Table 1: Clathrin and COP coats: subunit functions and domains
AP1/GGA-associated proteins AP2-associated proteins COPI-associated proteins COPII-associated proteins |
|||
Adaptor/coat |
Salient features |
Peptide motifs |
Functions |
Clathrin |
|
|
Endocytosis, sorting from TGN to endosomes, sorting from early to late endosomes |
Heavy chain |
Subunits polymerise into a triskelion; Atomic structures of several fragments reveal alpha-zigzag repeats and a beta-propeller terminal domain. [1, 2] |
Binds LLDLD type 1 clathrin motif and PWxxW type 2 clathrin motif [3, 4]. |
Recognition of peptide motifs through the beta-propeller formed by WD40 repeats (terminal domain). Binding partners include auxilin, amphiphysin, epsin and AP180 [5-7]. The triskelial arms define skeleton of the clathrin coat. |
Light chain: LCa/b |
Interacts with Hsc70, calmodulin and the central helical/coiled coil domain of HIP1/HIP12 [8-11] |
|
Regulates clathrin self-assembly into polyhedral lattices [12]. |
AP1 Adaptors |
|
|
TGN-endosome sorting |
gamma |
Large AP complex subunit with truncated appendage domain [13] |
Binds DFGx(bulky hydrophobic) and DFxDF motifs [14] [15]. |
Membrane binding via Arf1 [16]. Recruitment of accessory factors to AP1 complexes eg. EpsinR. |
beta1 |
|
Clathrin box motif in hinge: LLNLD [17]. Binds dileucine cargo motifs: [DE]xxxL[LI] [18]. |
Membrane binding via Arf1[19]. Binds to clathrin via hinge domain. Binds accessory proteins via appendage domain. Cargo recognition. |
mu1 (A/B) |
|
Binds Yxx(bulky hydrophobic) cargo motifs [20]. |
Cargo recognition. Membrane interaction. |
sigma1 |
sigma1 sequence is weakly related to the N-terminal portion of mu. |
|
Stabilises the AP core complex by mediating interactions between subunits [21]. |
AP2 adaptors |
|
|
Plasma membrane endocytosis |
alphaA/C |
Atomic structure of the appendage and trunk domain are known [22, 23]. |
Binds DxF, FxDxF and WVxF motifs [24-27] |
Membrane binding. Recruitment of accessory proteins eg. Epsin1 [28] |
beta2 |
Atomic structure of the appendage and trunk domain are known [23, 29]. |
Clathrin box motif in hinge: LLNLD [30]. Binds cargo motif: [DE]xxxL[LI] [31]. |
Binds to cargo dileucine motifs. Binds clathrin via hinge domain. Binds accessory proteins via appendage domain [32]. |
mu2 |
Atomic structure of m2 and of interactions with Yxx(bulky hydrophobic) sorting motifs is known [33]. |
Binds Yxx(bulky hydrophobic) in cargo [20] and WVxF in stonin 2 [34]. |
Membrane interaction. Cargo recognition. Also interacts with accessory proteins such as stonin 2. |
sigma2 |
sigma2 sequence is weakly related to N-terminal portion of mu. |
|
Stabilises the AP core complex by mediating interactions between subunits. |
AP3 adaptors[35, 36] |
|
|
Melanosome biogenesis |
delta |
Appendage domain and trunk domains conserved [36]. |
|
Like binds to accessory proteins via the appendage domain, but these have not been identified as yet [37]. |
beta3 (A/B) |
Appendage domain and trunk domains conserved [38]. |
Clathrin box motif in hinge: LLDLD. Binds cargo motif: [DE]xxxL[LI] [39]. |
Binds clathrin. Appendage domain with conserved ligand binding pocket likely binds to accessory proteins. Cargo recognition |
mu3 (A/B) |
|
Binds cargo motif Yxx(bulky hydrophobic) [40]. |
Cargo recognition. |
sigma3 (A/B) |
|
|
Stabilises the AP3 complex. |
AP4 adaptors [41-43] |
|
|
Basolateral sorting/ TGN-endosome sorting |
epsilon |
|
|
Membrane binding via Arf1. Conserved appendage domain so likely recruits accessory proteins. |
beta4 |
|
No obvious clathrin box |
Binds the neuronal protein tyrosine phosphatases PTP-SL and PTPBR7 [44]. Has conserved appendage domain. |
mu4 |
|
Binds Yxx(bulky hydrophobic) weakly and also interacts with other non-classical cargo motifs like DLYYDPM [45] |
Cargo recognition. |
sigma4 |
|
|
Stabilises the AP4 complex. |
GGAs |
|
|
TGN-endosome/lysosome sorting |
GGA-1
|
Multidomain alternative adaptors with VHS, GAT, hinge and appendage domains. |
Clathrin box motif in hinge: LLDDE.
Appendage domain binds DFGx(bulky hydrophobic) motifs[46, 47].
VHS domain binds DxxLL motifs [48].
WNSF sequence in the hinge is bound by the AP1 gamma appendage [49].
|
Clathrin binding. Recruitment of accessory factors such as rabaptin-5 and p56 by appendage domain. Cargo recognition (eg. Ci-M6PR) via VHS domain. Membrane recruitment via Arf binding to GAT domain[50]. Ubiquitin binding via GAT domain and thus potentially binds ubiquitinated cargo[51]. |
GGA-2 |
|
Clathrin box motifs in hinge: LIDLE and LLDLL. Other interactions are same as for GGA-1 [52]. |
Same as for GGA-1 |
GGA-3 |
|
Unidentified clathrin-binding motif and other interactions are same as for GGA-1 [53]. |
Same as for GGA-1 |
Hrs |
VHS, FYVE, Ubiquitin binding and clathrin binding. |
FYVE domain binds to PtdIns(3)P. |
Involved in flat clathrin lattice formation on early endosomes. |
COPIF-subcomplex: beta,delta,gamma,zeta[54] B-subcomplex:alpha,beta-prime,epsilon[55] |
|
|
Retrograde transport from the Golgi to the ER, maintenance of Golgi integrity |
Arf1 |
Small GTPase; Ras family |
|
Recruitment of COPI coatomer to membranes in a GTP dependent manner [56]. |
alphaCOP / Ret1p |
WD40 repeats (b-propeller domain) [57]. |
Binds KKxx, KxKxx motifs [58, 59]. |
Recruitment of cargo and accessory factors (eg Dsl1p). |
betaCOP |
Binds Arf1, and has weak sequence identity to b-adaptin. Has appendage domain like large AP subunits. |
|
Binds to diacidic cargo motifs [60]. Recruitment of cargo and accessory factors via appendage domain but these have not been identified. Binds to KDEL receptor [61] |
Beta-primeCOP / Sec26p |
WD40 repeats (beta-propeller) [57] |
Binds KxKxx motif. |
Recruitment of cargo. |
gammaCOP / Sec21p |
Binds members of the p24 family [62]. Has appendage domain like large AP subunits [63, 64]. |
|
Recruitment of cargo. Recruitment of cargo and accessory factors (ArfGAP) via appendage domain. |
deltaCOP / Ret2p |
Weak sequence identity to mu-adaptin. |
Binds WxxxW motif in the acidic domain of Dsl1p [65, 66]. |
Binds accessory protein via acidic tryptophan motif. |
epsilonCOP / Sec28p |
|
|
May stabilise the complex in that point mutations are often lethal in yeast [67]. |
zetaCOP / Ret3p |
Weak sequence identity to sigma-adaptin [68]. |
|
Stabilises the interaction between beta-COP and gamma-COP. |
ARFGAPs Glo3p |
GTPase activating protein for ARF[69]. Binds beta-prime WD40 domain and gamma-COP appendage domain. |
|
Activates Arf GTP hydrolysis to promote coat disassembly. Complexes with the KDEL receptor [61] |
ARFGEFs Gea1p/Gea2p |
GEF for ARF [70, 71] |
|
|
COPII |
|
|
Protein export from the ER |
hSar1p |
Small GTPase of the Ras family [72]. |
|
Recruits coat components to membranes in a GTP dependent manner[73]. |
hSec13p/ hSec31p |
Both subunits have WD40 repeats (beta-propeller domains)[72, 74]. |
Not identified as yet |
Induces coat polymerisation. |
hSec23p/hSec24p |
Sec23 is a Sar1p GTPase activating protein and Sec24 binds cargo [75] |
Sec24 binds DxE, YNNSNPF and Lxx[L/M]E motifs [75-77]. |
Has GAP activity for Sar1p, Cargo recognition and membrane curvature selection. |
hSec12p |
Has a GEF domain. |
|
ER localised GEF and thus leads to the recruitment of Sar1p and COPII coat components to the ER [78]. |
hSec16p |
Forms a ternary complex with Sec23/24p in vitro [79] |
|
Stabilizes Sec23/24 complex and stimulates vesicle budding [80] |
1. Smith, C.J. and B.M. Pearse, Clathrin: anatomy of a coat protein. Trends Cell Biol, 1999. 9(9): p. 335-8.
2. ter Haar, E., et al., Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker. Cell, 1998. 95(4): p. 563-73.
3. Miele, A.E., et al., Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain beta-propeller. Nat Struct Mol Biol, 2004. 11(3): p. 242-8.
4. Drake, M.T. and L.M. Traub, Interaction of two structurally distinct sequence types with the clathrin terminal domain beta-propeller. J Biol Chem, 2001. 276(31): p. 28700-9.
5. Ford, M.G., et al., Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science, 2001. 291(5506): p. 1051-5.
6. Scheele, U., et al., Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin. J Biol Chem, 2003. 278(28): p. 25357-68.
7. Smith, C.J., et al., Location of auxilin within a clathrin cage. J Mol Biol, 2004. 336(2): p. 461-71.
8. Pley, U.M., et al., The interaction of calmodulin with clathrin-coated vesicles, triskelions, and light chains. Localization of a binding site. J Biol Chem, 1995. 270(5): p. 2395-402.
9. Nathke, I., et al., The calcium-binding site of clathrin light chains. J Biol Chem, 1990. 265(30): p. 18621-7.
10. DeLuca-Flaherty, C., et al., Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis. Cell, 1990. 62(5): p. 875-87.
11. Legendre-Guillemin, V., et al., HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J Biol Chem, 2002. 277(22): p. 19897-904.
12. Ybe, J.A., et al., Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges. Embo J, 1998. 17(5): p. 1297-303.
13. Kent, H.M., et al., Gamma-adaptin appendage domain: structure and binding site for Eps15 and gamma-synergin. Structure (Camb), 2002. 10(8): p. 1139-48.
14. Shiba, Y., et al., Gamma-adaptin interacts directly with Rabaptin-5 through its ear domain. J Biochem (Tokyo), 2002. 131(3): p. 327-36.
15. Hirst, J., et al., EpsinR: an ENTH domain-containing protein that interacts with AP-1. Mol Biol Cell, 2003. 14(2): p. 625-41.
16. Traub, L.M., J.A. Ostrom, and S. Kornfeld, Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol, 1993. 123(3): p. 561-73.
17. Doray, B. and S. Kornfeld, Gamma subunit of the AP-1 adaptor complex binds clathrin: implications for cooperative binding in coated vesicle assembly. Mol Biol Cell, 2001. 12(7): p. 1925-35.
18. Rapoport, I., et al., Dileucine-based sorting signals bind to the beta chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif-binding site. Embo J, 1998. 17(8): p. 2148-55.
19. Austin, C., I. Hinners, and S.A. Tooze, Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J Biol Chem, 2000. 275(29): p. 21862-9.
20. Ohno, H., et al., Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science, 1995. 269(5232): p. 1872-5.
21. Takatsu, H., et al., Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system. Biochem Biophys Res Commun, 2001. 284(4): p. 1083-9.
22. Owen, D.J., et al., A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell, 1999. 97(6): p. 805-15.
23. Collins, B.M., et al., Molecular architecture and functional model of the endocytic AP2 complex. Cell, 2002. 109(4): p. 523-35.
24. Brett, T.J., L.M. Traub, and D.H. Fremont, Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure (Camb), 2002. 10(6): p. 797-809.
25. Jha, A., et al., A novel AP-2 adaptor interaction motif initially identified in the long-splice isoform of synaptojanin 1, SJ170. J Biol Chem, 2004. 279(3): p. 2281-90.
26. Walther, K., et al., Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin, in Proc Natl Acad Sci U S A. 2004. p. 964-9.
27. Benmerah, A., et al., The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. J Biol Chem, 1996. 271(20): p. 12111-6.
28. Chen, H., et al., Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature, 1998. 394(6695): p. 793-7.
29. Owen, D.J., et al., The structure and function of the beta 2-adaptin appendage domain. Embo J, 2000. 19(16): p. 4216-27.
30. Shih, W., A. Gallusser, and T. Kirchhausen, A clathrin-binding site in the hinge of the beta 2 chain of mammalian AP-2 complexes. J Biol Chem, 1995. 270(52): p. 31083-90.
31. Hofmann, M.W., et al., The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J Biol Chem, 1999. 274(51): p. 36153-8.
32. Owen, D.J., et al., The structure and function of the beta 2-adaptin appendage domain, in Embo J. 2000. p. 4216-27.
33. Owen, D.J. and P.R. Evans, A structural explanation for the recognition of tyrosine-based endocytotic signals. Science, 1998. 282(5392): p. 1327-32.
34. Walther, K., et al., Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proc Natl Acad Sci U S A, 2004. 101(4): p. 964-9.
35. Mullins, C., L.M. Hartnell, and J.S. Bonifacino, Distinct requirements for the AP-3 adaptor complex in pigment granule and synaptic vesicle biogenesis in Drosophila melanogaster. Mol Gen Genet, 2000. 263(6): p. 1003-14.
36. Simpson, F., et al., Characterization of the adaptor-related protein complex, AP-3. J Cell Biol, 1997. 137(4): p. 835-45.
37. Suzuki, T., et al., Evaluation of the delta subunit of bovine adaptor protein complex 3 as a receptor for bovine leukaemia virus. J Gen Virol, 2003. 84(Pt 5): p. 1309-16.
38. Dell'Angelica, E.C., C.E. Ooi, and J.S. Bonifacino, Beta3A-adaptin, a subunit of the adaptor-like complex AP-3. J Biol Chem, 1997. 272(24): p. 15078-84.
39. Craig, H.M., et al., Interactions of HIV-1 nef with the mu subunits of adaptor protein complexes 1, 2, and 3: role of the dileucine-based sorting motif. Virology, 2000. 271(1): p. 9-17.
40. Dell'Angelica, E.C., et al., AP-3: an adaptor-like protein complex with ubiquitous expression. Embo J, 1997. 16(5): p. 917-28.
41. Dell'Angelica, E.C., C. Mullins, and J.S. Bonifacino, AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem, 1999. 274(11): p. 7278-85.
42. Dell'Angelica, E.C., C. Mullins, and J.S. Bonifacino, AP-4, a novel protein complex related to clathrin adaptors, in J Biol Chem. 1999. p. 7278-85.
43. Hirst, J., et al., Characterization of a fourth adaptor-related protein complex. Mol Biol Cell, 1999. 10(8): p. 2787-802.
44. Dilaver, G., et al., Colocalisation of the protein tyrosine phosphatases PTP-SL and PTPBR7 with beta4-adaptin in neuronal cells. Histochem Cell Biol, 2003. 119(1): p. 1-13.
45. Aguilar, R.C., et al., Signal-binding specificity of the mu4 subunit of the adaptor protein complex AP-4. J Biol Chem, 2001. 276(16): p. 13145-52.
46. Mattera, R., et al., Definition of the Consensus Motif Recognized by {gamma}-Adaptin Ear Domains. J Biol Chem, 2004. 279(9): p. 8018-8028.
47. Mattera, R., et al., Divalent interaction of the GGAs with the Rabaptin-5-Rabex-5 complex. Embo J, 2003. 22(1): p. 78-88.
48. Shiba, T., et al., Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature, 2002. 415(6874): p. 937-41.
49. Bai, H., B. Doray, and S. Kornfeld, GGA1 interacts with the adaptor protein AP-1 through a WNSF sequence in its hinge region. J Biol Chem, 2004.
50. Collins, B.M., P.J. Watson, and D.J. Owen, The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev Cell, 2003. 4(3): p. 321-32.
51. Shiba, Y., et al., GAT (GGA and Tom1) Domain Responsible for Ubiquitin Binding and Ubiquitination. J Biol Chem, 2004. 279(8): p. 7105-7111.
52. Ghosh, P., et al., Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol, 2003. 163(4): p. 755-66.
53. Miller, G.J., et al., Recognition of accessory protein motifs by the gamma-adaptin ear domain of GGA3. Nat Struct Biol, 2003. 10(8): p. 599-606.
54. Schledzewski, K., H. Brinkmann, and R.R. Mendel, Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J Mol Evol, 1999. 48(6): p. 770-8.
55. Takatsu, H., et al., Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system, in Biochem Biophys Res Commun. 2001. p. 1083-9.
56. Liang, J.O. and S. Kornfeld, Comparative activity of ADP-ribosylation factor family members in the early steps of coated vesicle formation on rat liver Golgi membranes. J Biol Chem, 1997. 272(7): p. 4141-8.
57. Eugster, A., et al., The {alpha}- and {beta}'-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol Biol Cell, 2003.
58. Cosson, P., et al., New COP1-binding motifs involved in ER retrieval. Embo J, 1998. 17(23): p. 6863-70.
59. Rohde, H.M., et al., The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem, 2003. 278(52): p. 52689-99.
60. Piguet, V., et al., Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell, 1999. 97(1): p. 63-73.
61. Majoul, I., et al., KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell, 2001. 1(1): p. 139-53.
62. Fiedler, K., et al., Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science, 1996. 273(5280): p. 1396-9.
63. Watson, P.J., et al., Gamma-COP appendage domain - structure and function. Traffic, 2004. 5(2): p. 79-88.
64. Hoffman, G.R., et al., Conserved structural motifs in intracellular trafficking pathways: structure of the gammaCOP appendage domain. Mol Cell, 2003. 12(3): p. 615-25.
65. Andag, U., T. Neumann, and H.D. Schmitt, The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast. J Biol Chem, 2001. 276(42): p. 39150-60.
66. Andag, U. and H.D. Schmitt, Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J Biol Chem, 2003. 278(51): p. 51722-34.
67. Duden, R., et al., epsilon-COP is a structural component of coatomer that functions to stabilize alpha-COP. Embo J, 1998. 17(4): p. 985-95.
68. Cosson, P., et al., Delta- and zeta-COP, two coatomer subunits homologous to clathrin-associated proteins, are involved in ER retrieval. Embo J, 1996. 15(8): p. 1792-8.
69. Dogic, D., et al., The ADP-ribosylation factor GTPase-activating protein Glo3p is involved in ER retrieval. Eur J Cell Biol, 1999. 78(5): p. 305-10.
70. Peyroche, A., et al., The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci, 2001. 114(Pt 12): p. 2241-53.
71. Spang, A., et al., The ADP ribosylation factor-nucleotide exchange factors Gea1p and Gea2p have overlapping, but not redundant functions in retrograde transport from the Golgi to the endoplasmic reticulum. Mol Biol Cell, 2001. 12(4): p. 1035-45.
72. Salama, N.R., J.S. Chuang, and R.W. Schekman, Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol Biol Cell, 1997. 8(2): p. 205-17.
73. Barlowe, C., et al., COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 1994. 77(6): p. 895-907.
74. Swaroop, A., et al., Molecular characterization of a novel human gene, SEC13R, related to the yeast secretory pathway gene SEC13, and mapping to a conserved linkage group on human chromosome 3p24-p25 and mouse chromosome 6. Hum Mol Genet, 1994. 3(8): p. 1281-6.
75. Bi, X., R.A. Corpina, and J. Goldberg, Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature, 2002. 419(6904): p. 271-7.
76. Miller, E.A., et al., Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell, 2003. 114(4): p. 497-509.
77. Barlowe, C., Molecular recognition of cargo by the COPII complex: a most accommodating coat. Cell, 2003. 114(4): p. 395-7.
78. Weissman, J.T., H. Plutner, and W.E. Balch, The mammalian guanine nucleotide exchange factor mSec12 is essential for activation of the Sar1 GTPase directing endoplasmic reticulum export. Traffic, 2001. 2(7): p. 465-75.
79. Gimeno, R.E., P. Espenshade, and C.A. Kaiser, COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. Mol Biol Cell, 1996. 7(11): p. 1815-23.
80. Supek, F., et al., Sec16p potentiates the action of COPII proteins to bud transport vesicles. J Cell Biol, 2002. 158(6): p. 1029-38.