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Structural/functional homology between the bacterial and

eukaryotic cytoskeletons
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Structural proteins are now known to be as necessary for
controlling cell division and cell shape in prokaryotes as they are
in eukaryotes. Bacterial ParM and MreB not only have atomic
structures that resemble eukaryotic actin and form similar
filaments, but they are also equivalent in function: the assembly
of ParM drives intracellular motility and MreB maintains the
shape of the cell. FtsZ resembles tubulin in structure and in its
dynamic assembly, and is similarly controlled by accessory
proteins. Bacterial MinD and eukaryotic dynamin appear to have
similar functions in membrane control. In dividing eukaryotic
organelles of bacterial origin, bacterial and eukaryotic proteins
work together.
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Abbreviations

AMPPNP  5'-adenylyl-imidodiphosphate
EM electron microscopy

GFP green fluorescent protein

GTP guanosine 5'-triphosphate
MAPs microtubule associated proteins
MD mitochondrion-dividing

PD plastid-dividing

PH pleckstrin homology
Introduction

Almost all eukaryotes depend on polymers of actin and
tubulin to organize their cytoplasm, although the same
basic elements are used in a variety of ways [1]. The
ancestors of these two self-assembling dynamic filamen-
tous proteins are believed to have evolved first in prokar-
yotes. The hypothesis that the bacteria cytoskeleton is
related to the eukaryote cytoskeleton was first established
when the bacterial Z-ring, which constricts the cell during
division, was visualized using fluorescence (Figures 1a,b)
and was shown to consist of FtsZ, a protein with a fold that
mirrors tubulin [2] and displays similar dynamic proper-
ties [3,4°]. The relationship between eukaryotic and

prokaryotic filaments became pronounced when the pro-
teins MreB, Mbl and ParM [5,6,7°°-9°°] were shown to
possess structures (Figures 2 and 3) and dynamic proper-
ties [7°°,9°°] that resemble those of actin.

The ancestors of other eukaryotic cytoskeletal proteins are
likely to be identified in prokaryotes in the near future.
Owing to low sequence conservation, uncovering distant
relationships between structural proteins will depend on
comparisons of their macromolecular and atomic struc-
tures, as well as their functional mechanisms; FtsZ amino
acid sequences show less than 20% identity to tubulin,
while MreB and ParM have 15% and 12% identity to actin,
respectively. Furthermore, prokaryotes seem to be more
diverse than eukaryotes because the only cell division
protein to be identified as common to almost all prokaryotic
organisms is FtsZ; however, other common elements
might have been missed because of sequence variation.

Determination of cell shape

Actin filaments and microtubules usually cooperate in
controlling the shapes of eukaryotic cells [1]. Cell mem-
branes tend to be supported by an underlying layer of one
or other of these cytoskeletal filaments. Such a role for
actin-like filaments seems to have originated in bacteria.
Two proteins, MreB and Mbl (MreB-like), each form
cables that follow a helical path close to the membrane of
Bacillus subrilis (Figure 1d) [5,9°°]. Equivalent proteins
are found in most other non-spherical bacteria. Mutants
lacking MreB are round instead of rod-shaped; however,
some non-spherical bacteria that naturally lack actin-like
proteins control their shape by extending the cell-wall
only at the poles [10].

Investigation of the structure of MreB from 7/ermoroga
maritima by X-ray crystallography and electron micro-
scopy have amply confirmed that it is an actin homologue
[6]. In the crystal structure (Figure 3), the four subdo-
mains around the central nucleotide binding site in each
monomer show a strong similarity to those of actin. More
importantly, MreB was found to crystallize in such a way
that monomers were lined up to form filaments whose
longitudinal contacts confirm predicted contacts in an
actin filament. The 5.1 nm longitudinal spacing of sub-
units in MreB filaments, compared with 5.5 nm for F-
actin, was confirmed in electron micrographs of sheets
and filaments that were assembled from purified protein
(Figure 2) MreB appears to form two-stranded filaments
(Figure 2c) similar to F-actin, except that the strands do
not twist around each other. The double-stranded fila-
ments further associate into pairs and larger bundles.
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Figure 1

Figure 2

'

Light microscopy of fluorescently-labeled cytoskeletal filaments in
bacteria. (a) Visualization of the Z-ring in E. coli cells expressing GFP-
FtsZ; two different views of a cell undergoing constriction. Reprinted
from [17], Copyright (1996) National Academy of Sciences, U.S.A. Bar
1 um. (b) Brightfield and fluorescence images of an E. coli cell
expressing a low level of GFP-FtsZ. Photobleaching experiments
revealed that the Z-ring exchanges subunits rapidly with a cytoplasmic
pool. Reprinted from [4°], Copyright (2002) National Academy of
Sciences, U.S.A. Bar 2 um. (c) Combined phase-contrast and
immunofluorescence microscopy of fixed E. coli cells expressing
wild-type levels of ParM. The fluorescent staining shows intracellular
actin-like filaments. Reprinted from [7°°], Copyright (2003), with
permission from OUP. (d) Localization of GFP-Mbl (MreB-like protein)
expressed in Bacillus subtilis shows dynamic helical bands.
Immunofluorescence microscopy of endogenous Mbl in fixed cells gave
similar images. Reprinted from [9°°], Copyright (2003), with permission
from Elsevier. Bar 4 um. (e) E. coli cells expressing YFP (yellow
fluorescent protein)-MinD. After deconvolution, these optically sectioned
images of fixed cells reveal that MinD is present in helical filaments.
MinE-GFP gave similar images. Reprinted from [47°°], Copyright (2003)
National Academy of Sciences, U.S.A.

MreB can form curved, as well as straight, bundles z vitro
(Figure 2a), suggesting that a cooperative conformational
change can occur.

Chromosome separation

In cukaryotes, pairs of chromosomes are always moved
apart by a spindle that is constructed from tubulin-contain-
ing microtubules and is driven by microtubule-associated
motors. This is the most obvious feature that universally
differentiates eukaryotes from prokaryotes; however,
there are indications that bacteria do have simple cyto-
skeletal machines to assist in DNA segregation.
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Electron micrographs of negatively stained filaments. Both MreB [6] and
ParM [8°°] assemble into protofilaments with a subunit repeat close to
that in F-actin. MreB protofilaments associate into pairs but do not twist
to form helices like actin filaments; the 2-stranded filaments further
associate into straight or curved bundles (a-c); the various MreB
polymers all assemble together in the same conditions. (b) Individual
protofilaments, equivalent to those seen in atomic detail in the crystal
structure of MreB, can also assemble into flat sheets. (c) A pair of
double-stranded filaments; the inset is an enlarged filtered image. (d)
ParM double protofilaments have an even more remarkable structural
similarity to F-actin, as is clear from the enlarged filtered image (right).
Bars 100 nm.

ParM self-assembly drives plasmid separation

The protein ParM [7°°] forms highly dynamic actin-like
filaments in the bacterium Escherichia coli and uses a
self-assembly mechanism for force production and trans-
port that is also used by eukaryotic actin. The crystal
structure of the ParM monomer [8°°] has a clear homol-
ogy to those of actin and MreB (Figure 3). A bonus result
from this study was a crystal structure of ParM without
bound nucleotide. Of the eukaryotic proteins, only the
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Figure 3

actin.ADP ARP3 empty
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Ribbon structures of actin-family monomers: Actin.ADP, from pdb 1J6Z;
eukaryotic actin-related protein ARP3, from pdb 1K8K [11]; bacterial
ParM.ADP, from pdb 1MWM; ParM empty, from pdb 1MWK [8°°];
bacterial MreB.AMPPNP, from pdb 1JCG [6]. Each monomer has two
similar domains with a nucleotide binding site in the cleft between them.
The four subdomains (1A, 1B, 2A, 2B) in each protein are coloured blue,
yellow red and green. The crystal structure of ParM with and without
ADP [8°°] indicates a domain movement of 25°, close to the
conformational change predicted for actin from a comparison of
actin.ADP with ARP3 in the empty state and from EM studies of F-actin
under different conditions [67]. The protofilament in the MreB crystal
structure provided the first atomic-resolution view of inter-subunit
contacts in an actin-family filament [6].

actin-related protein ARP3 has been seen in the empty
form [11]. In both cases, the empty cleft is ~25° wider
than in the ADP-filled form of the protein, indicating a
hinge-like movement between domains. Electron micro-
scopy of assembled filaments showed them to be double-
stranded and helical (Figure 2d), with a subunit arrange-
ment and longitudinal repeat similar to F-actin [8°°]. The
longitudinal repeat of 4.9 nm is slightly smaller than that
of MreB (5.1 nm) or actin (5.5 nm); as a result of this and
the fact that there are 12.5 monomers per repeat (as
opposed to 12.5-14 in F-actin), the distance between
crossovers is only 30 nm.

ParM is a product of one of the genes on the R1 plasmid,
which maintains its presence in the bacterial host by
segregating copies of itself towards the two cell poles,
before cell division. Plasmids of this type encode a
centromere-like DNA sequence, called parC in the case
of plasmid R1, and two proteins, called ParM and ParR.
Duplicated plasmids are paired at their centromeric re-
gions through direct interactions with ParR. This ParR—
parC complex interacts with ParM and stimulates its
ATPase activity. Immunofluorescence microscopy has
revealed ParM-containing filamentous bundles (Figure 1c)
along the longitudinal axis of E. co/i [7°°].

Separation of bacterial chromosomes might be assisted in
a similar way; orthologues of some of the par genes have
been identified on chromosomal DNA (see Update).
However, a DNA replication factory at the centre of the
cell [12] is thought to supply at least some of the force that
drives newly duplicated DNA towards opposite cell poles.
Segregation starts with the replication origins, which move
further from the centre as replication continues.

In eukaryotes, several types of protein complexes enable
actin assembly to drive the movement of membranous
organelles or to push forward the leading edge of the cell
membrane [13]. Formins [14] seem to represent the
closest system to the ParR—parC complex, in that they
promote the assembly of a simple bundle of actin fila-
ments. In such cases, assembly-driven activity might
follow the actoclampin model [15], in which each growing
filament is continuously tethered to a clamp molecule via
a site on the side of the endmost, ATP-bound monomer.
Addition of a new monomer on to the growing end triggers
a cycle of ATP-hydrolysis and advancement of the clamp
molecule to the new subunit on the same filament. By
contrast, complexes that incorporate the actin-family pro-
teins ARP2/3 nucleate new forwards-pointing actin fila-
ments as branches from existing filaments [16]. The new
filaments must then make new contacts with the mem-
brane that is being pushed, using new ARP2/3-containing
complexes.

Although MreB and Mbl helical bundles are also highly
dynamic iz vive [9°°], it is not known whether their
assembly can drive movement of other objects, in the
manner of ParM or actin. Nor is it known whether any of
the bacterial actin-like filaments can serve as tracks for
motor protein-driven movement. As yet there is no evi-

dence for linear motor proteins in prokaryotes, apart from
those that move DNA [12].

Cytokinesis/septation

Constriction and abscission in different cell types

The division of most cells involves constriction of the
membrane until there is a narrow connection between
the daughter cells (Figure 4) and this is followed by a
separate abscission step. One common theme in both
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Figure 4
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Some of the cytoskeleton proteins involved in cytokinesis. (a)
Representation of a section through an animal cell when the actin-
containing cleavage ring has contracted around the central bundle of
microtubules (MTs) of the extended mitotic spindle, after the
chromosomes have separated. Several proteins aside from actin are
required to form the cleavage ring and produce constriction. Dynamin
and syntaxin are required for membrane remodeling during the final
stage of separation. (b) Representation of a section through a dividing
bacterium. Proteins FtsA, ZipA and ZapA join the tubulin homologue
FtsZ in the Z-ring, which constricts the cell membrane during division.
Mutations in other Fts (filamenting temperature-sensitive) proteins
prevent invagination of the outer cell wall. The actin homologue, ParM,
separates copies of the plasmid on which it is encoded. Actin-like MreB
is needed to give the cells the correct shape and also to segregate the
chromosomes correctly. The Min proteins are needed to prevent a Z-ring
from forming too close to a pole.

steps seems to be the use of filamentous GTP-binding
proteins (FtsZ, septins, dynamin), although they are not
closely related.

In bacteria, the Z-ring that is assembled from FtsZ
initially defines the site of the division plane [17-19]
and is then actively involved in the constriction mechan-
ism. Other proteins are recruited to the ring, depending
on species. In K. co/i and B. subnilis, these include FtsA,
another member of the actin family, and ZipA. In the
early stage of constriction, either ZipA or FtsA can sta-
bilize the Z-ring but FtsA is required for the final abscis-
sion [20,21]. Several other proteins are required to

coordinate changes in the cell membrane with formation
of a septum in the cell wall [18].

In fungi and animal cells, but apparently not in plants, the
division plane is first defined by a ring assembled from
septin filaments [22,23]. Myosin is then recruited [24] and
actin bundles are assembled, organized by formins [14].
Acto-myosin sliding-filament contraction constricts the
cell diameter until it is filled by the central-spindle
bundle of microtubules (Figure 4).

In higher plants, the division plane is first defined by a
dynamic ring of microtubules [25] but these do not cause
constriction. Subsequently, other microtubules assemble
at right angles to the division plane, forming a phragmo-
plast [26], which is similar to an extended central spindle.
The final stage of cytokinesis is, perhaps, most clear in
higher plants; Golgi-derived vesicles are transported
along the microtubules of the phragmoplast to the plane
of division, where they fuse with one another to form the
incipient cell wall. Members of the dynamin family are
essential components here [27°] and also in animal cells
[28°]; in this situation, the role of dynamin could be either
to package new membrane into tubes that can be deliv-
ered to the new cell wall and/or to remodel the newly
fused membrane.

Dynamic assembly of FtsZ and its control

FtsZ and tubulin both assemble into protofilaments with
a subunit spacing of 4.0-4.2 nm [29]. GTP, bound to a
pocket at the top of one subunit, comes into contact with
the bottom of the next subunit where a loop, known as
"I'7, on the latter surface is responsible for triggering G'TP
hydrolysis [30°]. In the case of tubulin heterodimers, the
"T'7 loop of a-tubulin is thought to hydrolyse G'TP that is
bound to the B-tubulin in another dimer, but the T'7 loop
of B-tubulin simply traps the GTP that is bound to its own
a-tubulin partner. FtsZ might form homodimers as inter-
mediate complexes during assembly [31] but GTP is,
presumably, hydrolysed in every monomer. Both tubulin
and FtsZ polymers become unstable after GTP hydro-
lysis and exhibit dynamic instability. /# vivo, the Z-ring is
even more dynamic than microtubules [4°]. The rapid
turnover of G'T'P means that it is difficult to study the
assembly of purified FtsZ i vitro, although some progress
has been made recently [32-34]. However, the precise
form of the /# vivo polymer remains unknown. It is
unlikely to closely resemble eukaryotic microtubules
because lateral contacts between tubulin protofilaments
are made by polypeptide loops that are missing from FtsZ
[2]. It might consist of just a pair of protofilaments [29,33].

Just as microtubule stability is controlled by microtubule
associated proteins (MAPs), assembly of FtsZ is pro-
moted /7 vivo by proteins such as FtsA, ZipA [19-21]
and ZapA [35]. ZipA, which has a long unfolded P/Q rich
domain [36], perhaps best resembles typical MAPs, which

Current Opinion in Cell Biology 2004, 16:1-8
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are unstructured in the absence of tubulin. MinC appears
to inhibit the assembly of unwanted Z-rings (discussed in
the next section) by binding to FtsZ polymer (and dis-
placing FtsA [31]). The structure of the MinC dimer is
compatible with a model in which it binds to the sides of
two adjacent subunits in a protofilament [37], possibly
inhibiting a lateral association of protofilaments that
might be required to form the Z-ring [38]. Alternatively,
MinC might cause disassembly by inducing curvature in
FtsZ protofilaments. There is a precedent for this second
mechanism, in the way that stathmin interacts with two
tubulin dimers [39]. However, there is no evidence that
MinC sequesters FtsZ in the way that stathmin seques-
ters tubulin. When E. co/i or B. subtilis are under stress,
FtsZ is sequestered by a protein called SulA, which
prevents GTP hydrolysis by binding to the T7 loop
[40°], or YneA [41], which may perform a similar role.

The Min systems in bacteria

A protein complex, called MinCD, is thought to be
responsible for inhibiting FtsZ from assembling prema-
turely on to sites that will ultimately be at the centres of
the two future daughter cells. MinD binds cooperatively
to membranes in the presence of ATP and recruits MinC,
which is required for the regulation of Z-ring assembly
[31,37]. In B. subrilis, a protein called DivIVA recruits
MinCD to each polar region [42], leaving only the site at
the centre of the parent cell free to assemble a Z-ring but,
in E. co/i, MinCD is not localized in this way. Instead, a
soluble protein, MinE, prevents MinCD from inhibiting
Z-ring assembly at the central site [43°,44°°,45,46°]. The
activity of MinE sets up a surprising oscillation of all
the Min proteins. Originating from the cell centre, a ring
of MinE progresses towards one pole, disassembling
MinCD as it moves. The depolymerized MinC and MinD
arc then free to assemble near to the other pole. On
reaching the first pole, MinE is released to work on
MinCD polymers that are formed in the second half of
the cell. Each movement, from one half of the cell to the
other, takes 30-50 s. Meanwhile, the whole cell gradually
increases in length. Recent images with improved resolu-
tion [47°°] have shown that MinCD does not coat the
whole cell membrane near one pole but forms a long
winding filament (Figure 1e); its relationship to the MreB
filaments, if any, is still unclear.

MinD resembles dynamin

The similarities between dynamin and MinD might be
purely coincidental, but it is interesting to compare them
because they could share a common mechanism. The N-
terminal domain of dynamin is a regular G'T'Pase, with a
strong similarity to Ras [48]. G'TP regulates dimerization,
as well as interactions with membranes and with a variety
of actin-binding proteins [27°,28°]. The other domains
have important roles in these interactions [49]. A 3D
reconstruction of a dynamin polymer surrounding a mem-
brane tubule has been calculated from electron micro-

scope images [50]. It shows a helical arrangement of
dimeric GTPase domains, which stand out from the
membrane on ‘legs’, consisting of the smaller, regulatory
domains. Contact with the membrane is via PH (pleck-
strin homology) domains at the ends of the ‘legs’.

The structure of MinD has been solved in the empty
state as well as when bound to the nonhydrolysable
ATP analogue AMPPNP (5'-adenylyl-imidodiphosphate)
[51-53]. It belongs to a group of ATPases that are related
to the P-loop GTPases [54]. The role of ATP is to
modulate the interaction of the protein with itself and
its partners, MinC, MinE and membranes [43°,44°°,
45,46°]. In vitro, MinD is known to dimerize with ATP
before assembling directly on to the membrane to form a
fairly tight helical polymer [43°,44°°,45]. This polymer is
superficially reminiscent of the outer wall of the dynamin
helix, but presumably has no ‘legs’ distancing it from the
membrane inside. Interaction with the membrane is via a
short C-terminal segment [55,56], which is much smaller
than the multidomain region of dynamin that follows the
GTPase domain.

One possibility is that the MinCD polymer that is
assembled 7z vivo (Figure 1) contains a tubule of fresh
membrane that becomes incorporated into the cell mem-
brane when released by MinE; such a mechanism would
help ensure an even insertion of new lipid along the
length of the cell. This would be similar to the proposed
role for dynamin in organizing membrane insertion during
the abscission of eukaryotic cells [27°,28].

Division of chloroplasts and mitochondria
FtsZ, MinD and MinE are found in eukaryotes — in
chloroplasts (derived from cyanobacteria) [57] and in
some primitive mitochondria (derived from o-proteobac-
teria) — and they serve important functions in organelle
division [58,59°]. FtsZ is presumably required for mark-
ing the division site and/or constricting the inner mem-
brane. Eukaryotic proteins, such as actin, organelle-
specific dynamins [60°°61°°,62] and septins [63°], are also
necessary for organelle division. Thus, the division
mechanism is a hybrid of prokaryotic constriction and
eukaryotic abscission. Most mitochondria lack FtsZ and,
apparently, use only eukaryotic division mechanisms.

Electron microscopy of chloroplast structure [64°] shows
electron-dense plastid-dividing (PD) rings, on the cyto-
plasmic face of the outer membrane and on the stromal
face of the inner membrane. Mitochondria have a similar
structure, known as the mitochondrion-dividing (MD)
ring [65]. The chloroplast FtsZ ring localizes on the
stromal side of the inner PD ring. Both the Z-ring and
then the PD rings appear before division starts but the Z-
ring disappears before the final abscission takes place. An
attempt to isolate the PD rings in detergent [64°] yielded
insoluble 5 nm filaments of unknown composition (but
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the absence of septins from plants might be worth rein-
vestigating [63°]). A chloroplast-specific dynamin associ-
ates with the chloroplast outer membrane at a late stage of
division [60°°,61°°] and it might be of significance that
this is when the outer membrane needs to increase in
area, even more than the inner membrane.

The activity of the Z-ring has been more clearly tracked
in chloroplasts than in any bacterium, although we cannot
be certain that the constriction mechanism, in conjunc-
tion with that of eukaryotic mechanisms, is truly repre-
sentative of that in bacteria.

Conclusions

Cytoskeletal proteins that are related in both structure
and function are currently being identified in bacteria and
eukaryotic cells. The actin-like and tubulin-like proteins
in bacteria are evolutionarily related to their eukaryotic
counterparts, having similar functions and 3D structures.
Bacteria also have accessory proteins that control FtsZ
assembly in the way that MAPs control tubulin assembly,
although there is no evidence that any are evolutionary
precursors of MAPs. As yet, no associated proteins for
bacterial actin have been found; the search for them will
be an important objective in the near future. Researchers
will also continue to look for prokaryotic motor proteins
that might use FtsZ or bacterial actin filaments as tracks.
The role of dynamins in the division of chloroplasts and
mitochondria, and their role in eukaryotic cytokinesis, is
another exciting area for further research. Finally, the full
role of MinD and its accessory proteins in bacteria and
chloroplasts demands declarative investigation.

Update

Recent immunofluorescence studies of helical MreB fila-
ments in E. co/i [66] have demonstrated that chromo-
somes fail to segregate properly in the round cells formed
when MreB is missing or mutated. These results suggest
that there is a bacterial chromosome segregation mechan-
ism that is homologous to active plasmid separation [7°°].
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