drop vapor diffusion, adding 1 pl of 1.4 M sodium
acetate, 0.1 M sodium cacodylate, pH 6.5-1 ul of protein solution at
10mg/ml. The crystals were cryoprotected with 25% ethylene
glycol. Heavy-atom derivatives for isomorphous replacement
were prepared by soaking crystals overnight in pre-equilibrated

Crystal L (A) Resolution (A) I/cl® RmP (%) Multiplicity® Completeness (%)9
NATI 0.931 2.8 23.3 (5.3) 0.078 (0.456) 11.6 (12.0) 99.9 (99.9)
Ru 0.931 3.2 38.5 (11.6) 0.107 (0.377) 40.3 (41.3) 99.9 (99.9)
Pt 0.931 3.2 31.7 (13.3) 0.094 (0.242) 22.9 (23.8) 99.8 (99.8)
Au 0.931 3.2 19.2 (3.0) 0.114 (0.372) 12.7 (6.4) 97.6 (84.7)
Os 0.931 3.2 24.8 (11.6) 0.069 (0.173) 9.7 (10.1) 99.9 (99.9)

Escherichia coli plasmid pB171 ParR (NP_053129, pB171_067, 1-130 full length, no tag) P6(1)22, a=b=96.8 A, c=124.9A.

Signal to noise ratio for merged intensities.

"Rm: >hZi|I(h,i)—I(h)|/ZhZi I(h,i) where I(h,i) are symmetry-related intensities and I(h) is the mean intensity of the reflection with unique

index h.
“Multiplicity for unique reflections.

dCompleteness for unique reflections. Highest resolution bins in brackets. The final figure of merit, after phasing with SHARP, was 0.46-3.1 A

resolution using the four derivatives.
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Table II Refinement statistics

Model

Diffraction data
R-factor, R-free®
B-factors®
Geometry®©
Ramachandran?
NCS (unrestrained)®
PDB ID

2 monomers/ASU

2 chains A & B

Residues 6-95 ordered
(1-130 full-length crystallized)
26 water molecules
NATI, 30.7-2.8 A, all data
0.24 (0.38), 0.28 (0.45)
54.9A% 1.74 A

0.007 A, 1.35°
90.0%/0.0%

2.08A

2JD3

5% of reflections were randomly selected for determination of the
free R-factor, before any refinement. R-factors for the highest
resolution bins are given in brackets.

PTemperature factors averaged for all atoms and RMS deviation of
temperature factors between bonded atoms.

‘RMS deviations from ideal geometry for bond lengths and restraint
angles.

dpercentage of residues in the ‘most favored region’ of the
Ramachandran plot and percentage of outliers.

°NCS: ‘no noncrystallographic restraints (NCS)’ were used during
refinement because of significant differences between chain A and
chain B, most notably in the C-terminus. The number in the table
gives the RMSD of all atoms present in both chains A and B.

drops containing K,RuCls, K,PtCls, K,Au(CN), and K,OsClg
(Table I). Diffraction data for native (NATI) and derivatized
crystals were collected on beamline ID14eh4 (ESRF, Grenoble,
France). Crystallographic data are presented in Table I. The
structure of pB171 ParR was solved by isomorphous replacement.
Initial sites were found using SHELXDE (Uson and Sheldrick, 1999)
and refined with SHARP (de La Fortelle and Bricogne, 1997) and
marginal sites were added. The final figure of merit using four
derivates was 0.46 up to 3.1 A resolution. After density modifica-
tion, the density was of very good quality and could be built in one
session. Refinement was performed using CNS 1.1 (Brunger et al,
1998). Refinement statistics are presented in Table II. The
coordinates have been deposited in the Protein Data Bank with
accession code 2jd3.

Electron microscopy
Negatively stained samples were prepared on glow-discharged
carbon-coated grids according to a modified deep stain protocol
(Stoops et al, 1992). Briefly, a 383 bp PCR product encoding the
parC region was constructed using the primers: SR14: GCGAAA
GGGGGATGTGCTGC; SR15: CCCAGGCTTTACACTTTATGC with
pMD330 (Dam and Gerdes, 1994) as template and the PCR product
was purified using a Qiaquick PCR-purification kit. Standard
reactions for negative stain were performed in a total volume of
15ul 20 mM Tris pH 7.5, 50mM KCl, 2 mM MgCl,. parC DNA was
added to a final concentration of 10 ng/pl and R1 ParR was added to
a concentration of 1pM. The samples were incubated 15min at
room temperature and diluted fivefold in buffer. Samples (3 pl) were
loaded on glow-discharged carbon-coated grids. After 30s, grids
were rinsed with 2% uranyl acetate, blotted dry with filter paper,
and further dried with a hairdryer.

Rotary-shadowed samples were prepared on glow-discharged
carbon-coated grids essentially as described by Williams (1977).
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pMD330 (Dam and Gerdes, 1994) was linearized by Scal (NEB)
cleavage for Sh at 37°C and purified with a Qiaquick PCR-
purification kit. Standard reactions for rotary shadowing were
performed in a total volume of 15 ul 20 mM Tris pH 7.5, 50 mM KCl,
2mM MgCl,. Linearized pMD330 was added to a final concentra-
tion of 1ng/ul and R1 ParR was added to a final concentration of
500 nM. Reactions were incubated 15 min at room temperature and
a 3 ul sample was loaded on a glow-discharged carbon-coated grid.
After 305, grids were rinsed with 0.05% uranyl acetate, blotted with
filter paper and dried in a stream of air. Rotary shadowing was
performed in an Edwards E306A coating system by using a platinum
source with an oblique angle of 6° and a sample-to-source distance
of 8cm.

Electron microscopy was performed at 80kV using a Philips
EM208 transmission electron microscope. Images were photo-
graphed at a magnification of x 32-40k and negatives were
scanned at 6 pm/pixel using a MRC-KZA scanner.

Determination of plasmid stability

Plasmid loss curves were determined as described by Gerdes et al
(1985). E. coli DH5a cells were grown in nonselective medium and
the fraction of plasmid-bearing cells was determined by plating on
nonselective indicator plates containing X-gal. As the B-galactosi-
dase gene is located on the plasmid in these strains, the plasmid
content can be determined by scoring blue and white colonies.

Electrophoretic mobility shift assay

Gelshift analysis was carried out essentially as described by
Ringgaard et al (2007). Briefly, 354bp parC DNA fragments
obtained by PCR using primers 5-GTATACGTTCATCTATAGCCC,
5'-GATCTCCGTTTAACAGGCAG and pGE3 (Ebersbach and Gerdes,
2001) as template. Control fragments of 318 bp were generated from
pUC19 DNA using primers 5'-CGACAGGTTTCCCGACTGG, and
5’-CAGCTGGCGAAAGGGGGATG. DNA fragments were end-labeled
with 32P and purified from a 1% agarose gel. The binding reaction
contained 2 nM *2P-labeled DNA in 10 mM Tris-HCI pH 7.5, 50 mM
KCl, 50 mM NaCl, 1 mM MgCl,, 0.5 mM DTT, 0.5 mM EDTA, 0.1 mg/
ml BSA and 0.1 mg/ml sonicated salmon sperm competitor DNA.
Two micromolar wt or mutant ParR171 was added and the reactions
were incubated for 30 min at 25°C. Following addition of glycerol
to a concentration of 3%, the samples were loaded on a 5% poly-
acrylamide gel.

Fluorescence anisotropy

Fluorescence anisotropy was recorded at 298 K using a Perkin-Elmer
LS55 luminescence spectrometer. An 88-bp fluorescein-labeled PCR
product containing the parCI region from plasmid pB171 was
generated using primers JMJ32 (5'-GATAGTGCTCAAATTGAGTATT
ACC-3’') and JMJ33 (5'-GTATACGTTCATCTATAGCCCC-3’) and used
at a concentration of 2nM for binding reactions. Wt and mutant
ParR171 protein was serially titrated into the cuvette at concentra-
tions ranging from 0-5pM in binding buffer (20 mM Tris-HCl pH
8.8; 25mM NaCl; 1mM DTT; 1mM EDTA) and allowed to
equilibrate for 2 min before measurement.
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