

Structural/functional homology between the bacterial and eukaryotic cytoskeletons

Linda A Amos¹, Fusinita van den Ent² and Jan Löwe³

Structural proteins are now known to be as necessary for controlling cell division and cell shape in prokaryotes as they are in eukaryotes. Bacterial ParM and MreB not only have atomic structures that resemble eukaryotic actin and form similar filaments, but they are also equivalent in function: the assembly of ParM drives intracellular motility and MreB maintains the shape of the cell. FtsZ resembles tubulin in structure and in its dynamic assembly, and is similarly controlled by accessory proteins. Bacterial MinD and eukaryotic dynamin appear to have similar functions in membrane control. In dividing eukaryotic organelles of bacterial origin, bacterial and eukaryotic proteins work together.

Addresses

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

¹e-mail: laa@mrc-lmb.cam.ac.uk

²e-mail: fent@mrc-lmb.cam.ac.uk

³e-mail: jyl@mrc-lmb.cam.ac.uk

Current Opinion in Cell Biology 2004, 16:1–8

This review comes from a themed issue on
Cell structure and dynamics

Edited by John A Cooper and Margaret A Titus

0955-0674/\$ – see front matter
© 2003 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.ceb.2003.11.005

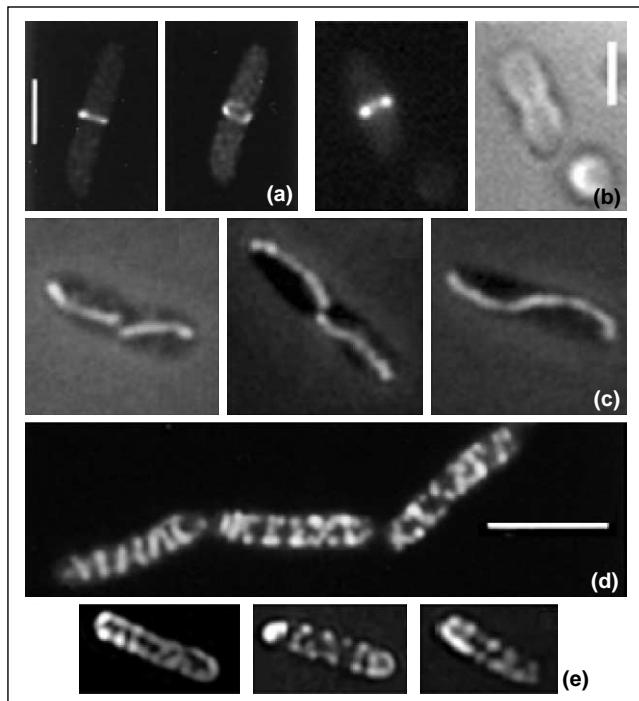
Abbreviations

AMPPNP	5'-adenylyl-imidodiphosphate
EM	electron microscopy
GFP	green fluorescent protein
GTP	guanosine 5'-triphosphate
MAPs	microtubule associated proteins
MD	mitochondrion-dividing
PD	plastid-dividing
PH	pleckstrin homology

Introduction

Almost all eukaryotes depend on polymers of actin and tubulin to organize their cytoplasm, although the same basic elements are used in a variety of ways [1]. The ancestors of these two self-assembling dynamic filamentous proteins are believed to have evolved first in prokaryotes. The hypothesis that the bacterial cytoskeleton is related to the eukaryote cytoskeleton was first established when the bacterial Z-ring, which constricts the cell during division, was visualized using fluorescence (Figures 1a,b) and was shown to consist of FtsZ, a protein with a fold that mirrors tubulin [2] and displays similar dynamic properties [3,4•]. The relationship between eukaryotic and

prokaryotic filaments became pronounced when the proteins MreB, Mbl and ParM [5,6,7••–9••] were shown to possess structures (Figures 2 and 3) and dynamic properties [7••,9••] that resemble those of actin.

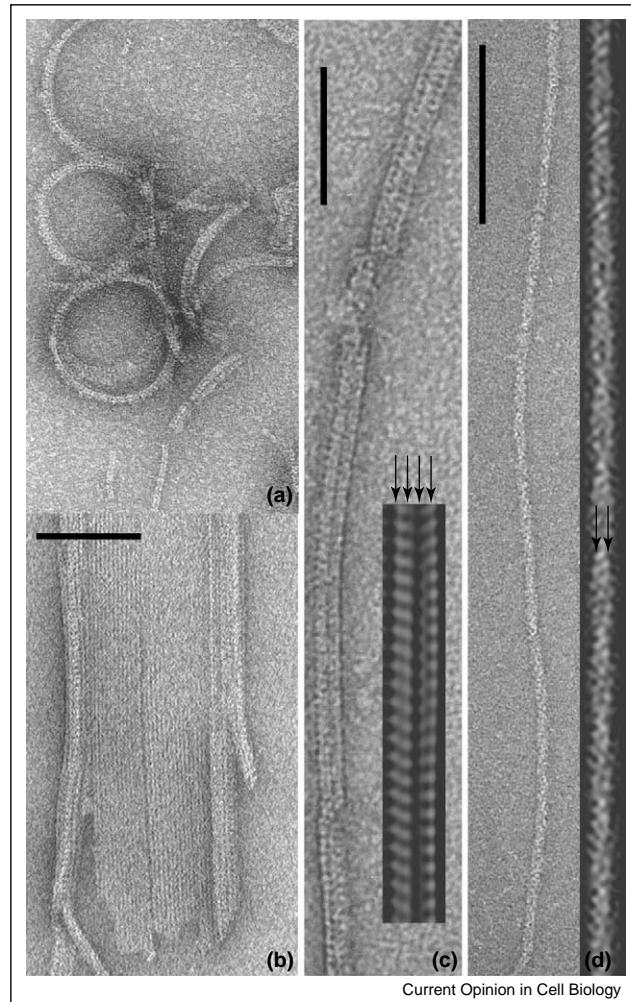

The ancestors of other eukaryotic cytoskeletal proteins are likely to be identified in prokaryotes in the near future. Owing to low sequence conservation, uncovering distant relationships between structural proteins will depend on comparisons of their macromolecular and atomic structures, as well as their functional mechanisms; FtsZ amino acid sequences show less than 20% identity to tubulin, while MreB and ParM have 15% and 12% identity to actin, respectively. Furthermore, prokaryotes seem to be more diverse than eukaryotes because the only cell division protein to be identified as common to almost all prokaryotic organisms is FtsZ; however, other common elements might have been missed because of sequence variation.

Determination of cell shape

Actin filaments and microtubules usually cooperate in controlling the shapes of eukaryotic cells [1]. Cell membranes tend to be supported by an underlying layer of one or other of these cytoskeletal filaments. Such a role for actin-like filaments seems to have originated in bacteria. Two proteins, MreB and Mbl (MreB-like), each form cables that follow a helical path close to the membrane of *Bacillus subtilis* (Figure 1d) [5,9••]. Equivalent proteins are found in most other non-spherical bacteria. Mutants lacking MreB are round instead of rod-shaped; however, some non-spherical bacteria that naturally lack actin-like proteins control their shape by extending the cell-wall only at the poles [10].

Investigation of the structure of MreB from *Thermotoga maritima* by X-ray crystallography and electron microscopy have amply confirmed that it is an actin homologue [6]. In the crystal structure (Figure 3), the four subdomains around the central nucleotide binding site in each monomer show a strong similarity to those of actin. More importantly, MreB was found to crystallize in such a way that monomers were lined up to form filaments whose longitudinal contacts confirm predicted contacts in an actin filament. The 5.1 nm longitudinal spacing of subunits in MreB filaments, compared with 5.5 nm for F-actin, was confirmed in electron micrographs of sheets and filaments that were assembled from purified protein (Figure 2) MreB appears to form two-stranded filaments (Figure 2c) similar to F-actin, except that the strands do not twist around each other. The double-stranded filaments further associate into pairs and larger bundles.

Figure 1

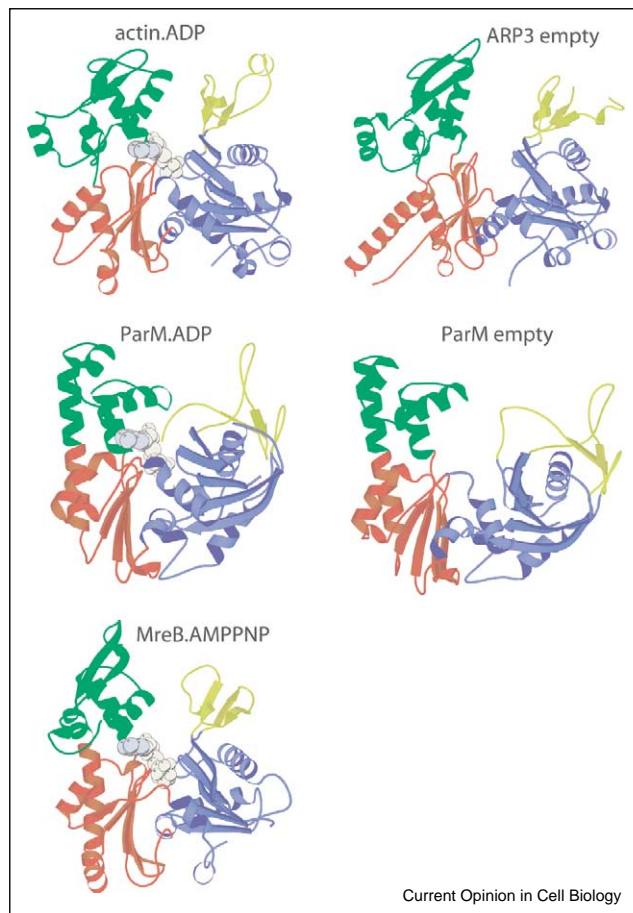

Light microscopy of fluorescently-labeled cytoskeletal filaments in bacteria. (a) Visualization of the Z-ring in *E. coli* cells expressing GFP-FtsZ; two different views of a cell undergoing constriction. Reprinted from [17], Copyright (1996) National Academy of Sciences, U.S.A. Bar 1 μ m. (b) Brightfield and fluorescence images of an *E. coli* cell expressing a low level of GFP-FtsZ. Photobleaching experiments revealed that the Z-ring exchanges subunits rapidly with a cytoplasmic pool. Reprinted from [4*], Copyright (2002) National Academy of Sciences, U.S.A. Bar 2 μ m. (c) Combined phase-contrast and immunofluorescence microscopy of fixed *E. coli* cells expressing wild-type levels of ParM. The fluorescent staining shows intracellular actin-like filaments. Reprinted from [7**], Copyright (2003), with permission from OUP. (d) Localization of GFP-Mbl (MreB-like protein) expressed in *Bacillus subtilis* shows dynamic helical bands. Immunofluorescence microscopy of endogenous Mbl in fixed cells gave similar images. Reprinted from [9**], Copyright (2003), with permission from Elsevier. Bar 4 μ m. (e) *E. coli* cells expressing YFP (yellow fluorescent protein)-MinD. After deconvolution, these optically sectioned images of fixed cells reveal that MinD is present in helical filaments. MinE-GFP gave similar images. Reprinted from [47**], Copyright (2003) National Academy of Sciences, U.S.A.

MreB can form curved, as well as straight, bundles *in vitro* (Figure 2a), suggesting that a cooperative conformational change can occur.

Chromosome separation

In eukaryotes, pairs of chromosomes are always moved apart by a spindle that is constructed from tubulin-containing microtubules and is driven by microtubule-associated motors. This is the most obvious feature that universally differentiates eukaryotes from prokaryotes; however, there are indications that bacteria do have simple cytoskeletal machines to assist in DNA segregation.

Figure 2


Current Opinion in Cell Biology

Electron micrographs of negatively stained filaments. Both MreB [6] and ParM [8**] assemble into protofilaments with a subunit repeat close to that in F-actin. MreB protofilaments associate into pairs but do not twist to form helices like actin filaments; the 2-stranded filaments further associate into straight or curved bundles (a-c); the various MreB polymers all assemble together in the same conditions. (b) Individual protofilaments, equivalent to those seen in atomic detail in the crystal structure of MreB, can also assemble into flat sheets. (c) A pair of double-stranded filaments; the inset is an enlarged filtered image. (d) ParM double protofilaments have an even more remarkable structural similarity to F-actin, as is clear from the enlarged filtered image (right). Bars 100 nm.

ParM self-assembly drives plasmid separation

The protein ParM [7**] forms highly dynamic actin-like filaments in the bacterium *Escherichia coli* and uses a self-assembly mechanism for force production and transport that is also used by eukaryotic actin. The crystal structure of the ParM monomer [8**] has a clear homology to those of actin and MreB (Figure 3). A bonus result from this study was a crystal structure of ParM without bound nucleotide. Of the eukaryotic proteins, only the

Figure 3

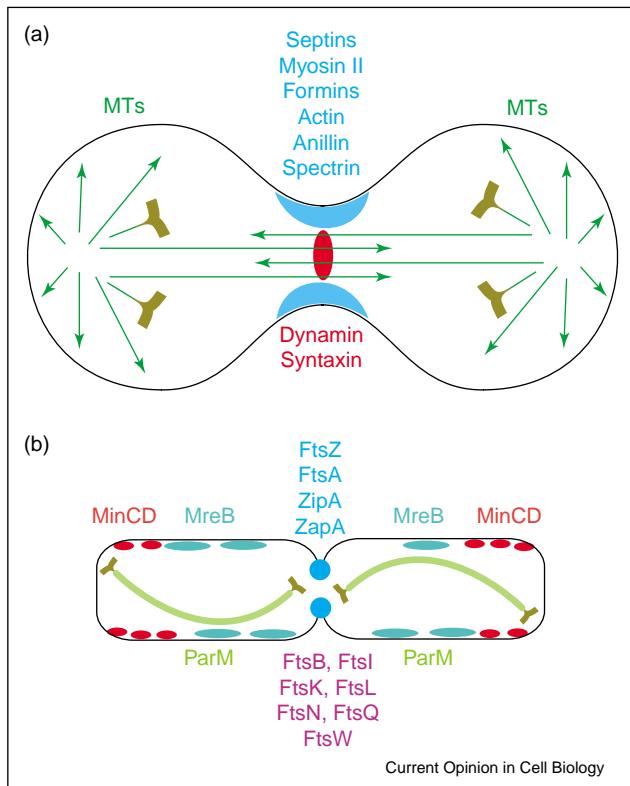
Ribbon structures of actin-family monomers: Actin.ADP, from pdb 1J6Z; eukaryotic actin-related protein ARP3, from pdb 1K8K [11]; bacterial ParM.ADP, from pdb 1MWW; ParM empty, from pdb 1MWK [8••]; bacterial MreB.AMPPNP, from pdb 1JCG [6]. Each monomer has two similar domains with a nucleotide binding site in the cleft between them. The four subdomains (1A, 1B, 2A, 2B) in each protein are coloured blue, yellow, red and green. The crystal structure of ParM with and without ADP [8••] indicates a domain movement of 25°, close to the conformational change predicted for actin from a comparison of actin.ADP with ARP3 in the empty state and from EM studies of F-actin under different conditions [67]. The protofilament in the MreB crystal structure provided the first atomic-resolution view of inter-subunit contacts in an actin-family filament [6].

actin-related protein ARP3 has been seen in the empty form [11]. In both cases, the empty cleft is ~25° wider than in the ADP-filled form of the protein, indicating a hinge-like movement between domains. Electron microscopy of assembled filaments showed them to be double-stranded and helical (Figure 2d), with a subunit arrangement and longitudinal repeat similar to F-actin [8••]. The longitudinal repeat of 4.9 nm is slightly smaller than that of MreB (5.1 nm) or actin (5.5 nm); as a result of this and the fact that there are 12.5 monomers per repeat (as opposed to 12.5–14 in F-actin), the distance between crossovers is only 30 nm.

ParM is a product of one of the genes on the R1 plasmid, which maintains its presence in the bacterial host by segregating copies of itself towards the two cell poles, before cell division. Plasmids of this type encode a centromere-like DNA sequence, called *parC* in the case of plasmid R1, and two proteins, called ParM and ParR. Duplicated plasmids are paired at their centromeric regions through direct interactions with ParR. This ParR-*parC* complex interacts with ParM and stimulates its ATPase activity. Immunofluorescence microscopy has revealed ParM-containing filamentous bundles (Figure 1c) along the longitudinal axis of *E. coli* [7••].

Separation of bacterial chromosomes might be assisted in a similar way; orthologues of some of the *par* genes have been identified on chromosomal DNA (see Update). However, a DNA replication factory at the centre of the cell [12] is thought to supply at least some of the force that drives newly duplicated DNA towards opposite cell poles. Segregation starts with the replication origins, which move further from the centre as replication continues.

In eukaryotes, several types of protein complexes enable actin assembly to drive the movement of membranous organelles or to push forward the leading edge of the cell membrane [13]. Formins [14] seem to represent the closest system to the ParR-*parC* complex, in that they promote the assembly of a simple bundle of actin filaments. In such cases, assembly-driven activity might follow the actoclamp model [15], in which each growing filament is continuously tethered to a clamp molecule via a site on the side of the endmost, ATP-bound monomer. Addition of a new monomer on to the growing end triggers a cycle of ATP-hydrolysis and advancement of the clamp molecule to the new subunit on the same filament. By contrast, complexes that incorporate the actin-family proteins ARP2/3 nucleate new forwards-pointing actin filaments as branches from existing filaments [16]. The new filaments must then make new contacts with the membrane that is being pushed, using new ARP2/3-containing complexes.


Although MreB and Mbl helical bundles are also highly dynamic *in vivo* [9••], it is not known whether their assembly can drive movement of other objects, in the manner of ParM or actin. Nor is it known whether any of the bacterial actin-like filaments can serve as tracks for motor protein-driven movement. As yet there is no evidence for linear motor proteins in prokaryotes, apart from those that move DNA [12].

Cytokinesis/septation

Constriction and abscission in different cell types

The division of most cells involves constriction of the membrane until there is a narrow connection between the daughter cells (Figure 4) and this is followed by a separate abscission step. One common theme in both

Figure 4

Some of the cytoskeleton proteins involved in cytokinesis. (a) Representation of a section through an animal cell when the actin-containing cleavage ring has contracted around the central bundle of microtubules (MTs) of the extended mitotic spindle, after the chromosomes have separated. Several proteins aside from actin are required to form the cleavage ring and produce constriction. Dynamin and syntaxin are required for membrane remodeling during the final stage of separation. (b) Representation of a section through a dividing bacterium. Proteins FtsA, ZipA and ZapA join the tubulin homologue FtsZ in the Z-ring, which constricts the cell membrane during division. Mutations in other Fts (filamentous temperature-sensitive) proteins prevent invagination of the outer cell wall. The actin homologue, ParM, separates copies of the plasmid on which it is encoded. Actin-like MreB is needed to give the cells the correct shape and also to segregate the chromosomes correctly. The Min proteins are needed to prevent a Z-ring from forming too close to a pole.

steps seems to be the use of filamentous GTP-binding proteins (FtsZ, septins, dynamin), although they are not closely related.

In bacteria, the Z-ring that is assembled from FtsZ initially defines the site of the division plane [17–19] and is then actively involved in the constriction mechanism. Other proteins are recruited to the ring, depending on species. In *E. coli* and *B. subtilis*, these include FtsA, another member of the actin family, and ZipA. In the early stage of constriction, either ZipA or FtsA can stabilize the Z-ring but FtsA is required for the final abscission [20,21]. Several other proteins are required to

coordinate changes in the cell membrane with formation of a septum in the cell wall [18].

In fungi and animal cells, but apparently not in plants, the division plane is first defined by a ring assembled from septin filaments [22,23]. Myosin is then recruited [24] and actin bundles are assembled, organized by formins [14]. Acto-myosin sliding-filament contraction constricts the cell diameter until it is filled by the central-spindle bundle of microtubules (Figure 4).

In higher plants, the division plane is first defined by a dynamic ring of microtubules [25] but these do not cause constriction. Subsequently, other microtubules assemble at right angles to the division plane, forming a phragmoplast [26], which is similar to an extended central spindle. The final stage of cytokinesis is, perhaps, most clear in higher plants; Golgi-derived vesicles are transported along the microtubules of the phragmoplast to the plane of division, where they fuse with one another to form the incipient cell wall. Members of the dynamin family are essential components here [27*] and also in animal cells [28*]; in this situation, the role of dynamin could be either to package new membrane into tubes that can be delivered to the new cell wall and/or to remodel the newly fused membrane.

Dynamic assembly of FtsZ and its control

FtsZ and tubulin both assemble into protofilaments with a subunit spacing of 4.0–4.2 nm [29]. GTP, bound to a pocket at the top of one subunit, comes into contact with the bottom of the next subunit where a loop, known as T7, on the latter surface is responsible for triggering GTP hydrolysis [30*]. In the case of tubulin heterodimers, the T7 loop of α -tubulin is thought to hydrolyse GTP that is bound to the β -tubulin in another dimer, but the T7 loop of β -tubulin simply traps the GTP that is bound to its own α -tubulin partner. FtsZ might form homodimers as intermediate complexes during assembly [31] but GTP is, presumably, hydrolysed in every monomer. Both tubulin and FtsZ polymers become unstable after GTP hydrolysis and exhibit dynamic instability. *In vivo*, the Z-ring is even more dynamic than microtubules [4*]. The rapid turnover of GTP means that it is difficult to study the assembly of purified FtsZ *in vitro*, although some progress has been made recently [32–34]. However, the precise form of the *in vivo* polymer remains unknown. It is unlikely to closely resemble eukaryotic microtubules because lateral contacts between tubulin protofilaments are made by polypeptide loops that are missing from FtsZ [2]. It might consist of just a pair of protofilaments [29,33].

Just as microtubule stability is controlled by microtubule associated proteins (MAPs), assembly of FtsZ is promoted *in vivo* by proteins such as FtsA, ZipA [19–21] and ZapA [35]. ZipA, which has a long unfolded P/Q rich domain [36], perhaps best resembles typical MAPs, which

are unstructured in the absence of tubulin. MinC appears to inhibit the assembly of unwanted Z-rings (discussed in the next section) by binding to FtsZ polymer (and displacing FtsA [31]). The structure of the MinC dimer is compatible with a model in which it binds to the sides of two adjacent subunits in a protofilament [37], possibly inhibiting a lateral association of protofilaments that might be required to form the Z-ring [38]. Alternatively, MinC might cause disassembly by inducing curvature in FtsZ protofilaments. There is a precedent for this second mechanism, in the way that stathmin interacts with two tubulin dimers [39]. However, there is no evidence that MinC sequesters FtsZ in the way that stathmin sequesters tubulin. When *E. coli* or *B. subtilis* are under stress, FtsZ is sequestered by a protein called SulA, which prevents GTP hydrolysis by binding to the T7 loop [40•], or YneA [41], which may perform a similar role.

The Min systems in bacteria

A protein complex, called MinCD, is thought to be responsible for inhibiting FtsZ from assembling prematurely on to sites that will ultimately be at the centres of the two future daughter cells. MinD binds cooperatively to membranes in the presence of ATP and recruits MinC, which is required for the regulation of Z-ring assembly [31,37]. In *B. subtilis*, a protein called DivIVA recruits MinCD to each polar region [42], leaving only the site at the centre of the parent cell free to assemble a Z-ring but, in *E. coli*, MinCD is not localized in this way. Instead, a soluble protein, MinE, prevents MinCD from inhibiting Z-ring assembly at the central site [43•,44••,45,46•]. The activity of MinE sets up a surprising oscillation of all the Min proteins. Originating from the cell centre, a ring of MinE progresses towards one pole, disassembling MinCD as it moves. The depolymerized MinC and MinD are then free to assemble near to the other pole. On reaching the first pole, MinE is released to work on MinCD polymers that are formed in the second half of the cell. Each movement, from one half of the cell to the other, takes 30–50 s. Meanwhile, the whole cell gradually increases in length. Recent images with improved resolution [47••] have shown that MinCD does not coat the whole cell membrane near one pole but forms a long winding filament (Figure 1e); its relationship to the MreB filaments, if any, is still unclear.

MinD resembles dynamin

The similarities between dynamin and MinD might be purely coincidental, but it is interesting to compare them because they could share a common mechanism. The N-terminal domain of dynamin is a regular GTPase, with a strong similarity to Ras [48]. GTP regulates dimerization, as well as interactions with membranes and with a variety of actin-binding proteins [27•,28•]. The other domains have important roles in these interactions [49]. A 3D reconstruction of a dynamin polymer surrounding a membrane tubule has been calculated from electron micro-

scope images [50]. It shows a helical arrangement of dimeric GTPase domains, which stand out from the membrane on 'legs', consisting of the smaller, regulatory domains. Contact with the membrane is via PH (pleckstrin homology) domains at the ends of the 'legs'.

The structure of MinD has been solved in the empty state as well as when bound to the nonhydrolysable ATP analogue AMPPNP (5'-adenylyl-imidodiphosphate) [51–53]. It belongs to a group of ATPases that are related to the P-loop GTPases [54]. The role of ATP is to modulate the interaction of the protein with itself and its partners, MinC, MinE and membranes [43•,44••,45,46•]. *In vitro*, MinD is known to dimerize with ATP before assembling directly on to the membrane to form a fairly tight helical polymer [43•,44••,45]. This polymer is superficially reminiscent of the outer wall of the dynamin helix, but presumably has no 'legs' distancing it from the membrane inside. Interaction with the membrane is via a short C-terminal segment [55,56], which is much smaller than the multidomain region of dynamin that follows the GTPase domain.

One possibility is that the MinCD polymer that is assembled *in vivo* (Figure 1) contains a tubule of fresh membrane that becomes incorporated into the cell membrane when released by MinE; such a mechanism would help ensure an even insertion of new lipid along the length of the cell. This would be similar to the proposed role for dynamin in organizing membrane insertion during the abscission of eukaryotic cells [27•,28].

Division of chloroplasts and mitochondria

FtsZ, MinD and MinE are found in eukaryotes — in chloroplasts (derived from cyanobacteria) [57] and in some primitive mitochondria (derived from α -proteobacteria) — and they serve important functions in organelle division [58,59•]. FtsZ is presumably required for marking the division site and/or constricting the inner membrane. Eukaryotic proteins, such as actin, organelle-specific dynamins [60••,61••,62] and septins [63•], are also necessary for organelle division. Thus, the division mechanism is a hybrid of prokaryotic constriction and eukaryotic abscission. Most mitochondria lack FtsZ and, apparently, use only eukaryotic division mechanisms.

Electron microscopy of chloroplast structure [64•] shows electron-dense plastid-dividing (PD) rings, on the cytoplasmic face of the outer membrane and on the stromal face of the inner membrane. Mitochondria have a similar structure, known as the mitochondrion-dividing (MD) ring [65]. The chloroplast FtsZ ring localizes on the stromal side of the inner PD ring. Both the Z-ring and then the PD rings appear before division starts but the Z-ring disappears before the final abscission takes place. An attempt to isolate the PD rings in detergent [64•] yielded insoluble 5 nm filaments of unknown composition (but

6 Cell structure and dynamics

the absence of septins from plants might be worth re-investigating [63•]. A chloroplast-specific dynamin associates with the chloroplast outer membrane at a late stage of division [60•,61•] and it might be of significance that this is when the outer membrane needs to increase in area, even more than the inner membrane.

The activity of the Z-ring has been more clearly tracked in chloroplasts than in any bacterium, although we cannot be certain that the constriction mechanism, in conjunction with that of eukaryotic mechanisms, is truly representative of that in bacteria.

Conclusions

Cytoskeletal proteins that are related in both structure and function are currently being identified in bacteria and eukaryotic cells. The actin-like and tubulin-like proteins in bacteria are evolutionarily related to their eukaryotic counterparts, having similar functions and 3D structures. Bacteria also have accessory proteins that control FtsZ assembly in the way that MAPs control tubulin assembly, although there is no evidence that any are evolutionary precursors of MAPs. As yet, no associated proteins for bacterial actin have been found; the search for them will be an important objective in the near future. Researchers will also continue to look for prokaryotic motor proteins that might use FtsZ or bacterial actin filaments as tracks. The role of dynamins in the division of chloroplasts and mitochondria, and their role in eukaryotic cytokinesis, is another exciting area for further research. Finally, the full role of MinD and its accessory proteins in bacteria and chloroplasts demands declarative investigation.

Update

Recent immunofluorescence studies of helical MreB filaments in *E. coli* [66] have demonstrated that chromosomes fail to segregate properly in the round cells formed when MreB is missing or mutated. These results suggest that there is a bacterial chromosome segregation mechanism that is homologous to active plasmid separation [70•].

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Nelson WJ: **Adaptation of core mechanisms to generate cell polarity.** *Nature* 2003, **422**:766-774.
2. Nogales E, Downing KH, Amos LA, Löwe J: **Tubulin and FtsZ form a distinct family of GTPases.** *Nat Struct Biol* 1998, **5**:451-458.
3. Mukherjee A, Lutkenhaus J: **Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations.** *J Bacteriol* 1999, **181**:823-832.
4. Stricker J, Maddox P, Salmon ED, Erickson HP: **Rapid assembly dynamics of the *Escherichia coli* FtsZ-ring demonstrated by fluorescence recovery after photobleaching.** *Proc Natl Acad Sci USA* 2002, **99**:3171-3175.
5. Jones LJF, Carballido-Lopez R, Errington J: **Control of cell shape in bacteria: helical, actin-like filaments in *Bacillus subtilis*.** *Cell* 2001, **104**:913-922.
6. van den Ent F, Amos LA, Löwe J: **Prokaryotic origin of the actin cytoskeleton.** *Nature* 2001, **413**:39-44.
7. Møller-Jensen J, Jensen RB, Löwe J, Gerdes K: **Prokaryotic DNA segregation by an actin-like filament.** *EMBO J* 2002, **21**:3119-3127.
8. van den Ent F, Møller-Jensen J, Amos LA, Gerdes K, Löwe J: **•• F-actin-like filaments formed by plasmid segregation protein ParM.** *EMBO J* 2002, **21**:6935-6943.
9. Carballido-Lopez R, Errington J: **The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of *Bacillus subtilis*.** *Dev Cell* 2003, **4**:19-28.
10. Daniel RA, Errington J: **Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell.** *Cell* 2003, **113**:767-776.
11. Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S, Pollard TD: **Crystal structure of Arp2/3 complex.** *Science* 2001, **294**:1679-1684.
12. Sherratt DJ: **Bacterial chromosome dynamics.** *Science* 2003, **301**:780-785.
13. Pantaloni D, Clainche CL, Carlier M-F: **Mechanism of actin-based motility.** *Science* 2001, **292**:1502-1506.
14. Waller BJ, Alberts A: **S: The formins: active scaffolds that remodel the cytoskeleton.** *Trends Cell Biol* 2003, **13**:435-446.
15. Dickinson RB, Purich DL: **Clamped-filament elongation model for actin-based motors.** *Biophys J* 2002, **82**:605-617.
16. Pollard TD, Borisy GG: **Cellular motility driven by assembly and disassembly of actin filaments.** *Cell* 2003, **112**:453-465.
17. Ma X, David W, Ehrhardt DW, Margolin W: **Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living *Escherichia coli* cells by using green fluorescent protein.** *Proc Natl Acad Sci USA* 1996, **93**:12998-13003.
18. Buddelmeijer N, Beckwith J: **Assembly of cell division proteins at the *E. coli* cell center.** *Curr Opin Microbiol* 2002, **5**:553-557.
19. Rueda S, Vicente M, Mingorance J: **Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the *Escherichia coli* cell cycle.** *J Bacteriol* 2003, **185**:3344-3351.
20. Pichoff S, Lutkenhaus J: **Unique and overlapping roles for ZipA and FtsA in septal ring assembly in *Escherichia coli*.** *EMBO J* 2002, **21**:685-693.
21. Geissler B, Elraheb D, Margolin W: **A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in *Escherichia coli*.** *Proc Natl Acad Sci USA* 2003, **100**:4197-4202.

22. Longtine MS, Bi E: **Regulation of septin organization and function in yeast.** *Trends Cell Biol* 2003, **13**:403-409.

23. Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C *et al.*: **Mammalian septins nomenclature.** *Mol Biol Cell* 2002, **13**:4111-4113.

24. Shu S, Liu X, Korn ED: **Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells.** *Proc Natl Acad Sci USA* 2003, **100**:6499-6504.

25. Dhonukshe P, Gadella TW: **Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling.** *Plant Cell* 2003, **15**:597-611.

26. Smith LG: **Plant cell division: building walls in the right places.** *Nat Rev Mol Cell Biol* 2001, **2**:33-39.

27. Kang B-H, Busse JS, Bednarek SY: **Members of the *Arabidopsis* • dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth.** *Plant Cell* 2003, **15**:899-913.

Members of the *Arabidopsis* dynamin-related protein family are shown to be essential for polarized cell expansion and cytokinesis; mutants show defects in cell plate assembly and cell wall formation. The distribution of a functional green fluorescent fusion protein is dynamic and localized asymmetrically on the plasma membrane.

28. Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA: **• The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis.** *Curr Biol* 2002, **12**:2111-2117.

In both mammalian and *Caenorhabditis elegans* cells, dynamin localizes to the spindle midzone and is enriched in spindle midbody extracts. In *C. elegans*, dynamin also localizes to newly formed cleavage furrow membranes. Embryos from a temperature-sensitive mutant and dynamin RNAi-treated embryos were defective in the late stages of cytokinesis, suggesting that dynamin plays an essential role in the final separation of dividing cells.

29. Löwe J, Amos LA: **Tubulin-like protofilaments in Ca^{2+} -induced FtsZ sheets.** *EMBO J* 1999, **18**:2364-2371.

30. Scheffers DJ, de Wit JG, den Blaauwen T, Driessens AJ: **GTP • hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers.** *Biochemistry* 2002, **41**:521-529.

In mixtures of wild-type FtsZ and proteins with a mutation in the T7 loop (on the opposite side of the molecule from the GTP binding site), most mutants were found to inhibit wild-type GTP hydrolysis. This confirms that a T7 loop is required to complete the active site.

31. Justice SS, Garcia-Lara J, Rothfield LI: **Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the *Escherichia coli* division machinery.** *Mol Microbiol* 2000, **37**:410-423.

32. González JM, Jimenez M, Velez M, Mingorance J, Andreu JM, Vicente M, Rivas G: **Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment.** *J Biol Chem* 2003, **278**:37664-37671.

33. Oliva MA, Huecas S, Palacios JM, Martin-Benito J, Valpuesta JM, Andreu JM: **Assembly of archaeal cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments.** *J Biol Chem* 2003, **278**:33562-33570.

34. Caplan MR, Erickson HP: **Apparent cooperative assembly of the bacterial cell division protein FtsZ demonstrated by isothermal titration calorimetry.** *J Biol Chem* 2003, **278**:13784-13788.

35. Gueiros-Filho FJ, Losick R: **A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ.** *Genes Dev* 2002, **16**:2544-2556.

36. Ohashi T, Hale CA, de Boer PAJ, Erickson HP: **Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain.** *J Bacteriol* 2002, **184**:4313-4315.

37. Cordell SC, Anderson RE, Löwe J: **Crystal structure of the bacterial cell division inhibitor MinC.** *EMBO J* 2001, **20**:2454-2461.

38. Johnson JE, Lackner LL, de Boer PAJ: **Targeting of (D)MinC/MinD and (D)MinC/DicB complexes to septal rings in *Escherichia coli* suggests a multistep mechanism for MinC-mediated destruction of nascent FtsZ rings.** *J Bacteriol* 2002, **184**:2951-2962.

39. Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, Siavoshian S, Sobel A, Knossow M: **The 4 Å x-ray structure of a tubulin:stathmin-like domain complex.** *Cell* 2000, **102**:809-816.

40. Cordell SC, Robinson EJH, Löwe J: **Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ.** *Proc Natl Acad Sci USA* 2003, **100**:7889-7894.

SulA is shown to inhibit FtsZ assembly by binding to the T7 loop surface, which forms part of an active site when FtsZ is assembled into protofilaments. The conformation of FtsZ in the complex with SulA is the same as in crystals of FtsZ alone.

41. Kawai Y, Moriya S, Ogasawara N: **Identification of a protein, YneA, responsible for cell division suppression during the SOS response in *Bacillus subtilis*.** *Mol Microbiol* 2003, **47**:1113-1122.

42. Harry EJ, Lewis PJ: **Early targeting of Min proteins to the cell poles in germinated spores of *Bacillus subtilis*: evidence for division apparatus-independent recruitment of Min proteins to the division site.** *Mol Microbiol* 2003, **47**:37-48.

43. Suefuji K, Valluzzi R, RayChaudhuri D: **Dynamic assembly, of • MinD into filament bundles modulated by ATP, phospholipids, and MinE.** *Proc Natl Acad Sci USA* 2002, **99**:16776-16781.

This paper, together with [32,33,34*], confirms the importance of the membrane as a partner in interactions between the Min proteins, MinC, D and E. EM images of MinD filaments assembled in the presence of ATP are shown here.

44. Hu Z, Gogol EP, Lutkenhaus J: **Dynamic assembly of MinD on • phospholipid vesicles regulated by ATP and MinE.** *Proc Natl Acad Sci USA* 2002, **99**:6761-6766.

Includes an impressive EM image of MinD bound to phospholipid vesicles and assembled into a helical array that deformed the vesicles into tubes in the presence of ATP. Addition of MinE stimulated MinD's ATPase and caused its release from the vesicles.

45. Lackner LL, Raskin DM, de Boer PAJ: **ATP-dependent interactions between *Escherichia coli* Min proteins and the phospholipid membrane in vitro.** *J Bacteriol* 2003, **185**:735-749.

46. Hu Z, Saez C, Lutkenhaus J: **Recruitment of MinC, an inhibitor of • Z-ring formation, to the membrane in *Escherichia coli*: role of MinD and MinE.** *J Bacteriol* 2003, **185**:196-203.

A more detailed study. In the absence of lipid, ATP causes MinD to dimerize and form a rather unstable complex with MinC. However, MinD binds well to lipid vesicles in the presence of ATP and then recruits MinC. If MinD release via ATP hydrolysis is prevented, MinE can displace MinC that is bound to the MinD-lipid complex but MinC does not displace bound MinE.

47. Shih Y-L, Le T, Rothfield LI: **Division site selection in *Escherichia coli* involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles.** *Proc Natl Acad Sci USA* 2003, **100**:7865-7870.

Images of fluorescently-labeled proteins show that the three Min proteins, all known to oscillate between the two poles of *E. coli*, are dynamically associated with helices that wind around the cytoplasmic side of the cell membrane. The authors also show that the *E. coli* MreB protein forms extended helices similar to those previously reported for *B. subtilis* [7**]. The MreB and MinCDE coiled arrays do not appear identical but this point needs to be confirmed by co-labeling the proteins in the same cells.

48. Niemann HH, Knetsch MLW, Scherer A, Manstein DJ, Kull FJ: **Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms.** *EMBO J* 2001, **20**:5813-5821.

49. Hinshaw JE: **Dynamin and its role in membrane fission.** *Annu Rev Cell Dev Biol* 2000, **16**:483-519.

50. Zhang P, Hinshaw JE: **Three-dimensional reconstruction of dynamin in the constricted state.** *Nat Cell Biol* 2001, **3**:922-927.

51. Hayashi I, Oyama T, Morikawa K: **Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus.** *EMBO J* 2001, **20**:1819-1828.

8 Cell structure and dynamics

52. Cordell SC, Löwe J: **Crystal structure of the bacterial cell division regulator MinD.** *FEBS Lett* 2001, **492**:160-165.

53. Sakai N, Itou H, Watanabe N, Yao M, Tanaka I: **The MinD protein from the hyperthermophilic archaeon *Pyrococcus horikoshii*: crystallization and preliminary X-ray analysis.** *Acta Crystallogr D Biol Crystallogr* 2001, **57**:896-897.

54. Leipe DD, Wolf YI, Koonin EV, Aravind L: **Classification and evolution of P-loop GTPases and related ATPases.** *J Mol Biol* 2002, **317**:41-72.

55. Szeto TH, Rowland SL, Rothfield LI, King GF: **Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.** *Proc Natl Acad Sci USA* 2002, **99**:15693-15698.

56. Hu ZL, Lutkenhaus J: **A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum.** *Mol Microbiol* 2003, **47**:345-355.

57. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: **Evolutionary analysis of *Arabidopsis*, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.** *Proc Natl Acad Sci USA* 2002, **99**:12246-12251.

58. Vitha S, McAndrew RS, Osteryoung KW: **FtsZ ring formation at the chloroplast division site in plants.** *J Cell Biol* 2001, **153**:111-119.

59. Reddy MSS, Dinkins R, Collins GB: **Overexpression of the *Arabidopsis thaliana* MinE1 bacterial division inhibitor homologue gene alters chloroplast size and morphology in transgenic *Arabidopsis* and tobacco plants.** *Planta* 2002, **215**:167-176.

Confocal and electron-microscopy of plants overexpressing MinE1 revealed chloroplasts with abnormal shapes and sizes. This indicates that this protein probably has a similar role to bacterial MinE.

60. Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW: **ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery.** *Proc Natl Acad Sci U S A* 2003, **100**:4328-4333.

Unlike most mitochondria, chloroplasts have retained FtsZ for division. This paper (and [61^{**},62^{*}]) show that a requirement for a dynamin-related protein, with no obvious counterparts in prokaryotes, is common to both types of endosymbiotic organelle. ARC5 is related to a group of dynamin-like proteins that are unique to plants. A GFP-ARC5 fusion protein localizes to a ring at the chloroplast division site and ARC5 mutations cause enlarged, dumbbell-shaped chloroplasts. Import and protease protection assays indicate that the ARC5 ring is positioned on the outer surface of the chloroplast.

61. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T: **A plant-specific dynamin-related protein forms a ring at the chloroplast division site.** *Plant Cell* 2003, **15**:655-665.

Analysis of synchronized chloroplasts showed the time at which a dynamin-like protein is recruited to chloroplasts, forming a ring on the cytosolic side of the division site in the late stage of division. The ring constricts until division is complete and then disappears.

62. Nishida K, Takahara M, Miyagishima S, Kuroiwa H, Matsuzaki M, Kuroiwa T: **Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga.** *Proc Natl Acad Sci USA* 2003, **100**:2146-2151.

Previously, FtsZ was shown to localize to mitochondria in primitive algae on the inside surface of the division site. Here, it is shown that FtsZ, dynamin and the MD ring, an electron-dense structure on the cytoplasmic side of the mitochondrial membrane, act during different phases of division. Before final separation, dynamin patches are recruited externally, to the midpoint of the constricted MD ring.

63. Takahashi S, Inatome R, Yamamura H, Yanagi S: **Isolation and expression of a novel mitochondrial septin that interacts with CRMP/CRAM in the developing neurones.** *Genes Cells* 2003, **8**:81-93.

This presence of a septin in mitochondria might mean that septins are candidates for components of the MD ring [60^{**}] (and also chloroplast PD rings [64^{*}]).

64. Kuroiwa H, Mori T, Takahara M, Miyagishima S, Kuroiwa T: **Chloroplast division machinery as revealed by immunofluorescence and electron microscopy.** *Planta* 2002, **215**:185-190.

The behaviour of FtsZ and PD rings, both components of the chloroplast division machinery, was followed during the course of division. FtsZ forms a ring on the stromal division site before invagination starts. Then the inner (stromal) and outer (cytosolic) PD rings appear. The FtsZ ring remains at the leading edge of the constriction but does not change width although the volume of the outer PD ring gradually increases. The FtsZ ring disappears before the final stage of chloroplast constriction.

65. Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R: **The division apparatus of plastids and mitochondria.** *Int Rev Cytol* 1998, **181**:1-41.

66. Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K: **Dysfunctional MreB inhibits chromosome segregation in *Escherichia coli*.** *EMBO J* 2003, **22**:5283-5292.

67. Egelman EH: **Actin's prokaryotic homologs.** *Curr Opin Struct Biol* 2003, **13**:244-248.