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Do the divisome and elongasome share a common evolutionary
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The divisome and elongasome are bacterial protein complexes
responsible for peptidoglycan (PG) synthesis during cell
division and elongation, respectively. We review several lines of
evidence, arguing for a shared evolutionary past of the
divisome and elongasome. Both integrate closely related
penicillin-binding proteins (PBPs) for PG synthesis, use
proteins of the RodA/FtsW (SEDS, shape, elongation, division
and sporulation) family for Lipid Il export and interact with
MraY/Mur proteins for Lipid Il synthesis. It was recently shown
that the actin-like protein FtsA of the divisome polymerises on
membranes, adding another parallel, since membrane-
associated filaments of the bacterial actin MreB guide the
elongasome. Given these similarities, it seems plausible to
conclude that the elongasome is a modified version of the
divisome, without the membrane-constricting FtsZ-ring and its
associated machinery on the inside.
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Introduction

Bacterial morphogenesis and cell division (cytokinesis)
are closely linked with peptidoglycan (PG) metabolism.
The shape of bacteria depends on the shape of their PG
layer — a meshwork made of glycan strands linked by
peptide bridges [1]. Two inner membrane- and peri-
plasm-spanning protein complexes govern PG synthesis
patterns. The divisome (Figure 1), with varying subunit
completeness, is nearly ubiquitous in bacteria, where it
is responsible for cell division, specifically inner and
outer membrane constriction and PG synthesis at the
division site, which produces two new cell poles [2,3].
The elongasome (Figure 2), by contrast, is present only
in non-spherical bacteria and directs lateral insertion
of PG along the long axis of the cell, thus allowing
cylindrical growth [4]. Bacteria first synthesise in the

cytoplasm Lipid II, which carries the disaccharide-pep-
tide building block for the polymerisation reaction.
Lipid II is then flipped across the inner membrane into
the periplasm. PG polymerisation is facilitated by peni-
cillin-binding proteins (PBPs), which are DD-transpep-
tidases, DD-endopeptidases or DD-carboxypeptidases,
and some display transglycosylase activity as well.
Hydrolases are needed for breaking bonds in order to
provide plasticity. Furthermore, dynamics of the inner
membrane and PG layer have to be coordinated with the
outer membrane in Gram-negative organisms.

Here we discuss that the divisome and elongasome share
features and subunits, arguing that they might have
descended from a common evolutionary ancestor.

Divisome and elongasome directly interact

with the same Lipid Il synthesis machinery

Lipid II, the building block of peptidoglycan is synthes-
ised in the cytoplasm by a single cascade of enzymes:
MurA-F, MraY and MurG [5]. Instead of just using the
membrane-bound pool of freshly synthesised Lipid II,
both divisome and elongasome have been found to inter-
act with the same integral membrane protein MraY
(producing Lipid I) and membrane-associated MurG
[6]. For the elongasome, more specifically, MurF, G
and MraY have been found to interact with MreB [7,8].

Lipid Il translocation facilitated by related
SEDS proteins

Given that Lipid II synthesis occurs in the cytoplasm and
PG synthesis in the periplasm, the divisome and elonga-
some each contain a protein that translocates Lipid II
building blocks across the cytoplasmic membrane: FtsW
for the divisome and RodA for the elongasome. At the
sequence level, FtsW and RodA are clearly related with
over 49% amino acid similarity in E. co/i (as calculated by
a global EMBOSS NEEDLE calculation) and generally
have the same size [9]. These integral transmembrane
proteins are members of the SEDS (shape, elongation,
division and sporulation) family of proteins. FtsW, and
most likely RodA contain 10 trans-membrane helices and
both termini are located in the cytoplasm [10]. A recent
biochemical study of FtsW [11°] has provided an iz vitro
model for translocation, which is thought to involve
flipping Lipid II to the periplasmic side. Apart from
the assumption that it functions in a similar way to FtsW,
not much is known about RodA, except that it is closely
associated with the MreBCD proteins [8,12].
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Figure 1
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To-scale overview of the divisome. Proteins with known 3D structure are shown in cartoon representation with PDB identifiers indicated. Dotted lines
and schematic representations are used for proteins or fragments of proteins with no structural data available. For clarity, NIpD/AmiC are not shown
and not all interactions are depicted since they cannot all be represented in two dimensions and it is not currently known how the various proteins
interact through their transmembrane segments. All distances and dimensions are approximately to scale (including membrane curvature), except the
distance of FtsZ to the cytoplasmic membrane, which is almost certainly larger in E. coli, given the linker length between the body of FtsZ and the C-
terminal residues that bind FtsA. Structures shown: 1W2E — [55], 3VOA — [56°], 4A2A — [26°°], 1F47 — [57], 2IUS — [58], 2J5P — [59], 1TUTA — [60],

3VMA — [18], 3PBN — [61], 4IFF — [62] and 2VH1 — [63].

Divisome and elongasome interact with
related or even identical PBPs

Regardless if it is orchestrated by the divisome during cell
division or by the elongasome during cell elongation, the
next step of PG synthesis after Lipid II translocation is

the polymerisation of disaccharide subunits into glycan
strands in the periplasm by penicillin binding proteins
(PBPs). PBPs may only have transpeptidase activity (TP,
in E. coli class B PBPs: PBP2, PBP3) or both TP and
transglycosylase activity (TG, in E. co/i class A PBPs:
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Figure 2
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To-scale overview of the elongasome. Same symbols and restrictions as for Figure 1. Structures shown: 1JCG — [20], 2WUS — [64], 2J5U — [65] and

3CKM — [66].

PBP1A-C). Only some of the PBPs are specific to either
the divisome or elongasome [13]. Importantly, all large
PBPs are related by sequence, for example 41% amino
acid similarity between PBP2 and 3 (Ftsl) or 32% sim-
ilarity between PBP1A and B, all from E. co/i. In E. co/i,
both divisome and elongasome contain PBP2 and PBP5, a
carboxypeptidase class C PBP [14,15°]. FtsW of the
divisome interacts directly with PBP3 (Ftsl), which is
specific for division [16]. In terms of PBPs, perhaps the
strongest evidence for our theory of a common ancestor is
that both the divisome and the elongasome contain one of
the closely related class A bifunctional PBPs: the divi-
some PBP1B and the elongasome PBP1A [17]. High-
resolution crystal structures of synthetic class A PBPs are
available, highlighting expected molecular similarities of
various enzymes [18,19]. For instance, the structure of
PBP2 from Staphylococcus aureus (note: Sa PBP numbering

is different) [19] (PDB 3DWK) revealed two distinct
domains: the N-terminal membrane-bound TG domain
and the C-terminal periplasmic TP domain. The two
active sites lie ~70 A apart. In the structure of E. co/i
PBP1B (PDB 3VMA) [18], for example, the 'T'G and TP
domains are closely related to PBP2 from §. aureus in fold
and adopt a similar elongated shape. They may bridge the
9 nm distance between the cytoplasmic membrane and
the PG layer. Synthetic PBPs are anchored in the mem-
brane by single transmembrane helices, but the periplas-
mic domain of class A PBPs still exhibits significant
hydrophobicity, mainly due to the membrane attachment
sites of the TG domain, indicating that it may also interact
closely with other proteins of the divisome and elonga-
some [18]. Hence the closely related PBP enzymes can be
considered integral parts of the divisome and elongasome,
adding to their similarity.
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Figure 3
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Hypothesis: FtsA of the divisome is functionally equivalent to MreB of the elongasome. Both proteins are actin-like, polymerise into actin-like
protofilaments, bind the cytoplasmic membrane through amphipathic helices (N-terminal for MreB, C-terminal for FtsA) and interact with the
cytoplasmic surface of the divisome/elongasome. The tubulin homologue FtsZ polymerises into a ring that is separated from the divisome through a
long flexible linker and the Z-ring organises the divisome into a small band around the division site through interaction with FtsA. No such organiser
exists for the elongasome, leading to cylindrical growth, rather than invagination and cell division.

Equivalence between FtsA of the divisome
and MreB of the elongasome?

Adding to our list of parallels between the divisome and
elongasome, it now appears that both the divisome and
elongasome, at least in some organisms, contain mem-
brane-bound, actin-like filaments (Figure 3). More than a
decade ago it was demonstrated that MreB, being part of
the elongasome, has the canonical actin fold and assem-
bles into actin-like protofilaments [20]. Later it was
appreciated that MreB binds directly to membranes via
a hydrophobic loop and in Gram-negative organisms also
by an N-terminal amphipathic helix [21°°]. The mono-
meric FtsA structure was solved more than a decade ago
[22] and surprisingly, it displayed deviant subdomain
architecture with actin’s subdomain 1B replaced by a
similarly sized domain 1C at the opposite end of the
molecule. Only later it was shown that E. co/i FtsA
contains a C-terminal amphipathic helix and binds to
the inner membrane [23]. And recently it was demon-
strated unambiguously that FtsA polymerises into cano-
nical actin-like protofilaments, despite the altered
subdomain architecture [24°,25,26°°]. Given the fold
and properties of the two actin-related proteins FtsA
and MreB, we propose that they perform similar functions
for the divisome and elongasome, respectively (Figure 3).
FtsA is thought to be the main membrane anchor for
tubulin-like FtsZ in E. co/i [27] and is also involved in the

assembly of downstream divisome proteins [28]. Strik-
ingly, the cytoplasmic part of late divisome protein FtsN
seems to bind in a cleft between the body of FtsA and its
subdomain 1C [29°°]. This is reminiscent of the PilM-
PilN interaction, PilM being a structural homologue of
FtsA involved in pilus assembly [30°] (PDB 2YCH).
Taken together, it may suggest that FtsA’s activity is
regulated by FtsN and we speculate that a similar role
may be exerted by the cytoplasmic tail of MreC in the
elongasome, since the MreB-MreC interaction has been
reported [31]. It is interesting to note that MreB’s move-
ment in cells seems to be driven or controlled by the PBPs
in the periplasm [32°33°34°], requiring a feedback
mechanism that most likely involves MreC and/or MreD.
The newly discovered parallel between the two actins,
FtsA and MreB, indicates that FtsZ, which forms a ring at
the division site is probably a functional alteration
required only for division (Figure 3). The Z-ring organises
synthesis and remodelling of PG in a small band at
midcell that coincides with membrane constriction,
which may be facilitated by FtsZ alone or both FtsZ
and FtsA [35,36°°]. By contrast, the elongasome does its
work all round the straight section of the cell. FtsZ, being
solely cytoplasmic, interacts with membrane-tethered
FtsA through a long flexible linker. Hence FtsZ, and
some FtsZ-interacting proteins (for example ZapABC)
are some distance away from the membrane (and the
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divisome) and
separate [28].

should be considered functionally

Beyond parallels

Given the likely evolutionary distance between the divi-
some and elongasome, it is not surprising that there are
differences, additions and deletions beyond the con-
served core as discussed above. The divisome currently
contains more subunits that do not seem to have parallels
in the elongasome. Amongst these are FtsQLB [37], Tol-
Pal [38] and FtsEX [39,40°] in E. co/i. FtsQ is very
conserved but currently no function is known apart from
many interactions with other divisome proteins. FtsEX is
an ABC transporter that uses ATP hydrolysis to induce
conformational changes in EnvC, the most important
activator of amidases in the periplasm. The Tol-Pal
complex is essential for outer membrane dynamics during
division [38]. PG remodelling requires the breaking of
amide bonds between PG strands in order to be able to
add or remove material. Specialised hydrolytic enzymes
(AmiA-C) reside in the periplasm and they are part of the
divisome since they require tight regulation [41]. The
DL-endopeptidase LytE is part of the Bacillus subtilis
elongasome [42] but it is perhaps a bit early to conclude
similarities since not much work has been published in
this area. T'wo recent reports [43°°,44°°] indicate that PBP
action is regulated from the outside of the cell: PBP1A of
the elongasome is regulated externally by its outer mem-
brane cognate lipoprotein activator LpoA. This inter-
action is affected by the sacculus thickness since LpoA
has to reach through the ~6 nm PG layer and in addition
~5nm between the PG and the outer membrane, as
measured in E. co/i, to physically contact PBP1A and this
is only possible in the regions where the most and largest
pores in the PG occur [45]. A similar, LLpoB-orchestrated
regulatory mechanism of PBP1B exists in the divisome.
However, in the context of possible similarities between
divisome and elongasome it is important to note that
LpoA and LpoB are not related by sequence and LpoA
and LpoB are restricted to +y-proteobacteria only. This
could mean that LLpoA and B are niche-related, late
additions to the divisome and elongasome. Pushing
speculation to the limit, it is possible to detect weak
amino acid sequence similarity between the N-terminal
domain of FtsK in the divisome and MreD in the elonga-
some, when large alignments are constructed (data not
shown). The C-terminal domain of FtsK is a DNA
translocase [46] but the N-terminal domain is a 4-helix
transmembrane protein of unknown function. MreD has
currently no known function, but is of very similar size to
FtsK-N and is predicted to contain four transmembrane
helices.

What has been the evolutionary path?

Given that cell division is a very basic requirement of life
and being a sphere might be considered the default state
of primordial bacteria, one might speculate that the
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elongasome developed as a specialised form of the divi-
some, losing FtsZ in the process. Proteins downstream
starting from FtsA evolved into MreB and the proteins of
the elongasome. One argument against this order of
events is the deviant domain architecture of FtsA, com-
pared with all other actin-like proteins [22]. We counter
that the deviation in FtsA is a domain swap that conserves
function, namely polymerisation [26°°] and hence is an
event that could have occurred later, after MreB evolved.
Another problem is that FtsA is not as conserved as MreB
or FtsZ. It seems that at least in some organisms and many
Archaea [47], FtsA has been substituted with another
polymerising membrane anchor, SepF, that substitutes its
function but not the fold [48,49°].

If the role of FtsZ is to constrict the membrane and to
organise the divisome machinery in one single ring
around the cell via its interaction with FtsA then this
opens up the questions what guides the elongasome?
This goes back to old questions about what guides cell
width. It may well be that the default mode of action of
the elongasome is to not alter width, copying whatever
PG network is present, as determined by the new poles,
which the divisome generates [50]. In this context it is
interesting that there are several reports highlighting
contacts between the divisome and the elongasome
[15°,51-53]. And most directly, it has been shown that
MreB, the actin of the elongasome, interacts with the
tubulin FtsZ of the divisome, which might provide
answers to questions about what provides the guide to
the elongasome in terms of cell width, for example [54°°].

It will be essential to obtain more molecular data on the
divisome and elongasome before exact evolutionary
relationships may be determined.
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