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Positioning of the division site in many bacterial species relies on the Min-
CDE system, which prevents the cytokinetic Z-ring from assembling any-
where but the mid-cell, through an oscillatory diffusion-reaction mechanism.
MinD dimers bind to membranes and, via their partner MinC, inhibit the
polymerization of cell division protein FtsZ into the Z-ring. MinC and MinD
form polymeric assemblies in solution and on cell membranes. Here, we
report the high-resolution cryo-EM structure of the copolymeric filaments of
Pseudomonas aeruginosa MinCD. The filaments consist of three protofila-
ments made of alternating MinC and MinD dimers. The MinCD protofila-
ments are almost completely straight and assemble as single protofilaments
on lipid membranes, which we also visualized by cryo-EM.
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In most bacteria, cell division depends on the action of membrane, as its C-terminal amphipathic helix

the Z-ring, which is formed from protein filaments
consisting of bacterial tubulin homolog FtsZ, along-
side other proteins. The Z-ring has the ability to con-
strict lipid membranes in vitro. Together with the
downstream divisome complex, it also organizes pepti-
doglycan remodeling at the division site [I-6]. To
achieve symmetrical cell division, the Z-ring needs to
be precisely positioned. Many bacteria contain at least
one system responsible for correct Z-ring placement,
with nucleoid exclusion and the Min system being
most prominent [7-10].

In Escherichia coli, the Min system has three protein
components: MinC, MinD, and MinE [11,12]. The
proteins oscillate between the cell poles, establishing
the division site, or allowing the formation of a divi-
sion site, at the point of minimum average concentra-
tion of MinC, normally mid-cell [13-16]. MinD is a
deviant Walker A ATPase that dimerizes upon ATP
binding. Dimerized MinD can bind to the cell

Abbreviations

becomes activated [17,18]. MinE, which is also mem-
brane-binding, stimulates the ATPase activity of MinD
and therefore its dissociation from the membrane
[19,20]. Released MinD will then undergo exchange of
ADP for ATP and reassemble in an area devoid of
MinE. Because of built-in delays and nonlinearities in
the system, MinDE constitute a dynamic Turing reac-
tion-diffusion device and lead to oscillation in confine-
ment. The regulation of the Z-ring is effected by
MinC, which acts as a direct inhibitor of FtsZ [21,22].
The precise action and MinD activation of MinC is
unclear, but MinC seems to inhibit Z-ring formation
by disassembling the FtsZ filaments and/or blocking
their lateral interactions [22,23]. The MinC protein
forms a stable homodimer and has two distinct
domains: N-terminal MinCY and C-terminal MinC®
[24]. Both domains have the ability to inhibit FtsZ fila-
mentation, albeit by different mechanisms [25]. The
MinCC€ domain forms the MinC dimerization interface,

Cryo-EM, electron cryo-microscopy; FSC, Fourier shell correlation; IPTG, isopropyl B-p-1-thiogalactopyranoside; MTS, membrane targeting
sequence; TCEP, tris(2-carboxyethyl)phosphine; TEM, transmission electron microscope; WACA, Walker A cytoskeletal ATPase.
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PaMinCD filament structure

binds the conserved C-terminal tail domain of FtsZ
and, importantly, binds MinD [24,25]. Aside from pro-
viding two distinct FtsZ interaction sites, MinC has
also been shown to modulate the oscillation rate of the
Min Turing device [26].

MinCD filaments were first observed by Ghosal
et al. and Conti et al., who showed that MinCD from
Escherichia coli as well as the thermophilic bacterium
Aquifex aeolicus polymerize in the presence of ATP to
form a new class of alternating, copolymeric filaments,
which can be assembled in vitro either on lipid mem-
branes or in solution [27,28]. Similar assemblies have
since been reported by Huang et al. [29], in MinCD
preparations from Pseudomonas aeruginosa. These
studies also indicated that MinCD co-assemble into fil-
aments with a 1 : 1 stoichiometry and it was suggested
that MinE has the ability to depolymerize MinCD fila-
ments and inhibit their assembly.

Prior to the discovery of MinCD filaments, the pro-
posed mechanism of FtsZ inhibition by the Min sys-
tem involved MinD dimerization and the resulting
targeting of MinC dimers to the membrane, where
they would inhibit FtsZ polymerization. In this scenar-
io, MinD would oscillate with MinC as a passenger,
and inhibit the Z-ring formation at and near the poles,
where protein concentration is highest [15,16,30]. The
presence of MinCD filaments that can form on the cell
membrane extends this proposition to include the pos-
sible inhibition of FtsZ filaments by activated, poly-
merized MinCD, especially given that the two have a
matching periodic repeats of ~4 nm and ~8 nm, a fact
that could cause very strong avidity and cooperativity
effects [10,27,31].

The issue of MinCD filamentation and Z-ring dis-
ruption is far from resolved. In a 2015 study, Park
et al. mutated surface residues of MinC and MinD
monomers in E. coli that were implicated in MinCD
filament formation. Their nonpolymerizing, dimer-
asymmetric MinCD mutants still inhibited Z-ring for-
mation, suggesting that the filamentation of MinCD
may not be necessary for the activity of the system in
cells, putting into question the earlier proposal of a
function for MinCD filaments in the activation of
MinC [32].

Thus far, the evidence surrounding MinCD copoly-
meric filaments has come from biochemical experi-
ments with purified components, such as filament
pelleting or light-scattering assays, and from struc-
tural data limited to low-resolution electron micro-
scopy images [27,29]. A hybrid model for a MinCD
filament has been proposed, based on the crystal
structure of MinC in complex with MinD, but the
resulting alternating MinC,-MinD, protofilament
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model is strongly bent and does not fully recapitulate
the observed EM images, further weakening the argu-
ment [27]. The discovery that MinCD from P. aerugi-
nosa forms filamentous assemblies in vitro motivated
us to investigate the structural basis for MinCD fila-
ment formation at high resolution with electron cryo-
microscopy (cryo-EM).

For this study, we imaged MinCD filaments in solu-
tion and obtained a refined atomic model of the poly-
merized filament at 3.1 A resolution. Additionally, we
polymerized MinCD filaments on the surface of nar-
row lipid nanotubes and imaged the MinCD-decorated
tubes with cryo-EM, verifying the membrane binding
mode of single MinCD protofilaments.

Materials and methods

Protein expression and purification

Full-length MinC and MinD from P. aeruginosa were
cloned as described previously [29]. The protein gene was
cloned into pET-15b, yielding a fusion protein with a poly-
histidine tag on the N-terminus, followed by a thrombin
cleavage site (MinC: MGSSHHHHHHSSGLVPRGSH-1-
263; MinD: MGSSHHHHHHSSGLVPRGSH-1-271). The
tag was not removed during purification, as it has been
reported to have little effect on MinCD polymerization
[29]. Both MinC and MinD were prepared and handled in
the same manner. Protein expression was carried out in
E. coli strain C41(DE3) (Lucigen) in 2 x TY media supple-
mented with 100 pg-L~" ampicillin. Cell cultures were
grown at 37°C with shaking, until cell density reached
ODggo 0.6, when the temperature was reduced to 30°C and
expression was induced by addition of 0.5 mm isopropyl B-
D-1-thiogalactopyranoside (IPTG). Cells were harvested by
centrifugation after 5 h expression. Harvested pellets were
resuspended in NiA buffer (50 mm TrissHCI, 300 mm
NaCl, 2 mm tris(2-carboxyethyl)phosphine (TCEP), 1 mm
NaNj, pH 7.5) and sonicated on ice. The lysate was cleared
by centrifugation at 100 000 g for 45 min and loaded onto
a 5 mL HisTrap HP column (GE Healthcare). The column
was washed extensively with NiA buffer. Bound protein
was eluted with a gradient of increasing imidazole concen-
tration. The eluate was collected in fractions and analyzed
for purity and composition with SDS/PAGE. Fractions
containing protein were pooled and concentrated using
Amicon Ultra-15 centrifugal filter unit (10-kDa molecular
mass cut-off; Merck, Darmstadt, Germany) until total pro-
tein concentration of 10 mg-mL ™' was reached. The con-
centrate was dialysed extensively against the polymerization
buffer (20 mm HEPES:Na, 100 mMm potassium acetate
(CH3COOK), 5 mM magnesium acetate ((CH3;COO),Mg),
pH 7.0). After dialysis, purified protein was flash-frozen in
liquid nitrogen.
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Cryo-EM sample preparation and data collection

For the purpose of imaging the unsupported filaments, con-
centrated solutions of MinC and MinD were diluted with
polymerization buffer to 0.5 mg-mL™" and combined in
equal proportion. Filament polymerization was induced by
addition of 1 mm ATP and followed by 15 mins incubation
at room temperature. Three microliters of polymerized
sample were applied onto R 2/2 holey carbon support film
on a 300-mesh copper EM sample grid (Quantifoil Micro
Tools, Thuringia, Germany), which had been glow dis-
charged immediately prior to use. The sample on the grid
was blotted and then vitrified in liquid ethane at —180 °C
by plunge-freezing using a Vitrobot Mark IV (Thermo
Fisher Scientific, Eindhoven, The Netherlands).

Grids used to image the filament on lipid nanotubes were
prepared as above, however, before the addition of ATP, the
MinCD mixture was combined with nanotubes. To prepare
the nanotube solution, E. coli total lipid extract (Avanti Polar
Lipids, Alabaster, AL, USA) was mixed with p-galactosyl-p-
1,1’ N-nervonoyl-p-erythro-sphingosine (galactosylceramide;
Avanti Polar Lipids) at 3 : 7 weight ratio and dissolved in
chloroform to a total concentration of 1 mg-mL~'. A 100-pL
aliquot of the lipid solution in a glass vial was dried carefully
under a stream of nitrogen until all the solvent evaporated
and the deposit in the vial was suspended in 100 pL of poly-
merization buffer. The mixture was placed in a rotary mixer
for 15 min at 4°C and then transferred to a sonication bath
for 1 min. Before polymerization, freshly prepared nanotube
solution was mixed in equal proportion with the MinCD
solution as above and incubated for 5 min on ice.

Cryo-EM grids used for MinCD structure solution were
imaged with a Titan Krios G3 transmission electron micro-
scope (TEM; Thermo Fisher Scientific) operated at 300-kV
accelerating voltage and liquid nitrogen temperature. The
images were recorded using automated acquisition software
with a Falcon 3EC direct electron detector (Thermo Fisher
Scientific) operated in counting mode. Each exposure lasted
60 s and was collected as a 50-frame movie using total elec-
tron fluence of 50 e *A~2 at 0.824-A pixel size and nominal
defocus range between —1.2 and —2.5 pm.

Cryo-EM grids of MinCD filaments on lipid nanotubes
were imaged with a Tecnai Polara G2 TEM (Thermo
Fisher Scientific) at 300-kV accelerating voltage and liquid
nitrogen temperature. The images were recorded with a
prototype Falcon 3 direct electron detector (Thermo Fisher
Scientific) operated in linear integration mode. The expo-
sures lasted 1.5 s and were collected as 46-frame movies
with a total electron fluence of 38 ¢ *A~2 at 1.34-A pixel
size and nominal defocus range between —1.2 and -2.5 pm.

Cryo-EM data processing and structure solution

Filament structure solution was carried out in RELION 3.0
[33] using the helical reconstruction method [34]. In total, a

PaMinCD filament structure

dataset of 4045 movies was collected. The images were cor-
rected for beam-induced motion with dose-weighting inside
RELION and their contrast transfer functions were estimated
with Gcetf on non-dose-weighted movie averages [35]. From
this dataset, 3050 images with Gctf-estimated resolution
below 4.0 A were selected. About two thousand helical seg-
ments were selected manually and classified in 2D as single
particles to provide references for automated particle pick-
ing. Automatically picked helical segments were extensively
2D-classified yielding 161 543 particles,
extracted in 480-pixel boxes. These were used for the first
round of 3D auto-refinement using a simulated helix as an
initial model, which was created with the relion_helix_tool-
box utility of RELION 3.0 and low-pass-filtered to 30 A. The

which  were

Table 1. Cryo-EM and model data.

Statistics
Pseudomonas aeruginosa

Sample MinCD copolymeric filament

NCBI database MinC: Q9HYZ7.1; MinD: WP_023124973.1

IDs
Constructs MinC: MGSSHHHHHHSSGLVPRGSH-1-263;
MinD: MGSSHHHHHHSSGLVPRGSH-1-271
Method cryo-EM
Data collection
Microscope Titan Krios G3
Detector Falcon Ill, counting mode
Acceleration 300 keV
energy
Helical parameters
Point group ReLION D1 symmetry (2-fold along X axis)
Twist/rise 116.27°/-25.00 A
Data
Resolution (A)  3.05 (FSCq 143)
Images 3050
Pixel size 0.827 A
Defocus range —1.2to —2.5 um
Fluence ~ 38 e/A?
Helical 118 659; 25 A apart
segments
Refinement
R/Ries” 0.216/0.245
Models 2 MinC chains 156-261; 2 MinD chains 2-255;
no waters
Bond length 0.005
rmsd (A)
Bond angle 0.845
rmsd (°)

Favoured (%)°  100.0

Disallowed (%) 0.0

MOLPROBITY  100th percentile
PDB, EMDB IDs  6RIQ, EMD-4897

? 5% of reflections were randomly selected before refinement.
b Percentage of residues in the Ramachandran plot (PROCHECK
‘most favoured’ and ‘additionally allowed’ added together).
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first experimental 3D map revealed presence of a 2-fold
symmetry axis perpendicular to the main axis of the fila-
ment, so ‘D;” symmetry (C, along X axis in RELION
nomenclature) was applied in subsequent refinement
rounds. A focused 3D classification with a mask around
the filament allowed us to further improve the homogeneity
of the dataset, narrowing the particle number down to
118 659. For the later rounds of refinement, we polished
the particles using Bayesian polishing function in RELION
3.0 [36]. Additionally, the initial CTFs were corrected using
the CTF refinement option, including per-particle defocus
estimation, per-micrograph astigmatism as well as beam-tilt
estimation [37]. In the final step of 3D auto-refinement a
solvent mask covering the central 30% of the helix z-length
was used to calculate solvent-flattened Fourier shell correla-
tion (FSC) curves. The map was postprocessed with a mask
covering 20% of the helix z-length. The overall as well as
the local resolution was assessed using the gold-standard
FSC procedure in RELION, using the FSCy 143 criterion
[38].

The images of MinCD filaments on lipid nanotubes were
processed in RELION 3.0, in a manner similar to the fila-
ments in solution. The images were corrected for beam-
induced motion and their CTFs were estimated as above.
Manually picked particles were extracted and 2D-classified
as nonhelical objects.

To build an atomic model of P. aeruginosa MinCD fila-
ment, homology models of MinC and MinD were created
using SWISS-MODEL [39]. These were then fitted into the
central portion of the final postprocessed cryo-EM map as
a MinD,-MinC, heterotetramer. The surrounding part of
the map was cut out using REFMAC [40]. The homology
model was adjusted manually using MAIN [41] and refined
in both reciprocal and real space with REFMAC and PHE-
NIX [42]. For reciprocal space refinement, the prepared
segment of the cryo-EM map was back-transformed into
structure factors using REFMAC in SFCALC mode. After
fitting and refining, the model was subjected to the stan-
dard R-factor analysis and its agreement with standard
geometry was assessed with MolProbity [43]. For data col-
lection, image processing and atomic refinement statistics
see Table 1. The refined atomic coordinates were deposited
in the Protein Data Bank (PDB) with accession number
6RIQ and the corresponding final EM density in the
EMDB with accession number EMD-4897.

Results and Discussion

MinCD forms triple helical filaments in solution

A previous study on MinCD copolymers from P.
aeruginosa showed that the two proteins polymerize
upon addition of ATP into a mixture of double, heli-
cally twisted filaments, as well as seemingly single, thin
filaments, visible in negatively stained electron
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micrographs (Fig. 1A, ¢f. Fig. 1A in [29]). Prompted
by this observation, we set about to obtain a high-
resolution reconstruction of the filaments, planning to
utilize the helical nature of the filaments for their
reconstruction from 2D transmission images, which
has recently shown success in providing well-defined
atomic structures of other helical filaments [44—47]. We
purified full-length, His¢-tagged MinC and MinD from
P. aeruginosa and imaged their ATP-polymerized
assemblies using EM (Fig. 1B).

We observed that MinCD filaments were found in
the expected mixture of single and double filaments,
both in negatively stained as well as vitrified samples
observed by cryo-EM. Initially, we focused our atten-
tion on the double filaments, which in the collected
micrographs appeared to exhibit the helicity required
for reconstruction. However, when we carried out ref-
erence-free 2D classification and 3D reconstruction of
the selected filament segments, it became clear that
what appeared to be single filaments making up the
two strands of the double helical filament, were in fact
themselves helical filaments (Fig. 1C,D). Since these
helical, thinner filaments were the dominant species in
the polymerized sample, and they also appeared to be
more ordered, we focused on them as targets for high-
resolution helical reconstruction.

The first round of 2D classification and averaging
of MinCD single filament segments showed MinC
and MinD dimers (Fig. 2A) arranged in a pattern
discernible also in previously published negatively
stained micrographs of E. coli and A. aeolicus
MinCD filaments [27]. Close inspection of the 2D
class averages and the 3D reconstruction of the dou-
ble filament revealed that the MinCD single filament
is composed of three protofilaments, wrapped around
each other to form a very gently twisting triple helix
(Fig. 2G). Each of the protofilaments is built from
an alternating, copolymeric assembly of MinC, and
MinD, dimers. Because of the open-ended (transla-
tional) and dimeric nature of MinCD interactions,
the filament has twofold (C,) symmetry axes perpen-
dicular to the main filament axis and thus no overall
polarity.

3D refinement of the selected helical segments
allowed us to reconstruct a cryo-EM map of the
MinCD filament (Fig. 2B). The helical parameters of
the right-handed MinCD helix were refined simultane-
ously, yielding values of —25.0 A (rise) and 116.3°
(twist) (Table 1). 116.3° is close to 120°, describing
ideal helical symmetry with three protofilaments, and
means that the filaments twist gently with right-hand-
edness. The overall resolution of the obtained map
was 3.1 A (Fig. 2C), calculated using the FSCy 143
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Fig. 1. Filaments of Pseudomonas aeruginosa MinCD. (A) Electron micrograph of negatively stained P. aeruginosa MinCD filaments, which
form upon addition and binding of ATP. The observed polymers of MinCD are a mixture of single (SF) and double (DF) filaments. (B) Single
(SF) and double (DF) filaments of MinCD from the same sample, after vitrification, visualized using cryo-EM. (C) Representative average
image from reference-free 2D classification and alignment of double filament segments showing the helical nature of the filament. (D) Two
orthogonal views of the cryo-EM map resulting from 3D reconstruction of the P. aeruginosa MinCD double filament. Two single MinCD
filaments wrap around each other in a double helix, but the filaments are helical themselves and made of three MinCD protofilaments each.
The protofilaments are built from alternating MinC and MinD dimers, as indicated (dashed lines).

gold-standard criterion, with secondary structural ele-
ments and individual amino acid residues resolved to a
degree expected from a map at this resolution
(Fig. 2D-F). The reconstruction presented here

provides high-resolution structural evidence that
strongly supports previous proposals that MinCD
forms copolymeric filaments composed of alternating
protein elements [27,31].
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Fig. 2. Structure of Pseudomonas aeruginosa MinCD single filament. (A) Representative average images from reference-free 2D
classification of single MinCD filament segments. (B) Reconstructed cryo-EM map of the central portion of the MinCD filament, colored by
local resolution. (C) Fourier shell correlation (FSC) curves between half-datasets (blue, gold-standard) as well as between the map and the
model (red). The overall resolution is marked, as judged by the FSCq 143 and FSCq s criteria (dashed lines). (D-F) Selected portions of the
reconstructed cryo-EM map with the MinCD atomic model built in: (D) B-sheet, (F) a-helix and (E) the ATP nucleotide with coordinated
magnesium. Arrowheads mark the position of arbitrarily selected amino acid residues. (G) Surface representation of the reconstructed
MinCD filament model in side and top views. The triple helical nature of the single filament, as well as the repeating MinC and MinD
dimers are discernible and indicated in the figure (dashed lines). The three protofilaments are colored to highlight the arrangement and slight
twist of the protofilaments (3.7° per heterotetramer).

ATPase (WACA) and members of this family depend
on sandwiched binding of two ATP molecules for
dimerization, and rely on accessory proteins to stimu-
The resolution and quality of the obtained reconstruc- late their ATPase activity [48]. In our MinD structure,
tion enabled us to build a high-quality atomic model of as in the published crystal structures of two homologs
P. aeruginosa MinC and MinD, which was fitted into [27,49], the catalytic pocket contains nonhydrolyzed
the cryo-EM map of the MinCD filament and refined. ATP, added in the experiment to promote dimeriza-
The refinement statistics for the MinCD structure solu- tion (Fig. 2F). Without stimulation from MinE, MinD

MinCD filaments are made from a structurally
conserved heterotetramer

tion are summarized in Table 1, together with data col- does not readily hydrolyze the nucleotide [19]. Just as
lection parameters. In the final map, almost all of the in E. coli and A. aeolicus, the P. aeruginosa MinCD fil-
MinD structure is well resolved, however, the last 16 aments are disrupted by MinE, and this is thought to
amino acid residues of the C-terminus could not be fit- happen in part because ATP hydrolysis causes the

ted, due to poorly defined density. For MinC, only the MinD dimers to separate, depolymerizing the cofila-
C-terminal dimerization domain MinC€ could be built, ment [27,29]. Additionally, MinE could interfere with
accounting for around 40% of the full-length MinC pro- the MinCD cofilament formation by competing with

tein. The MinC™ domain, thought to be the major site MinC for the same interaction site on the surface of
of interaction with FtsZ, is entirely missing in the recon- MinD [28].
structed map, most likely due to flexibility (Fig. 3A). In our reconstruction, P. aeruginosa MinC forms a

The structure of P. aeruginosa MinD shares very homodimer via its dimerization domain MinC®, simi-
strong structural similarity with E. coli and A. aeolicus lar to other structures of MinC protein homologues

homologs, which is not surprising, given respective [24,25,50]. The MinC¢ domain contains a conserved B-
74% and 45% sequence identities between the pro- helix fold, which has two interaction surfaces: on one
teins. MinD is a deviant Walker A cytoskeletal side it dimerizes with another MinC€ and on the other
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Fig. 3. Structure of Pseudomonas aeruginosa MinCD heterote-
tramer. (A) Atomic model of the MinCD heterotetramer, in cartoon
representation, built from and refined against the reconstructed
cryo-EM map of the filament. The MinCD tetramer is composed of
MinC, and MinD, homodimers, which have been labelled and
colored (yellow and blue, respectively). The positions of the
disordered MinC® domains are indicated schematically, as is the
position of the twofold symmetry axis in each of the dimers (lens
symbol). (*) ATP bound to MinD. (B) Surface representation of the
atomic filament model colored according to the scheme from the
previous figure panel. The alternating arrangement of MinC and
MinD dimers is clear, with multiple 2-fold symmetry axes between
any two MinC or MinD monomers (lens symbols). The repeat
distance of the tetramer is indicated. (C) One of the three
protofilaments from the previous panel, in surface and cartoon
representation, showing the arrangement of the tetramers in a
single protofilament.

it forms a heterodimer with a MinD monomer
(Fig 3A). The MinC¢ domain is connected to the
MinCN domain via a flexible linker, which means that
MinCN protrudes out of the filament and is not found
in a defined relative orientation with respect to the rest
of structure. This explains why, in our map, MinCN
could not be averaged into a defined density, although
it is present in the protein sample and micrographs.

PaMinCD filament structure

Structural features that enable MinCD to form an
open-ended polymer

Consistent with previous studies and models, both
MinC and MinD are dimeric and form an open-ended
polymer in which each protein monomer interacts with
its homodimeric partner on one side and the heterodi-
meric partner on the other. Each of the polymers of
alternating MinC, and D, dimers forms a protofila-
ment, and the protofilaments are interacting with each
other in such a manner that every MinCD heterodimer
interacts with a complete MinCD heterodimer on the
neighboring protofilament (Fig. 3B,C). As mentioned
before, the MinCD filament has rotational two-fold C,
symmetry, which means that two kinds of twofold
symmetry axes are present in each protofilament, but
also between any two of the three protofilaments.

The final 16 residues of the MinD C-terminus con-
tain a membrane targeting sequence (MTS): an amphi-
pathic helix with which MinD anchors itself onto the
membrane upon ATP-binding and dimerization
[17,18]. The MTS of P. aeruginosa MinD is part of the
unresolved C-terminal region of the protein in our
reconstruction. This region exhibits inherent structural
flexibility or multiple discrete conformations, which
precluded model building. Interestingly, considering fil-
ament topology, the MTS of MinD ought to be
located in the cavity formed inside the MinCD triple
helix (Fig. 4A). We propose that the association of the
MTS from MinD monomers in the filament interior is
due to nonspecific interactions between hydrophobic
residues and likely helps to stabilize the three protofila-
ments in their forming one helical MinCD filament. A
similar effect has recently been observed in an unre-
lated bacterial filamentous protein: bactofilin. Bactofi-
lin contains a conserved hydrophobic N-terminal tail,
which tethers it to the cell membrane. In the absence
of a lipid bilayer, bactofilin assembles into long, dou-
ble helical filaments, with the N-terminal tails associat-
ing in the centre of the filament and stabilizing the
interaction between the protofilaments [51].

In the previously reported MinC and MinD co-crys-
tals from A. aeolicus, the only other structure of a
MinCD heterodimer, the authors identified MinC resi-
due D155 as crucial for MinC and MinD interaction
[27]. This aspartate is also conserved in E. coli and P.
aeruginosa MinC at positions D154 and D153, respec-
tively. Mutation of the conserved aspartate into ala-
nine abolished filament formation of the A. aeolicus,
as well as E. coli proteins [27,32]. This is because, as
deduced from the crystal structure of A. aeolicus
MinCD, the residue forms a salt bridge with a con-
served arginine of MinD: R94 in A4. aeolicus and R133
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in E. coli. In our reconstruction of P. aeruginosa
MinCD heterodimer, the same salt bridge seems to be
present, between D153 of MinC and R165 of MinD.
Because of the quality of the map in this region (the
external side of the filament), it cannot be excluded
that the bridge is also/instead formed with E175 of
MinC (Fig. 4B).

In the A. aeolicus MinCD heterodimer the heteroty-
pic interaction is also mediated via the C-terminal o-
helix of the MinC¢ domain, which contacts a MinD
monomer (Fig. 4C). Sequences equivalent to the 4. ae-
olicus C-terminal MinCC helix are not present in most

A. Szewczak-Harris et al.

Fig. 4. Structural features of the Pseudomonas aeruginosa MinCD
filament. (A) Cross-section through the reconstructed cryo-EM
map, contoured at o level 1.0 with the atomic model of MinCD
filament shown in ribbon representation. The proteins have been
colored according to the scheme from the previous figure. The
regions of poorly defined density (dashed-line boxes) correspond to
the C-terminal membrane-binding amphipathic helices (MTS) of
MinD that interact non-specifically to bridge between adjacent
MinD monomers. Indicated is the position of the last assigned N-
terminal amino acid residue (L255) of one of the MinD monomers.
The residue precedes the MTS region. Also indicated are the N-
terminal prolines (P256) that immediately follow the disordered
MinCN domain. (B) Detail of the cryo-EM model around conserved
residue R165 of MinD (right) found at the interface of MinC and
MinD monomers in the protofilament (left, inset box). This residue
is in close proximity to two negatively charged residues of MinC:
D154 and E175, with which it might be forming salt bridges.
Coloring scheme for MIinCD as above. (C) Overlay of MinCD
structures from P. aeruginosa and A. aeolicus (PDB ID: 4V02). The
crystal structure of A. aeolicus MinCD contains a MinC dimer
bound to a MinD monomer so it was aligned with the homologous
protein chains from P. aeruginosa MinCD tetramer. The proteins
are colored according to the key in the figure. Aquifex aeolicus and
P. aeruginosa proteins show high degree of structural similarity,
the main difference being in the presence of a C-terminal a-helix
(*) in A. aeolicus MinC and providing an additional contact between
MinC and MinD.

other MinC proteins [24,27,50]. The helix is absent in
P. aeruginosa MinC, so our conclusion is that the helix
is not necessary for filament formation and probably
evolved to add stability to the MinCD heterodimer
association or to provide a not-yet recognized regula-
tory function.

MinCD forms straight protofilaments on lipid
bilayers

Binding of the MinD dimer to the membrane of the
bacterial cell is a crucial feature of the Min system. In
its active, ATP-bound state, MinD attaches itself to
the lipid bilayer via the C-terminal MTS and in doing
so can take MinC dimers as passengers. In this mem-
brane-bound state, the two proteins can also form fila-
ments, as shown by electron cryo-tomography of lipid
vesicles decorated with E. coli MinCD [27]. This was
the first demonstration that MinCD complexes form
co-polymeric assemblies not only in solution, but also
when bound to the surface of membranes, facilitated
by MinD’s MTS.

To test whether P. aeruginosa MinC and MinD pro-
teins bind to lipid bilayers we polymerized MinCD fil-
aments in the presence of lipid nanotubes, made from
E. coli total lipid extract doped with galactosylce-
ramide. Thanks to this addition, lipid nanotubes have
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a permanent and uniform curvature, forming a rigid
and ordered membrane-like support for membrane-
binding proteins, which can facilitate electron micro-
scope imaging [52-54]. Lipid nanotubes have already
proven useful in the study of cell membrane assembly
of another protein which forms prokaryotic cytoskele-
tons, the bacterial actin MreB [55].

Cryo-EM images of P. aeruginosa MinCD filaments
polymerized with lipid nanotubes clearly show that the
filaments assemble on lipid bilayers (Fig. 5A,B). The
tubes are evenly coated with MinCD filaments, and

approx.
MinCN
MinCD
lipid
- — e — bilayer
membrane targeting
sequences (MTS)

Fig. 5. Imaging of Pseudomonas aeruginosa MinCD filaments
binding to lipid nanotubes. (A) Micrograph showing two
undecorated (protein-free) lipid nanotubes imaged after vitrification
using cryo-EM. Small arrowheads indicate the width of a single
tube, which is around 30 nm. (B) Lipid nanotubes, with added
MinCD and ATP. An ordered layer of protein decorating the surface
of lipid nanotubes is clearly visible compared with the previous
panel. (C) A representative average image from reference-free 2D
classification of the lipid nanotube surface segments (left). The
MinCD filament is bound to the lipid bilayer on the outer surface of
the tube, also represented schematically with the MinCD
protofilament atomic model derived here (right). The characteristic
alternating pattern of MinC and MinD dimers with an 82-A repeat
(cf. Fig. 3B) is discernible in the 2D average image. The
approximate positions of the membrane targeting sequences
(MTS) of the MinD dimers are indicated. The distortions seen in
both leaflets of the lipid bilayer are likely due to the interference
from MiInCD protofilaments bound to the tube surface above and
below the plane of the reconstruction. The approximate positions
of the flexibly attached and disordered N-terminal domains of MinC
are indicated.

PaMinCD filament structure

the absence of free filaments suggests that the interac-
tion of filaments with the lipid environment is more
stable than the self-interactions, which generate the
three-stranded filaments in solution as resolved by
cryo-EM. Due to its geometry, the edge of the nan-
otube is where the presence of the filaments is most
pronounced, with least overlapping of filaments, allow-
ing us to carry out reference-free 2D averaging of the
nanotube surface with MinCD bound to it.

The alternating co-polymeric assembly of MinCD
dimers on the lipid surface is apparent in the 2D class
averages of the micrographs (Fig. 5C). MinD dimers
are tethering the filaments to the membrane, and two
attachment points, each from an MTS from a MinD
monomer, are also discernible. The MinC dimer does
not contact the membrane, but links the MinD dimers
together, just as suggested by our reconstruction of
unsupported MinCD filaments.

MinCD assembled on the surface of a lipid bilayer
does not form a triple helix, as in solution, but rather
appears as single MinCD protofilaments. Instead of a
helix with protofilaments facing each other on the side
of the MTS of MinD, protofilaments arrange into
straight assemblies anchored by the MTS on the sur-
face of the lipid nanotube. The slight helical twist of
the triple helix (3.7° per heterotetramer, c¢f. Fig. 2G) is
either reduced or absent, as the membrane-bound fila-
ments seem to be perfectly parallel to the long axis of
the tube (Fig. 5C). Some degree of flexibility in
MinCD subunit interaction necessary for such adjust-
ment may not be without precedent, as A. aeolicus
MinCD heterodimers in the crystal structure are bent,
but have been reported to also form straight protofila-
ments on lipid bilayers [27].

Discussion

Our previous hybrid model for E. coli and A. aeolicus
MinCD filaments [27] had the two homodimeric C,
axes lying in a single plane, both perpendicular to the
tangent of the curved filament implied by the crystal
structures. We suggested that unbending of the curved
polymer, to bring these axes parallel, would therefore
expose several MinD MTS in a colinear arrangement,
allowing efficient and avid binding to membrane—ex-
plaining the observation of straight filaments on lipid
vesicles in vitro. The work here demonstrates that
these predictions were correct and generalize to
another MinCD pair. Firstly, the structure of MinCD
cofilaments from P. aeruginosa shows that MinCD can
form straight, untwisted, filaments in the manner
expected. Secondly, visualization of MinCD bound to
lipid nanotubes demonstrates that these straight
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filaments indeed do use the linear array of MinD MTS
sequences exposed along one surface to assemble effi-
ciently on membranes.

It must be emphasized that the coplanar orientation
of the homodimer C, axes we have now observed in
several MinCD pairs, and which is essential for avid
cofilament membrane binding, is not an inevitable geo-
metric consequence of the interaction of two C,-sym-
metric dimers, instead it is a rather special
arrangement which can only be satisfied by a narrow
range of heteromeric interaction modes. Notwithstand-
ing the compelling evidence of Park et al. [32] that
MinCD copolymers are not essential for Min function
in E. coli cell division inhibition, it remains challenging
to explain why this special relative arrangement of
MinCD dimers would persist, especially as open and
purely translational symmetries are usually avoided in
cells unless polymerization is selected for during evolu-
tion. We believe that it remains a distinct possibility
that membrane-bound MinCD cofilaments do in fact
play a role in cells, and that they could therefore be
part of an expanding class of non- (or hardly-) twist-
ing membrane-binding protein polymers found in bac-
terial cells, including filaments formed by MreB, FtsA,
bactofilin, SepF, and possibly DivIVA [51,56-59].
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