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The divisome and elongasome are bacterial protein complexes

responsible for peptidoglycan (PG) synthesis during cell

division and elongation, respectively. We review several lines of

evidence, arguing for a shared evolutionary past of the

divisome and elongasome. Both integrate closely related

penicillin-binding proteins (PBPs) for PG synthesis, use

proteins of the RodA/FtsW (SEDS, shape, elongation, division

and sporulation) family for Lipid II export and interact with

MraY/Mur proteins for Lipid II synthesis. It was recently shown

that the actin-like protein FtsA of the divisome polymerises on

membranes, adding another parallel, since membrane-

associated filaments of the bacterial actin MreB guide the

elongasome. Given these similarities, it seems plausible to

conclude that the elongasome is a modified version of the

divisome, without the membrane-constricting FtsZ-ring and its

associated machinery on the inside.
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Introduction
Bacterial morphogenesis and cell division (cytokinesis)

are closely linked with peptidoglycan (PG) metabolism.

The shape of bacteria depends on the shape of their PG

layer — a meshwork made of glycan strands linked by

peptide bridges [1]. Two inner membrane- and peri-

plasm-spanning  protein complexes govern PG synthesis

patterns. The divisome (Figure 1), with varying subunit

completeness, is nearly ubiquitous in bacteria, where it

is responsible for cell division, specifically inner and

outer membrane constriction and PG synthesis at the

division site, which produces two new cell poles [2,3].

The elongasome (Figure 2), by contrast, is present only

in non-spherical bacteria and directs lateral insertion

of PG along the long axis of the cell, thus allowing

cylindrical growth [4]. Bacteria first synthesise in the
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cytoplasm Lipid II, which carries the disaccharide-pep-

tide building block for the polymerisation reaction.

Lipid II is then flipped across the inner membrane into

the periplasm. PG polymerisation is facilitated by peni-

cillin-binding proteins (PBPs), which are DD-transpep-

tidases, DD-endopeptidases or DD-carboxypeptidases,

and some display transglycosylase activity as well.

Hydrolases are needed for breaking bonds in order to

provide plasticity. Furthermore, dynamics of the inner

membrane and PG layer have to be coordinated with the

outer membrane in Gram-negative organisms.

Here we discuss that the divisome and elongasome share

features and subunits, arguing that they might have

descended from a common evolutionary ancestor.

Divisome and elongasome directly interact
with the same Lipid II synthesis machinery
Lipid II, the building block of peptidoglycan is synthes-

ised in the cytoplasm by a single cascade of enzymes:

MurA-F, MraY and MurG [5]. Instead of just using the

membrane-bound pool of freshly synthesised Lipid II,

both divisome and elongasome have been found to inter-

act with the same integral membrane protein MraY

(producing Lipid I) and membrane-associated MurG

[6]. For the elongasome, more specifically, MurF, G

and MraY have been found to interact with MreB [7,8].

Lipid II translocation facilitated by related
SEDS proteins
Given that Lipid II synthesis occurs in the cytoplasm and

PG synthesis in the periplasm, the divisome and elonga-

some each contain a protein that translocates Lipid II

building blocks across the cytoplasmic membrane: FtsW

for the divisome and RodA for the elongasome. At the

sequence level, FtsW and RodA are clearly related with

over 49% amino acid similarity in E. coli (as calculated by

a global EMBOSS NEEDLE calculation) and generally

have the same size [9]. These integral transmembrane

proteins are members of the SEDS (shape, elongation,

division and sporulation) family of proteins. FtsW, and

most likely RodA contain 10 trans-membrane helices and

both termini are located in the cytoplasm [10]. A recent

biochemical study of FtsW [11�] has provided an in vitro
model for translocation, which is thought to involve

flipping Lipid II to the periplasmic side. Apart from

the assumption that it functions in a similar way to FtsW,

not much is known about RodA, except that it is closely

associated with the MreBCD proteins [8,12].
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Figure 1
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To-scale overview of the divisome. Proteins with known 3D structure are shown in cartoon representation with PDB identifiers indicated. Dotted lines

and schematic representations are used for proteins or fragments of proteins with no structural data available. For clarity, NlpD/AmiC are not shown

and not all interactions are depicted since they cannot all be represented in two dimensions and it is not currently known how the various proteins

interact through their transmembrane segments. All distances and dimensions are approximately to scale (including membrane curvature), except the

distance of FtsZ to the cytoplasmic membrane, which is almost certainly larger in E. coli, given the linker length between the body of FtsZ and the C-

terminal residues that bind FtsA. Structures shown: 1W2E — [55], 3VOA — [56�], 4A2A — [26��], 1F47 — [57], 2IUS — [58], 2J5P — [59], 1UTA — [60],

3VMA — [18], 3PBN — [61], 4IFF — [62] and 2VH1 — [63].
Divisome and elongasome interact with
related or even identical PBPs
Regardless if it is orchestrated by the divisome during cell

division or by the elongasome during cell elongation, the

next step of PG synthesis after Lipid II translocation is
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the polymerisation of disaccharide subunits into glycan

strands in the periplasm by penicillin binding proteins

(PBPs). PBPs may only have transpeptidase activity (TP,

in E. coli class B PBPs: PBP2, PBP3) or both TP and

transglycosylase activity (TG, in E. coli class A PBPs:
share a common evolutionary past?, Curr Opin Microbiol (2013), http://dx.doi.org/10.1016/
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Figure 2
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To-scale overview of the elongasome. Same symbols and restrictions as for Figure 1. Structures shown: 1JCG — [20], 2WUS — [64], 2J5U — [65] and

3CKM — [66].
PBP1A-C). Only some of the PBPs are specific to either

the divisome or elongasome [13]. Importantly, all large

PBPs are related by sequence, for example 41% amino

acid similarity between PBP2 and 3 (FtsI) or 32% sim-

ilarity between PBP1A and B, all from E. coli. In E. coli,
both divisome and elongasome contain PBP2 and PBP5, a

carboxypeptidase class C PBP [14,15�]. FtsW of the

divisome interacts directly with PBP3 (FtsI), which is

specific for division [16]. In terms of PBPs, perhaps the

strongest evidence for our theory of a common ancestor is

that both the divisome and the elongasome contain one of

the closely related class A bifunctional PBPs: the divi-

some PBP1B and the elongasome PBP1A [17]. High-

resolution crystal structures of synthetic class A PBPs are

available, highlighting expected molecular similarities of

various enzymes [18,19]. For instance, the structure of

PBP2 from Staphylococcus aureus (note: Sa PBP numbering
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is different) [19] (PDB 3DWK) revealed two distinct

domains: the N-terminal membrane-bound TG domain

and the C-terminal periplasmic TP domain. The two

active sites lie �70 Å apart. In the structure of E. coli
PBP1B (PDB 3VMA) [18], for example, the TG and TP

domains are closely related to PBP2 from S. aureus in fold

and adopt a similar elongated shape. They may bridge the

9 nm distance between the cytoplasmic membrane and

the PG layer. Synthetic PBPs are anchored in the mem-

brane by single transmembrane helices, but the periplas-

mic domain of class A PBPs still exhibits significant

hydrophobicity, mainly due to the membrane attachment

sites of the TG domain, indicating that it may also interact

closely with other proteins of the divisome and elonga-

some [18]. Hence the closely related PBP enzymes can be

considered integral parts of the divisome and elongasome,

adding to their similarity.
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Figure 3
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Hypothesis: FtsA of the divisome is functionally equivalent to MreB of the elongasome. Both proteins are actin-like, polymerise into actin-like

protofilaments, bind the cytoplasmic membrane through amphipathic helices (N-terminal for MreB, C-terminal for FtsA) and interact with the

cytoplasmic surface of the divisome/elongasome. The tubulin homologue FtsZ polymerises into a ring that is separated from the divisome through a

long flexible linker and the Z-ring organises the divisome into a small band around the division site through interaction with FtsA. No such organiser

exists for the elongasome, leading to cylindrical growth, rather than invagination and cell division.
Equivalence between FtsA of the divisome
and MreB of the elongasome?
Adding to our list of parallels between the divisome and

elongasome, it now appears that both the divisome and

elongasome, at least in some organisms, contain mem-

brane-bound, actin-like filaments (Figure 3). More than a

decade ago it was demonstrated that MreB, being part of

the elongasome, has the canonical actin fold and assem-

bles into actin-like protofilaments [20]. Later it was

appreciated that MreB binds directly to membranes via

a hydrophobic loop and in Gram-negative organisms also

by an N-terminal amphipathic helix [21��]. The mono-

meric FtsA structure was solved more than a decade ago

[22] and surprisingly, it displayed deviant subdomain

architecture with actin’s subdomain 1B replaced by a

similarly sized domain 1C at the opposite end of the

molecule. Only later it was shown that E. coli FtsA

contains a C-terminal amphipathic helix and binds to

the inner membrane [23]. And recently it was demon-

strated unambiguously that FtsA polymerises into cano-

nical actin-like protofilaments, despite the altered

subdomain architecture [24�,25,26��]. Given the fold

and properties of the two actin-related proteins FtsA

and MreB, we propose that they perform similar functions

for the divisome and elongasome, respectively (Figure 3).

FtsA is thought to be the main membrane anchor for

tubulin-like FtsZ in E. coli [27] and is also involved in the
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assembly of downstream divisome proteins [28]. Strik-

ingly, the cytoplasmic part of late divisome protein FtsN

seems to bind in a cleft between the body of FtsA and its

subdomain 1C [29��]. This is reminiscent of the PilM–
PilN interaction, PilM being a structural homologue of

FtsA involved in pilus assembly [30�] (PDB 2YCH).

Taken together, it may suggest that FtsA’s activity is

regulated by FtsN and we speculate that a similar role

may be exerted by the cytoplasmic tail of MreC in the

elongasome, since the MreB-MreC interaction has been

reported [31]. It is interesting to note that MreB’s move-

ment in cells seems to be driven or controlled by the PBPs

in the periplasm [32�,33�,34�], requiring a feedback

mechanism that most likely involves MreC and/or MreD.

The newly discovered parallel between the two actins,

FtsA and MreB, indicates that FtsZ, which forms a ring at

the division site is probably a functional alteration

required only for division (Figure 3). The Z-ring organises

synthesis and remodelling of PG in a small band at

midcell that coincides with membrane constriction,

which may be facilitated by FtsZ alone or both FtsZ

and FtsA [35,36��]. By contrast, the elongasome does its

work all round the straight section of the cell. FtsZ, being

solely cytoplasmic, interacts with membrane-tethered

FtsA through a long flexible linker. Hence FtsZ, and

some FtsZ-interacting proteins (for example ZapABC)

are some distance away from the membrane (and the
share a common evolutionary past?, Curr Opin Microbiol (2013), http://dx.doi.org/10.1016/
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divisome) and should be considered functionally

separate [28].

Beyond parallels
Given the likely evolutionary distance between the divi-

some and elongasome, it is not surprising that there are

differences, additions and deletions beyond the con-

served core as discussed above. The divisome currently

contains more subunits that do not seem to have parallels

in the elongasome. Amongst these are FtsQLB [37], Tol-

Pal [38] and FtsEX [39,40�] in E. coli. FtsQ is very

conserved but currently no function is known apart from

many interactions with other divisome proteins. FtsEX is

an ABC transporter that uses ATP hydrolysis to induce

conformational changes in EnvC, the most important

activator of amidases in the periplasm. The Tol-Pal

complex is essential for outer membrane dynamics during

division [38]. PG remodelling requires the breaking of

amide bonds between PG strands in order to be able to

add or remove material. Specialised hydrolytic enzymes

(AmiA-C) reside in the periplasm and they are part of the

divisome since they require tight regulation [41]. The

DL-endopeptidase LytE is part of the Bacillus subtilis
elongasome [42] but it is perhaps a bit early to conclude

similarities since not much work has been published in

this area. Two recent reports [43��,44��] indicate that PBP

action is regulated from the outside of the cell: PBP1A of

the elongasome is regulated externally by its outer mem-

brane cognate lipoprotein activator LpoA. This inter-

action is affected by the sacculus thickness since LpoA

has to reach through the �6 nm PG layer and in addition

�5 nm between the PG and the outer membrane, as

measured in E. coli, to physically contact PBP1A and this

is only possible in the regions where the most and largest

pores in the PG occur [45]. A similar, LpoB-orchestrated

regulatory mechanism of PBP1B exists in the divisome.

However, in the context of possible similarities between

divisome and elongasome it is important to note that

LpoA and LpoB are not related by sequence and LpoA

and LpoB are restricted to g-proteobacteria only. This

could mean that LpoA and B are niche-related, late

additions to the divisome and elongasome. Pushing

speculation to the limit, it is possible to detect weak

amino acid sequence similarity between the N-terminal

domain of FtsK in the divisome and MreD in the elonga-

some, when large alignments are constructed (data not

shown). The C-terminal domain of FtsK is a DNA

translocase [46] but the N-terminal domain is a 4-helix

transmembrane protein of unknown function. MreD has

currently no known function, but is of very similar size to

FtsK-N and is predicted to contain four transmembrane

helices.

What has been the evolutionary path?
Given that cell division is a very basic requirement of life

and being a sphere might be considered the default state

of primordial bacteria, one might speculate that the
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elongasome developed as a specialised form of the divi-

some, losing FtsZ in the process. Proteins downstream

starting from FtsA evolved into MreB and the proteins of

the elongasome. One argument against this order of

events is the deviant domain architecture of FtsA, com-

pared with all other actin-like proteins [22]. We counter

that the deviation in FtsA is a domain swap that conserves

function, namely polymerisation [26��] and hence is an

event that could have occurred later, after MreB evolved.

Another problem is that FtsA is not as conserved as MreB

or FtsZ. It seems that at least in some organisms and many

Archaea [47], FtsA has been substituted with another

polymerising membrane anchor, SepF, that substitutes its

function but not the fold [48,49�].

If the role of FtsZ is to constrict the membrane and to

organise the divisome machinery in one single ring

around the cell via its interaction with FtsA then this

opens up the questions what guides the elongasome?

This goes back to old questions about what guides cell

width. It may well be that the default mode of action of

the elongasome is to not alter width, copying whatever

PG network is present, as determined by the new poles,

which the divisome generates [50]. In this context it is

interesting that there are several reports highlighting

contacts between the divisome and the elongasome

[15�,51–53]. And most directly, it has been shown that

MreB, the actin of the elongasome, interacts with the

tubulin FtsZ of the divisome, which might provide

answers to questions about what provides the guide to

the elongasome in terms of cell width, for example [54��].

It will be essential to obtain more molecular data on the

divisome and elongasome before exact evolutionary

relationships may be determined.
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Löwe J: Dimeric structure of the cell shape protein MreC and
its functional implications. Mol Microbiol 2006, 62:1631-1642.

66. Vijayalakshmi J, Akerley BJ, Saper MA: Structure of YraM, a
protein essential for growth of Haemophilus influenzae.
Proteins 2008, 73:204-217.
share a common evolutionary past?, Curr Opin Microbiol (2013), http://dx.doi.org/10.1016/

Current Opinion in Microbiology 2013, 16:1–7

http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0195
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0195
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0195
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0195
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0200
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0200
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0200
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0200
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0200
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0205
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0205
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0205
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0210
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0210
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0210
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0210
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0215
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0215
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0215
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0215
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0220
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0220
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0220
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0220
http://dx.doi.org/10.1038/ncomms2503
http://dx.doi.org/10.1038/ncomms2503
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0230
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0230
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0230
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0230
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0235
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0235
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0235
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0240
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0240
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0240
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0240
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0245
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0245
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0245
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0250
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0250
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0250
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0255
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0255
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0255
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0255
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0255
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0260
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0260
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0260
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0265
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0265
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0265
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0270
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0270
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0270
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0275
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0275
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0275
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0280
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0280
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0280
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0280
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0285
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0285
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0285
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0285
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0290
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0290
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0290
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0295
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0295
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0295
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0295
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0300
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0300
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0300
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0305
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0305
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0305
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0305
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0305
http://dx.doi.org/10.1021/bi400222r
http://dx.doi.org/10.1021/bi400222r
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0315
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0315
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0315
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0315
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0320
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0320
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0320
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0325
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0325
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0325
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0330
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0330
http://refhub.elsevier.com/S1369-5274(13)00154-9/sbref0330
http://dx.doi.org/10.1016/j.mib.2013.09.003
http://dx.doi.org/10.1016/j.mib.2013.09.003

	Do the divisome and elongasome share a common evolutionary past?
	Introduction
	Divisome and elongasome directly interact with the same Lipid II synthesis machinery
	Lipid II translocation facilitated by related SEDS proteins
	Divisome and elongasome interact with related or even identical PBPs
	Equivalence between FtsA of the divisome and MreB of the elongasome?
	Beyond parallels
	What has been the evolutionary path?
	Acknowledgements
	References and recommended reading


