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SSuummmmaarryy

Tektins are insoluble α-helical proteins essential for the construction of cilia and flagella and are
found throughout the eukaryotes apart from higher plants. Being almost universal but still fairly
free to mutate, their coding sequences have proved useful for estimating the evolutionary
relationships between closely related species. Their protein molecular structure, typically
consisting of four coiled-coil rod segments connected by linkers, resembles that of
intermediate filament (IF) proteins and lamins. Tektins assemble into continuous rods 2 nm in
diameter that are probably equivalent to subfilaments of the 10 nm diameter IFs. Tektin and IF
rod sequences both have a repeating pattern of charged amino acids superimposed on the
seven-amino-acid hydrophobic pattern of coiled-coil proteins. The length of the repeat segment
matches that of tubulin subunits, suggesting that tektins and tubulins may have coevolved, and
that lamins and IFs may have emerged later as modified forms of tektin. Unlike IFs, tektin
sequences include one copy of a conserved peptide of nine amino acids that may bind tubulin.
The 2 nm filaments associate closely with tubulin in doublet and triplet microtubules of
axonemes and centrioles, respectively, and help to stabilize these structures. Their supply
restricts the assembled lengths of cilia and flagella. In doublet microtubules, the 2 nm filaments
may also help to organize the longitudinal spacing of accessory structures, such as groups of
inner dynein arms and radial spokes.
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GGeennee  oorrggaanniizzaattiioonn  aanndd  eevvoolluuttiioonnaarryy  hhiissttoorryy
Genes for tektins are found throughout the animal kingdom

(for example, they have been sequenced in mammals, fish,

sea urchins, insects, and nematodes) and also in algal

species (for example, the unicellular Chlamydomonas) but

not in flowering plants; that is, they occur in any eukaryotic

organism that develops cilia or flagella [1-30]. Their relation-

ships (Figure 1) suggest a complex evolutionary history

involving gene duplications and subsequent losses of un-

necessary genes. Some organisms have a single tektin; for

example, zebrafish have only tektin 2, a testis protein.

Others have several: for example, sea urchins use three in

their sperm tails; humans have at least six, some of which

are specific to testis whereas others occur also in cilia and

centrioles in cells in other tissues. The human tektin genes

are all found on different chromosomes. Different tektins

from one species vary more than equivalent sequences from

different species, suggesting that each type may have specific

roles [11,12,14-20]. A limited number of interacting protein

partners leaves tektin sequences relatively free to mutate.

Thus, an essential testis-specific isoform has been included

as one of the nuclear genes used to estimate the evolutionary

distances between closely related species [21,30].

Tektins are related to intermediate filament (IF) proteins

[1,5,31,32] and nuclear lamins [33-35], whose sequences

also show evidence of gene duplication. Within the rod

domains of both tektins and IFs, the longitudinal repeating

pattern of hydrophobic and charged amino acids suggests

that their ancestral protein may have evolved in tandem with

tubulin, whose globular monomers polymerize into proto-

filaments with a 4 nm repeat. This spacing, corresponding to

28 residues along a coiled-coil, would have arisen quite

simply in an ancestral tektin as groups of four heptads.

However, other coiled-coil proteins do have different patterns

of charge, and different superhelix repeats; indeed, the
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FFiigguurree  11
Distribution of tektin sequences. Phylogenetic tree showing the relationships between known tektin sequences. The three original sequences obtained
from the sea urchin Strongylocentrotus purpuratus are labeled in pink, mammalian tektins 1-3, and 5 in green, and mammalian tektin 4 (found in dense
fibers [45]) in blue. Neoptera is a taxonomic group that includes most of the winged insects. Modified output from pfam: family: tektin (pf03148) [66,67].
Species abbreviations [66]: AEDAE, Aedes aegypti; ANOGA, Anopheles gambiae; BOVIN, Bos taurus; BRARE, Danio rerio; CAEBR, Caenorhabditis
briggsae; CAEEL, Caenorhabditis elegans; CANFA, Canis familiaris; CHLRE, Chlamydomonas reinhardtii; CIOIN, Ciona intestinalis; DROER, Drosophila
erecta; DROME, Drosophila melanogaster; DROPS, Drosophila pseudoobscura; DROSI, Drosophila simulans; MACFA, Macaca fascicularis; MESAU,
Mesocricetus auratus (golden hamster); MOUSE, Mus musculus; NEOP, Neoptera sp.; RAT, Rattus norvegicus; SCHJA, Schistosoma japonicum; STRPU,
Strongylocentrotus purpuratus; TETNG, Tetraodon nigroviridis; XENLA, Xenopus laevis; XENTR, Xenopus tropicalis.
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Q7QJ75_ANOGA/34-318
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charge pattern of tropomyosin matches the 5.5 nm periodicity

of subunits in actin filaments [36]. Thus, it is not clear

whether a tubulin-like or a tektin-like protein might have

existed first.

Bacteria have a homolog of tubulin, FtsZ (a protein involved

in septum formation during cell division), that also forms

linear protofilaments with a similar longitudinal spacing,

although the spacing is a little longer, approximately 4.3 nm,

and the protofilaments do not associate to form micro-

tubules [37,38]. Is one of FtsZ’s protein partners tektin-like?

Several of the proteins known to interact with FtsZ [39,40]

appear to form coiled-coil dimers (for example, EzrA, SlmA,

and ZapA) but it is difficult to draw parallels with the eukary-

otic tubulin-tektin association as FtsZ does not assemble

into any long-term stable structure. A coiled-coil protein

that forms stable filaments in Caulobacter crescentus has

been investigated and shows a basic similarity to IF proteins

[41,42] but this might be coincidental; for example, muscle

myosins bundle into filaments but are not considered to be

IF-like. The spirochete coiled-coil protein Scc [43] also

forms stable filaments, but the molecules seem to be

continuous coiled-coils without any of the breaks or ‘stutters’

(short interruptions in the repeating pattern of residues)

characteristic of IFs. Something in Spirochaeta halophila

was found to react with anti-tektin antibodies [44] but no

candidate sequence has been identified in the genome.

Iida et al. [45] recently discovered that a testis-specific

tektin [46,47] is not located in doublet microtubules but on

the surface of structures called dense fibers [48], which

augment the elastic strengths of the sperm tails of many

animals, including mammals. Dense fibers do not occur in

cilia, or in the flagella of unicellular animals, making it likely

that tektin acquired its function in the dense fibers

secondarily. If tektin and tubulin evolved together first,

lamins/IFs may have evolutionarily ‘escaped’ in a similar

fashion, as a form of tektin that no longer binds to tubulin.

The alternative scenario is that the lamin/IF group of coiled-

coil proteins evolved first and a modified version of one such

protein was subsequently co-opted into axoneme formation,

with the length of tubulin becoming adapted to fit the tektin

periodicity precisely. In either case, both tektin and tubulin

may have adapted to enable a eukaryote ancestor to

assemble stable axonemal microtubules. Tubulin could later

have found ways of assembling into more dynamic micro-

tubules with the aid of new microtubule-associated proteins

(MAPs), some of which may be related to tektins [49,50].

CChhaarraacctteerriissttiicc  ssttrruuccttuurraall  ffeeaattuurreess
Tektin monomers are typically proteins of around 45-

60 kDa, consisting, like IF proteins [33-35], of amino- and

carboxy-terminal head and tail domains of varying sizes

(Figure 2) on each side of a conserved coiled-coil rod

domain. Most have similar halves (see Figure 2) and each

half is further divided into two, so the original protein was

perhaps equivalent to a quarter of a tektin. The four α-helical

rod-domain segments, 1A, 1B, 2A, and 2B, are connected by

linkers [5-7]. Because of divergence between the half-

domains, the tektin signature nonapeptide sequence (usually

RPNVELCRD, variations are shown in Figure 2) occurs only

in the middle of the second half (only in the linker between

the 2A and 2B helices, although there are other conserved

cysteines in the loops at either end of 1B and 2B [9], see

Figure 2a). The high degree of conservation of the nona-

peptide suggests a functionally important tektin-specific

domain, most likely for binding to tubulin, but this has not

been shown experimentally. At a similar point, IF and

lamins have just a stutter in the heptad pattern of hydro-

phobic amino acids, to show where a connecting link

between two stretches of coiled-coil once existed (see the

lamin plot in Figure 2b). Superimposed on the hydrophobic

heptad repeats, there are longer repeating patterns of

charged amino acids. Three charge repeats, of approximately

nine residues each, define lengths of IF rod of approximately

4 nm [33]. The charge pattern is actually less clear in tektins

[5], but each quarter-rod segment still matches an 8 nm

tubulin heterodimer.

Tektins were first isolated from sea urchin sperm tails. Long

continuous filaments run along the doublet microtubules of

the sperm flagella [1-3,9,51-53], and the initial determina-

tion of their protein components was made from insoluble

filaments derived from the tails [1-3]. Extraction of doublet

microtubules with anionic detergent produces ribbons of

tubulin protofilaments (Figure 3b) stabilized with other

proteins, including tektins [1-3] and some other coiled-coil

proteins [54-56]. Further solubilization yields filamentous

co-polymers of tektins A, B and C, and finally 2 nm filaments

containing only tektin AB heterodimers, as confirmed by

crosslinking experiments [51]. Sequences obtained for sea

urchin tektins A, B and C [5-7,10] showed that A and B were

closely related and allowed models of dimer molecules and

polymers to be devised (see, for example, Figure 3g,h). The

probable molecular lengths (32 nm for AB heterodimers and

48 nm for C homodimers) and the periodicities observed on

filaments (especially the strong 16 nm repeat seen on

purified tektin AB filaments) are all sub-periods of the 96

nm periodicity found on doublet microtubules decorated

with accessory structures. The significance of this conserved

periodicity (equal to 12 tubulin dimers) in axonemes is

unclear, but it is interesting that the supercoil pitch of four-

stranded vimentin fibers is also 96 nm [35].

LLooccaalliizzaattiioonn  aanndd  ffuunnccttiioonn
As already indicated, tektins are essential constituents and

specific markers for ciliary and flagellar axonemes (con-

taining doublet microtubules) [1-26] and for basal bodies

and centrioles (containing triplet microtubules) [25-29]. In

the nematode Caenorhabditis elegans, for example, the
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Structure prediction from amino-acid sequences. ((aa)) Apparent domain structure within a typical tektin polypeptide. The positions of some conserved
residues, including the signature nonapeptide, are indicated in single-letter amino acid code above the diagram. For a detailed comparison of a range of
sequences, see NCBI Conserved DOmains pfam03148 [68]. ((bb)) Predictions of coiled-coil segments from the amino-acid sequences of various tektins plus
a typical lamin for comparison. The vertical scale in each plot is the probability (0.0 to 1.0) of a coiled-coil structure being formed [69,70]. Horizontal
lines above each stretch with a high probability indicate the relative phases of the heptad repeats; a ‘stutter’ thus revealed in the middle of the last coiled-
coil of the lamin is a feature of all lamins and IFs [34]. Its position corresponds to that of the tektin loop containing the conserved nonapeptide, whose
minor sequence variations are shown in red. For all three sea urchin tektins whose structure has been studied in detail [5-7], predicted 8 nm long
(56-residue) segments that may each lie alongside a tubulin heterodimer are indicated by horizontal red bars. Human tektin 1 (NP_444515); 
human tektin 2 (AAH35620); human tektin 3 (AAH31688); mouse tektin 4 (AAI17527); C. elegans tektin (AAA96184); Chlamydomonas tektin
(BAC77347); Strongylocentrotus purpuratus (sea urchin) tektin A1 (NP_999787, GenBank: M97188); S. purp. B1 (NP_999789, GenBank: L21838); S.
purp. tektin C1 (NP_999788, GenBank: U38523); Drosophila tektin A (NP_523577); Drosophila tektin C (NP_523940); mouse lamin B1 (NP_034851).
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expression of tektins correlates spatially with touch receptor

cilia [57]. In mammals, tektins occur in testis, brain, retina,

and other tissues containing ciliated cells [8]. Of the several

types of mammalian tektins, at least two - tektin 2 and tektin

4 - are present in sperm flagella, although tektin 4 is associa-

ted with outer dense fibers rather than with outer doublet

microtubules [11-20].

While it is clear that tektins are in or next to the partition of

outer doublet microtubules (Figure 3a-f), some questions

remain about their exact locations and functions. Electron

microscope (EM) tomography of sea urchin tubules [58] has

revealed a longitudinally continuous thin filament (at the tip

of the arrow in Figure 3e) associated with the middle tubulin

protofilament of the partition, which would be a good

position to provide a central stabilizing element for a sliding

and bending doublet microtubule, and is consistent with the

proposed role of tektin in regulating the length of an

axoneme through a limited supply of one of the tektins

[59,60]. However, this thin filament is distanced from the

sites of attachment of radial spokes, dynein arms and the

regulatory complexes, where the long periodicities inherent

in a tektin filament (Figure 3g-h) might serve another useful

purpose, as a molecular ‘ruler’. Schemes employing both the

32 nm length of tektin AB molecules and 48 nm or 32 nm

spaced tektin C molecules (Figure 3i) have been proposed to

account for the 96 nm repeating series of accessory proteins

on sea urchin doublet microtubules [7,9,10,52]. In species

with only one type of tektin, filaments assembled from 32

nm or 48 nm long molecules could still interact with a series

of accessory structures to produce a 96 nm repeat. However,

there are likely to be length-measuring proteins other than

tektins in the axonemes of all species.

Linck has proposed that tektins bundle to form one of the

protofilaments close to the inner junction between tubules

A and B [10,52,61], which would be consistent with

evidence that tektins are stably connected to the accessory

structures [62]. However, the EM tomographic image

(Figure 3c-f) does not indicate any protofilament with a

radically different internal composition. In contrast, the

unique thin filament on the partition has the appearance

expected for a simple tektin AB polymer, such as that seen

by Pirner and Linck [52] and modeled in Figure 3i,j, and the

long sideways projections reaching out as far as the

junctions might explain the association of tektin with

dynein. These long strands projecting sideways from the

thin filament may be amino-terminal domains, for example,

from tektin A (see Figure 3g), or could be separate coiled-

coil proteins (possibly tektin C or related to the

Chlamydomonas ‘rib’ proteins [54-56]). The additional

proteins that co-purify with the insoluble tektins are

presumably associated with the partition, rather than with

regions of the A- and B-tubules that disintegrate early (see

Figure 3b); in addition to the continuous filament and

associated projections on the A-tubule side of the partition,

the tomogram (Figure 3c-f) shows a considerable amount of

material on the B-tubule side.

It is also possible that tektins can form more than a single

filament; the crosslinking experiments [10,52] proved the

existence of tektin AB heterodimers and continuous poly-

mers, and tektin C homodimers and tetramers, but not

necessarily complexes of all three proteins. For example, the

partition filament might be tektin AB while tektin C

tetramers could associate with accessory attachment sites

(Figure 3a,e). Alternatively, there could be more than one

heteropolymeric filament per doublet, if the reported quanti-

tation [29] turns out to be accurate. Data for Chlamydomas

flagella (which apparently contain a soluble tektin that is not

retained in the insoluble ribbon fraction [63]) also suggest

two separate roles and sites for tektin in the doublet. The

flagella of mutants lacking inner dynein arms contain only

20% of the normal amount of this tektin, suggesting that the

other 80% may co-assemble with inner dynein arms. Thus,

in species making only one type of tektin, one protein might

occupy both types of sites, forming a continuous filament on

the partition and a more soluble complex at the base of the

inner dynein arms or radial spokes.

FFrroonnttiieerrss
Many details remain to be resolved regarding the

structural arrangement of tektins, ribs and other proteins

that co-purify with the stable ribbons of axonemal doublet

microtubules. Filaments from a range of sources other

than sea urchin sperm [53] and Chlamydomonas [54-56]

flagella need to be isolated to investigate their

compositions and structural characteristics. Similarly,

there is more to be learned from three-dimensional EM

cryo-tomography [58], including images to be

reconstructed with 48 nm or 96 nm rather than 16 nm

longitudinal averaging. The possibilities of identifying

different proteins in sea urchin axonemes by labeling are

limited (antibodies are unlikely to reach sites located

inside the doublets) but better methods are available for

microorganisms such as Chlamydomonas and Tetra-

hymena, which can be genetically modified to add labels or

remove components. Initially, it will probably be

rewarding to compare tomograms of wild-type

Chlamydomonas and the mutants mentioned above [63].

The precise function of the tektin signature sequence,

RPNVELCRD, remains to be determined. This question may

be approached using peptides or small segments of tektin

produced by recombinant expression systems. It may be

possible to determine whether the conserved loop binds

directly to tubulin and, if so, what types of mutations

eliminate binding. A related question is why mammalian

tektin 4 locates to dense fibers rather than to doublet tubules

[45], even though it has the standard signature sequence. Is

there any tubulin in the outer dense fibers?
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It would also be interesting to know what makes some

tektins insoluble after the assembly of doublet tubules,

although, presumably, only soluble complexes are trans-

ported into the flagellum. Is there a post-translational modi-

fication, similar to the phosphorylation that allows vimentin

to remain soluble until it is assembled into IFs and allows it

to be resolubilized during disassembly [64]? As tektins are

unlikely to be reused [59,60], they might be phosphorylated

immediately after translation, dephosphorylated in the

course of axoneme assembly but then degraded by proteolysis

during flagellar retraction. Such events will probably be most

conveniently studied in Chlamydomonas or Tetrahymena.
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Filament structure and interactions based on electron microscopy. ((aa)) Diagram of the cross-section of a doublet or triplet microtubule, with the tubulin
protofilaments numbered as in [71]. Attached to the complete A-tubule are rows of outer dynein arms (ODA), inner dynein arms (IDA), radial spokes
(RS), dynein regulatory complexes (DRC) and the incomplete B-tubule. The outer A-B junction is a direct interaction between two tubulin
protofilaments but, at the inner junction, the so-called 11th protofilament of the B-tubule [72] turned out to be a row of non-tubulin crosslinks (d). In
the case of a triplet microtubule, the C-tubule is probably attached in a similar way to the outside of the B-tubule. Green material on either surface of
the shared partition between A- and B-tubules in (a) represents that seen in (c-f). ((bb))  Electron microscope (EM) images of disintegrating doublet
microtubules isolated from sea urchin sperm tails and contrasted with uranyl acetate negative stain (reproduced with permission from [1]). The A-tubule
and B-tubule [73] can be distinguished even after the loss of accessory structures. An arrowhead indicates the loss of the B-tubule, an arrow shows
where most of the A-tubule ends, leaving just the partition. After continued extraction, SDS gels of the remaining ribbons showed that the main proteins
present, in addition to some tubulin, were three tektins plus two or three other bands [1,2]. The scale bar represents 100 nm. ((cc--ff))  Images obtained by
EM tomography of frozen doublet microtubules (reproduced with permission from [58]). Tubulin has been colored purple and all other material green.
(e,f) End-on views, with the tubulin protofilaments cut through, of the side view of the A-tubule shown in (c) and the junction between the A-tubule and
B-tubule shown in (d), respectively. Magenta and black circles in (e,f) denote the groups of A-tubule and B-tubule protofilaments viewed in (c,d),
respectively, and the black arrows indicate the directions in which they are viewed. At the tip of the black arrow in (e) is a small hole representing the
core of an axially continuous thin filament whose outer surface is seen running down the middle of (c). Projections from this filament extend across the
protofilaments on either side of the thin filament. To improve the signal-to noise ratio, the 3D image was averaged in the axial direction at 16 nm
intervals, so any longer periodicities have been lost. The blue arrow in (e) indicates material between protofilaments of the A-tubule that may be involved
in the attachment and organization of the radial spokes and sets of inner dynein arms. (c,d) Scale bar = 10 nm. ((gg,,hh)) Models of tektin dimers proposed in
[7] (reproduced with permission from [7]). (g) 32 nm long tektin AB heterodimer with amino-terminal segment of tektin A that may form a sideways
projection from a filament composed of heterodimers. S S indicates the position of disulfide bonds. (h) 40-48 nm long tektin C homodimer. Colored
asterisks in (g,h) show the predicted positions of the nonapeptide loops that may bind strongly to tubulin. (i) Model of a 2 nm tektin AB ‘core’ filament,
consisting of heterodimers joined end-to-end to form two strands (coloured red or cyan; they may differ slightly, as there are two isoforms of tektin A
[10]). Colored asterisks show the predicted positions of the nonapeptide loops. Heterodimers in the two strands are shown half-staggered to explain the
prominent 16 nm periodicity seen in (b). The red and cyan projections represent the amino-terminal headers of tektin A monomers (see g) in each
strand. A strand made up of tektin C homodimers (yellow) is drawn alongside, although the exact relationship between tektin C dimers/tetramers and
tektin AB filaments is not clear at present. A pair of 48 nm long tektin C molecules might organize a group of radial spokes (RS1, RS2 and RS3) to give an
overall longitudinal repeat distance of 96 nm. The 32 nm spacing between RS1 and RS2 and the 24 nm spacing between RS2 and RS3 are indicated by
double-headed arrows. ((jj)) The same 2 nm filament as in (i) shown in cross-section at four successive positions to indicate how four individual α-helical
strands (two AB dimers) might twist smoothly around each other. In this model, tektin C C homodimers (yellow circles) are shown associated with, but
not integrated into, the filament (unlike the model in [10]), as it is hard to account for crosslinking evidence that tektin C forms tetramers but not
filaments [52]. ((kk)) Cross-section through a possible model of an intermediate filament in which pairs of 2 nm filaments are twisted to form 4 nm filaments
and four of these are bundled to form a 10 nm filament; each light-brown or dark-brown circle represents a 2 nm filament; thus, each circle here
corresponds to the larger circles in (j). IFs have been proposed to be tubes built from eight 2 nm filaments [34] or supercoils of four 4 nm filaments, each
with a pitch of 96 nm [35]; a cross-section through the latter at some levels might appear to be a ring of eight smaller filaments (dark brown), while slices
at other levels would show 4 nm filaments arranged as a cross (light brown). Each subfilament of an IF is thought to be bipolar, whereas tektin filaments
are most probably polar to match the polar tubulin protofilaments.
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The cause of the differential solubility of tektins that are

assumed to be in different locations in triplet microtubules

[29] might also be investigated.

A continued search for prokaryotic ancestors of tektins and

IF proteins is expected. The Escherichia coli protein SlmA

[65] is of possible interest because it apparently supports

FtsZ assembly (possible tektin-like behavior) and also

associates with the bacterial nucleoid (possible lamin-like

behavior), although its coiled-coil is so short as to corres-

pond to just one of the Strongylocentrotus purpuratus (sea

urchin) tektin coiled-coil segments in Figure 2. However,

there may be a related protein in other bacterial species that

has grown longer through gene duplication.

It is likely that many such questions will be answered as new

researchers take an interest in tektins. After many years of

being regarded as an obscure group of specialized proteins,

they have become important, as related genes are found in

every newly sequenced eukaryotic genome. Tektins will

increasingly be used in phylogenetic studies [21-23,30] and

may turn out to vary even among human beings and be

useful, for example, in tracking population movements.
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