The nascent polypeptide–associated complex (NAC) interacts with newly synthesized proteins at the ribosomal tunnel exit and competes with the signal recognition particle (SRP) to prevent mistargeting of cytosolic and mitochondrial polypeptides to the endoplasmic reticulum (ER). How NAC antagonizes SRP and how this is overcome by ER targeting signals are unknown. Here, we found that NAC uses two domains with opposing effects to control SRP access. The core globular domain prevented SRP from scanning of nascent chains, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. The emergence of an ER-targeting signal destabilized NAC binding to signal-less ribosomes, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. These findings elucidate how NAC hands over the signal sequence to SRP and imparts specificity of protein localization.

Localization of nascent proteins to the appropriate organelle is essential for cell function and homeostasis. The accuracy of cotranslational targeting to the endoplasmic reticulum (ER) relies on two ribosome-binding factors. Signal recognition particle (SRP) uses its M domain to engage hydrophobic ER-targeting signals as they emerge from the ribosomal tunnel and delivers the ribosome-nascent chain complex (RNC) to the SRP receptor (SR) at the ER membrane using its GTPase (NG) domain (I–4). SRP is far less abundant than ribosomes in the cell and has high affinity for all ribosomes. Thus, its access must be regulated to selectively target ribosomes without an ER-targeting signal (5–7).

The nascent polypeptide–associated complex (NAC) (composed of NACα and NACβ) prevents SRP from promiscuously targeting ribosomes without an ER-targeting signal (8–12).

NAC consists of a central globular domain from which flexible N- and C-terminal tails extend (13–15). Cross-linking studies have suggested that the N-terminal tails are used for a range of interactions and participate in ribosome binding (16, 17).

The function of the C-terminal tails, including a conserved ubiquitin-associated domain (UBA) in NACα, is unknown. NAC and SRP share overlapping ribosome-binding sites, which may give rise to their antagonsim (16). However, biochemical experiments have shown that NAC and SRP bind simultaneously to RNCs translating ER proteins (9, 11, 12), suggesting that there is a handoff intermediate in the poorly understood NAC-to-SRP exchange reaction. Thus, we set out to explain how NAC binds the ribosome to prevent SRP access and how this inhibition is preferentially overcome for ER-targeting signals.

Structures of NAC in complex with translating ribosome

We reconstituted in vitro a reaction with signal-containing RNC (RNCSS) mixed with both NAC and SRP and analyzed the complexes formed using cryo–electron microscopy (cryo-EM) (fig. S1). This reaction was likely to contain intermediates at critical steps of cargo recognition and handover, which could be deconvoluted by in silico classification. We resolved two complexes within the particles, a pre-cargo handover RNCSS+NAC complex, which we will discuss first, and a ternary post-cargo handover RNCSS+NAC+SRP complex, which is discussed later.

The structure of the RNCSS+NAC complex was similar to the RNC+NAC structure obtained from reanalysis of an RNC intermediate during translation of the cytosolic protein tubulin (TUBB) (figs. S2 and S3), on which NAC copurified (18). This suggests that NAC initially engages both signal-containing and signal-lacking RNCs but would be expected to hand over to SRP only in the presence of an ER signal sequence.

The structure of the RNCSS+NAC complex (Fig. 1, A to D and G) revealed the interactions between the N-terminal tail of NACβ and the ribosome at 3.5 Å resolution (Fig. 1C and fig. S4). The tail, containing an RRKKK motif, formed an α-helix followed by a loop in an anchor-shaped turn wrapping around eL22 while also contacting eL19 and the ribosomal RNA (rRNA) (Fig. 1C and fig. S4). The structure rationalizes the key role of this domain in ribosome binding established previously (16, 17, 19). To validate the role of this tail as an anchor to the ribosome, we measured NAC-ribosome binding affinity using Förster resonance energy transfer (FRET) between a donor dye placed near the signal sequence on the nascent chain and an acceptor dye placed on NAC. Point mutations of the NAC tail weakened NAC-RNC binding by 10- to 40-fold (Fig. 1, E and F), consistent with its important role in ribosome binding.

The globular domain of NAC was resolved to ~8 Å resolution, which allowed rigid-body fitting of an AlphaFold-predicted structure (20) (Fig. 1, A and B, and fig. S5). On the basis of this interpretation, two positively charged α-helices contributed by both NAC subunits contacted rRNA on the surface of the ribosome (Fig. 1G and fig. S5). Charge reversal mutations of a positively charged residue in each helix (K78E-NACα or K43E-NACβ) weakened ribosome binding of NAC in vitro (fig. S6A) and in vivo (fig. S6B).

The binding site of the NAC globular domain overlapped with that of the SRP M domain and was mutually exclusive with SRP binding (Fig. 1G and fig. S6C) (3, 4), consistent with a low-resolution cryo-EM map of NAC in complex with inactive ribosomes (16). This finding suggests that NAC interaction at the ribosome exit site is the basis of SRP inhibition. In agreement with this hypothesis, a ribosome-binding mutant in the globular domain (K78E-NACα combined with K43E-NACβ, named NAC KK-EE) was impaired in its ability to compete with SRP binding in vitro (Fig. 1H). The residual binding of NAC KK-EE to the ribosome is likely mediated by the N terminus of NACβ, the position of which would not interfere with SRP binding (fig. S6C).

The corresponding NAC KK-EE mutations in Caenorhabditis elegans showed reduced competition of SRP binding by NAC, as shown by elevated levels of ribosome-bound SRP (Fig. 1I and fig. S6D), as well as increased recovery of mRNAs coding for non-ER proteins in SRP pull-downs (fig. S6E). The reduction in SRP competition correlated with elevated levels of a green fluorescent protein (GFP) reporter of ER stress driven by the hsp-4 promoter (hsp-4p::GFP) (21), particularly in highly secretory intestinal cells (fig. S6F). Moreover, worms expressing mutant NAC showed reduced embryonic viability (fig. S6G) and a shortened adult life span (fig. S6H).

NAC is destabilized by ER signal sequences, allowing access of SRP to the ribosome exit

SRP antagonism by NAC must be relieved when an ER-targeting signal emerges from the ribosome. One possible explanation for this is that...
Fig. 1. Structure of the ribosome-NAC complex reveals interactions between the NAC globular and anchor domains with the nascent chain and the ribosome. (A) Cryo-EM structure of the RNCs•NAC complex. Boxed region indicates the magnified region shown in (B). (B) Closeup of the ribosome tunnel exit region. NACβ is colored green and NACα is colored orange. Anchor and globular domains of NAC are indicated. (C) Closeup of the N terminus of NACβ fitted into cryo-EM densities shown as mesh. Ribosomal protein eL22 is shown as a blue cartoon ribbon. (D) Schematic of the RNC-NAC complex with a domain structure of NAC. (E) Equilibrium titrations to measure the binding of the indicated NAC mutants to RNCss. The fluorescence signal changes were normalized to the end point of each titration for comparison. The lines are fits of the data to Equation 2. (F) Summary of the dissociation constant (K_d) values from (E). (G) Closeup of the NAC globular domain highlighting the two antiparallel α-helices, with residues K78 (NACα) and K43 (NACβ) shown as spheres (blue) interacting with the backbone of the rRNA (red). Dashed line indicates the flexible nascent chain (NC, magenta). (H) Crude cellular RNCs were incubated with purified NAC proteins and pelleted by sucrose cushion centrifugation. Proteins were detected by immunoblotting. (I) Sucrose cushion centrifugation of ribosomes in C. elegans expressing the indicated NAC variants and GFP-tagged SRP72. Proteins in the pellet fraction were detected by immunoblotting. (J) Summary of the K_d values of NAC R27A for RNCs displaying the nascent chains of GPI (cytosolic), HSPD1 (mitochondrial), and HSPA5 (ER) at the indicated nascent chain lengths. K_d values were from analysis of the data shown in fig. S8, C and D. Error bars are covariances of the fitted K_d values.
hydrophobic ER-targeting signals somehow weaken the interaction between the NAC globular domain and the ribosome to allow SRP access. To test this, we compared the affinity of NAC for RNCs displaying either an ER signal sequence (RNCsPrim) or a mutated signal sequence that inhibits ER targeting (RNCssPrim) (fig. S7). Because the NACβ anchor tail would mask the affinity differences, we performed FRET measurements with NAC mutants with a disrupted RRKKK motif. These mutants, NAC-R27A and NAC-K29A, bound to RNCss with ~3.5-fold and ~5-fold weaker affinity, respectively, compared with RNCssPrim (fig. S8, A and B).

We then measured NAC binding to purified RNCs bearing ER, cytosolic, and mitochondrial nascent chains (HSPA5, GPI, and HSPDI, respectively) stalled at residue 60, exposing short N-terminal sequences (~30 amino acids) at the tunnel exit (fig. S7). In agreement with our hypothesis, NAC-R27A bound 5-fold more weakly to RNCssHSPA5 exposing an ER signal sequence than to RNCssPrim and RNCssHSPDI (Fig. 1J and fig. S8, C and D).

We repeated the binding measurements with purified RNCs bearing an ER signal sequence at nascent chain lengths of 30, 40, and 60 amino acids (fig. 1J and fig. S8, C and D). NAC showed the strongest interaction with the ribosome when the signal sequence was in the tunnel (30 and 40 amino acids), and binding was weakened by >10-fold when the ER signal peptide was exposed (60 amino acids). Thus, the emergence of a hydrophobic signal peptide, but not another type of nascent chain, weakens the interaction of the NAC globular domain with the ribosome.

We then investigated the role of the two ribosome-binding antiparallel helices that dock the globular domain on the ribosome in proximity to the emerging nascent chain. The helices are amphipathic and orient the positively charged side toward the ribosomal surface, whereas the hydrophobic side contributes to a buried hydrophobic pocket (fig. 2B). These helices were sensitive to proteolysis when human NAC was subjected to crystallization, suggesting that they are flexibly disposed in the ribosome-bound state. To test this, we engineered two cysteines in the helices such that they would be apposed to each other in the ribosome-bound NAC structure. Consistent with our hypothesis, the engineered cysteines formed a disulfide bond after oxidant treatment only in the presence of the ribosome (Fig. 2A and fig. S9).

To investigate whether the emergence of the signaling peptides may destabilize and release the globular domain of NAC from the ribosome (Fig. 2B), we incorporated photo-cross-linking probes both inside and outside the hydrophobic pocket (Fig. 2B) and tested their proximity to nascent chains coding for a cytosolic, mitochondrial, or ER protein. NAC variants carrying the probe within the hydrophobic pocket (e.g., NACα-I121) cross-linked to ER targeting signals (Fig. 2C and fig. S10, A to C). Cross-linking was dependent on nascent chain length and was only seen once the targeting signal was fully exposed outside the exit tunnel (fig. S10A). Cross-linking was prevented when the helices were covalently linked by disulfide bond formation, demonstrating that destabilization of the NAC globular domain by the ER signal peptide requires separation of the helices (Fig. 2D).

Furthermore, cross-linking to the pocket residues NACα-I121 and NACβ-L48, but not the less buried NACα-L80, was modulated by changing targeting signal hydrophobicity (fig. S10D). Mutating M80 to serine impaired nascent chain photo-cross-linking to NACα-I121 (Fig. 2E), which suggests that this residue also contributes to nascent chain sensing.

These results indicate that an ER signal sequence destabilizes the NAC globular domain. The NACβ N-terminal tail remains anchored to the ribosomal surface regardless of the nascent
chain, as evidenced by cross-linking between a residue in the NACβ anchor and the ribosomal protein eL22, whereas a probe in the N-terminus of NACα changed its location only for the ER substrate (fig. S11). Combined, these results suggest that NAC interactions with the ribosome are remodeled as the signal peptide emerges from the ribosome tunnel.

Flexibly tethered UBA domain of NAC recruits SRP

The cryo-EM data on RNCss•NAC•SRP complex. Boxed region indicates the closeup shown in (B). (B) Ribosome tunnel exit regions depicting the SRP54 NG and M domains, the NACα UBA domain, and the NACβ anchor domain are colored slate, cyan, orange, and green, respectively. Underlying EM density is shown as a transparent surface. (C) Closeup on the UBA interactions with SRP54 NG domain shown as cartoon and sticks, fitted into cryo-EM densities shown as mesh. (D) Schematic representation of the ternary complex. Boxed region shows sequence alignment of NACα UBA domain in eukaryotes. (E) Summary of the K_d values for the binding of wild-type and mutant SRPs to RNCss•NAC, based on fitting of the data in fig. S17A. N.D., not determined. (F) and (G) Fluorescence microscope images of hsp-4p::GFP worms (F) and worm flow cytometry analysis of ssGFP (G) in worms carrying the indicated RNA interference (RNAi)–resistant genes in the endogenous RNAi background. Box plot center line indicates the median, box length the upper and lower quartile, and whiskers the minimum/maximum quartile (N ≥ 2000).

Fig. 3. Structure of the ribosome•SRP•NAC complex. (A) Cryo-EM structure of the RNCss•NAC•SRP complex. Boxed region indicates the closeup shown in (B). (B) Ribosome tunnel exit regions depicting the SRP54 NG and M domains, the NACα UBA domain, and the NACβ anchor domain are colored slate, cyan, orange, and green, respectively. Underlying EM density is shown as a transparent surface. (C) Closeup on the UBA interactions with SRP54 NG domain shown as cartoon and sticks, fitted into cryo-EM densities shown as mesh. (D) Schematic representation of the ternary complex. Boxed region shows sequence alignment of NACα UBA domain in eukaryotes. (E) Summary of the K_d values for the binding of wild-type and mutant SRPs to RNCss•NAC, based on fitting of the data in fig. S17A. N.D., not determined. (F) and (G) Fluorescence microscope images of hsp-4p::GFP worms (F) and worm flow cytometry analysis of ssGFP (G) in worms carrying the indicated RNA interference (RNAi)–resistant genes in the endogenous RNAi background. Box plot center line indicates the median, box length the upper and lower quartile, and whiskers the minimum/maximum quartile (N ≥ 2000).

In addition, we observed density for the flexibly tethered C-terminal UBA domain of NACα bound to the N domain of SRP54 (Fig. 3, B and C, and figs. S12 and S13). The interactions occupied two patches of contact points and involved a number of salt bridges and specific hydrogen bonds between highly conserved residues (Fig. 3, C and D, and fig. S14). The UBA-binding site on SRP54 overlapped with the binding site of the NG domain of SR (fig. S15), which suggests that formation of the SRP•SR complex will displace NAC from SRP at the ER membrane (22–24). The direct interaction of the UBA domain of NAC with SRP raises questions as to whether it plays a role in ER targeting.
To address this, we generated the following: (i) a NAC mutant in which the UBA is deleted (dUBA), (ii) a NAC mutant (D205R/N208R-NAC, named UBAmt), and (iii) an SRP mutant (K50E/R53E-SRP54, named SRP54mt) on the basis of human sequence numbering. UBAmt and SRP54mt contain charge reversal mutations at R53E-SRP54, named UBAmt), and (iii) an SRP mutant (K50E/R53E-SRP54, named SRP54mt on the basis

Mechanism of the NAC-SRP interplay on the ribosome to initiate ER targeting

We propose a molecular mechanism for the interplay of NAC and SRP at the ribosome that controls and initiates cotranslational protein targeting to ER: NAC acts as “gatekeeper” to shield emerging nascent chains from nonphysiological interactions with SRP (Fig. 5). Because of its abundance and high affinity for the ribosome, NAC is bound to most ribosomes at early stages of translation through a high-affinity anchor and a weakly bound globular domain that blocks SRP access to nascent polypeptides. The flexibly tethered UBA domain recruits SRP and increases its local concentration at the tunnel exit region to initiate sampling of nascent chains. The emergence of an
Fig. 5. Model for cotranslational signal sequence handover from NAC to SRP during ER-protein targeting.

ER signal sequence weakens the interactions of NAC's globular domain with the ribosome. This allows SRP to bind the signal sequence at the exit of the ribosomal tunnel, displacing the globular domain of NAC. NAC remains associated with both the ribosome and SRP through the respective NAC anchor and UBA contacts until it reaches the ER membrane, where SR displaces the UBA domain from SRP.

This study resolves the molecular function of NAC as a sorting factor for nascent chains and the nature of its spatiotemporal coordination with SRP on the ribosome. Our results explain how NAC, which binds to virtually all nascent chain exit regions of the ribosomal tunnel is a crowded environment where multiple binding factors compete for the nascent chain. Therefore, it is possible that NAC's role as a sorting factor extends beyond the recruitment of SRP to orchestrate a multitude of nascent chain-processing events.

REFERENCES AND NOTES

ACKNOWLEDGMENTS

We thank M. Leubandt, T. Lenarcic, and M. Jaskolowski for discussions; R. Schoener and E. Coellen for technical assistance; and S. Kretl for help with in vitro cysteine cross-linking experiments. Cryo-EM was collected at Scopem at the ETH Zurich. We acknowledge the MRC - LMB Electron Microscopy Facility for access and support of electron microscopy sample preparation and data collection for NAC-TTC5-RNC and the Caenorhabditis Genetics Center for strains.

Funding: This work was supported by the Swiss National Science Foundation (grant no. 310030B_1634718); the National Center for Excellence in Research RNA & Disease Program of the SNSF (grant no. 51NF40_141773); a Roessler Prize, Ernst Jung Prize, and Otto Naegeli Prize for Medical Research (to N.B.); the German Science Foundation (grant nos. SFB996/A01 and A07 to E.D. and M.G.); the National Institutes of Health (grant no. R35 GM136321 to S.-o.S); and the UK Medical Research Council (MRC grant MC_UP_A022_1007 to R.S.H.). V.C. was supported by V. Ramakrishnan, whose funding was from the MRC (grant no. MR/P025194/1). The authors are supported by the Swiss National Science Foundation (grant no. 310030B_1634718); the National Institutes of Health (grant no. R35 GM136321 to E.D.); the National Institutes of Health (grant no. R35 GM136321 to S.S.); the National Science Foundation (grant no. MCB-1929494 to S.-O.S); and the UK Medical Research Council (MRC grant MC_UP_A022_1007 to E.D.). V.C. was supported by the Vital Discovery fund (grant no. MRC-UP-A022-1007 to E.D.).

Data and materials availability: Cryo-EM maps and model coordinates are deposited in the Protein Data Bank (PDB ID 7QWQ, 7QWR, and 7QWS for the NAC-SRP-RNC-SS, NAC-SRP-RNC, and NAC-TTC5-RNC-SS, respectively). CACNC-TTC5-RNC-SS, NAC-SRP-RNC, the UBA domain from SRP.

This study resolves the molecular function of NAC as a sorting factor for nascent chains and the nature of its spatiotemporal coordination with SRP on the ribosome. Our results explain how NAC, which binds to virtually all nascent chain exit regions of the ribosomal tunnel is a crowded environment where multiple binding factors compete for the nascent chain. Therefore, it is possible that NAC's role as a sorting factor extends beyond the recruitment of SRP to orchestrate a multitude of nascent chain-processing events.

REFERENCES AND NOTES

Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting
Ahmad Jomaa, Martin Gamerdinger, Hao-Hsuan Hsieh, Anna Wallisch, Viswanathan Chandrasekaran, Zeynel Ulusoy, Alain Scaiola, Ramanujan S. Hegde, Shu-ou Shan, Nenad Ban, Elke Deuerling

Science, 375 (6583), DOI: 10.1126/science.abl6459

NAC acts as a gatekeeper on the ribosome
In eukaryotes, signal recognition particle (SRP) targets membrane and secretory proteins to the endoplasmic reticulum (ER) while they are being synthesized on the ribosome. To prevent erroneous targeting of proteins to the ER, access of SRP is regulated by the nascent polypeptide–associated complex (NAC). Jomaa et al. investigated how NAC can prevent SRP from binding ribosomes that are synthesizing cytosolic and mitochondrial proteins while at the same time recruiting SRP to ribosomes translating an ER protein client. Their findings reveal the role of NAC as a key sorting factor for nascent chains that helps to ensure the specificity of membrane and secretory protein localization in eukaryotes. —SMH

View the article online
https://www.science.org/doi/10.1126/science.abl6459

Permissions
https://www.science.org/help/reprints-and-permissions