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1. Summary

Cytokinesis is a highly ordered cellular process driven by interactions between
central spindle microtubules and the actomyosin contractile ring linked to the
dynamic remodelling of the plasma membrane. The mechanisms responsible
for reorganizing the plasma membrane at the cell equator and its coupling to
the contractile ring in cytokinesis are poorly understood. We report here that Syn-
dapin, a protein containing an F-BAR domain required for membrane curvature,
contributes to the remodelling of the plasma membrane around the contractile
ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bispho-
sphate (PI(4,5)P,) at the cleavage furrow, where it directly interacts with a
contractile ring component, Anillin. Accordingly, Anillin is mislocalized during
cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin
leads to cytokinesis defects with abnormal cortical dynamics. The minimal seg-
ment of Syndapin, which is able to localize to the cleavage furrow and induce
cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences.
Phosphorylation of this region prevents this functional interaction, resulting in
reduced ability of Syndapin to bind to and deform membranes. Thus, the depho-
sphorylated form of Syndapin mediates both remodelling of the plasma
membrane and its proper coupling to the cytokinetic machinery.

2. Introduction

Cytokinesis is the final step of cell division required to partition the newly seg-
regated daughter chromosomes, cytoplasmic macromolecules and organelles
into daughter cells [1]. Defects in this process lead to aneuploidy associated
with infertility, developmental defects and cancers [2,3]. Cytokinesis in most
eukaryotes is accomplished through contraction of the contractile ring, which
in turn leads to constriction of the plasma membrane [4]. Recent studies have
shown that membrane trafficking and remodelling machineries also play cru-
cial roles in both furrowing and abscission [5,6]. The processes whereby the

© 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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plasma membrane is locally remodelled for cytokinesis
and the nature of the molecular components that couple the
membrane to the contractile ring are still uncertain. Anillin,
an essential scaffold protein in cytokinesis [7], has been
suggested to play a role as a molecular linker between the
plasma membrane and the contractile ring [8,9], but it appears
to be functionally redundant with other membrane anchor(s)
that remain to be identified.

F-BAR proteins are evolutionarily conserved proteins
that facilitate membrane curvature [10,11]. The membrane-
binding F-BAR domains form dimeric positively charged
modules that bind to negatively charged lipids (e.g.
PI(4,5)P,). Most F-BAR proteins also interact with cytoskeletal
regulators to provide a functional interface between mem-
branes and the cytoskeleton in diverse processes, including
endocytosis, cell motility and cell adhesion. The F-BAR pro-
teins of fission yeast (Cdc15p) and budding yeast (Hoflp) are
already known to play essential roles in cytokinesis [12,13].
Cdcl5p regulates contractile ring assembly and maintenance
[14,15] and organizes sterol-rich membrane domains during
cytokinesis [16]. Hoflp is also required for regulation of the
contractile ring dynamics and septum formation in cytokinesis
[17,18]. In contrast with the yeasts, although the F-BAR
proteins, mouse PSTPIP [19] and human Syndapin 2 [20],
have been implicated in animal cell cytokinesis, their precise
molecular function has not been defined.

Here, we provide direct evidence for a role of a Drosophila
F-BAR protein, Syndapin, in cytokinesis. Syndapin is involved
in multiple cellular processes, such as endocytosis [21,22],
notochord development [23], neuromorphogenesis [24] and
cell adhesion [25], but an involvement in cytokinesis has
not been defined. We find that Drosophila Syndapin is
ubiquitously expressed and is required for cytokinesis both
in mitosis and male meiosis. Syndapin colocalizes with
PI(4,5)P, and directly binds to Anillin at the cleavage furrow,
thus providing one component of the link between the
plasma membrane and the contractile ring during cytokinesis.
Either elevating or reducing the level of Syndapin induces
cytokinesis defects with abnormal membrane behaviour,
suggesting that Syndapin also regulates the dynamics of the
cell cortex during cytokinesis. Finally, Syndapin’s association
with the furrow is prevented by phosphorylation; this reduces
its membrane-binding affinity and deforming activity, sug-
gesting a regulatory mechanism for cytoskeleton-membrane
interaction during cytokinesis.

3. Results

3.1. Drosophila Syndapin localizes to the cleavage
furrow during cytokinesis

To gain insight into the molecular nature of the coupling
between the plasma membrane and the contractile ring in cyto-
kinesis, we examined functions of a set of candidate proteins,
the F-BAR proteins. We identified six F-BAR domain-contain-
ing proteins encoded in the Drosophila genome: Syndapin,
Cip4, Nwk, FCHo/CG8176, Fps85D and NOSTRIN/
CG42388 (see electronic supplementary material, figure Sla).
Among these Drosophila F-BAR proteins, we examined the
localization of Syndapin, Cip4, Nwk and FCHo/CG8176 by
expressing them as GFP fusions in the cultured Drosophila
cell line D.Mel-2. Syndapin::GFP localized to the cleavage

furrow and the midbody throughout cytokinesis (see electro-
nic supplementary material, figure S1b); Cip4::GFP localized
to the midbody but only in late cytokinesis (see electronic
supplementary material, figure Slc); and FCHo/CG8176 (see
electronic supplementary material, figure S1d) and Nwk (not
shown) were cytoplasmic. Syndapin formed discrete foci iso-
tropically distributed on the cell cortex in metaphase but
accumulated at the cleavage furrow upon anaphase onset
(see electronic supplementary material, movie S1).

These patterns of subcellular localization of F-BAR pro-
teins led us to focus upon Syndapin because its association
with the cleavage furrow suggested a role in cytokinesis. Syn-
dapin is evolutionarily conserved and highly similar to its
human orthologues, Syndapin 1, 2 and 3 (also called Pacsin
1, 2 and 3) (figure 1a). Syndapin contains both an F-BAR
and an SH3 domain that are connected by a flexible linker
containing an NPF (Asn-Pro-Phe) motif required for binding
to EH domain proteins (EHDs) [26].

To confirm whether the localization profile of Syndapin:GFP
corresponded to that of endogenous Syndapin, we raised an
antibody against Drosophila Syndapin and analysed its localiz-
ation by immunofluorescence microscopy. The anti-Syndapin
antibody recognized a protein of around 65 kDa in both cultured
D.Mel-2 cells and fly extracts (figure 1b), which was depleted fol-
lowing Syndapin RNAI (see electronic supplementary material,
figure S2a). Using immunofluorescence, localization of endo-
genous Syndapin was indistinguishable from Syndapin:GFP
(figure 1c).

Syndapin is abundantly expressed in third instar larval
brains (figure 1b), where it localizes to the cleavage furrow
of neuroblasts during asymmetrical cell division (figure 1d).
Syndapin is also expressed in testes but is slightly less abun-
dant than in D.Mel-2 cells or larval brains (figure 1b),
and, despite several attempts, our antibody could not detect
endogenous Syndapin by immunofluorescence microscopy.
However, Syndapin::GFP expressed from a transgene could
be detected at the cleavage furrow in primary spermatocytes
(figure 1le; electronic supplementary material, movie S2).
Thus, taken together, the localization of Syndapin is consist-
ent with it having a role in cytokinesis during mitosis and
male meiosis.

3.2. Drosophila Syndapin functions in cytokinesis

To determine whether Syndapin functions in cytokinesis, we
first generated a strong hypomorphic Syndapin mutant fly
(Synd™™) by imprecise excision of a P-element. The expression
level of Syndapin was strongly reduced in Synd™* (Synd/Df)
compared with Oregon R (wild-type) flies (figure 2a). Almost
all homozygous and hemizygous Synd™! animals died at
the third instar larval stage, consistent with the pleiotropic
requirements for the protein in membrane trafficking that
give Syndapin pivotal roles in Drosophila development. We
then looked for cytokinesis defects in the male germ line in
these mutants, because spermatogenesis offers a well-defined
lineage independent of other developmental processes,
making the testes an ideal tissue to study potential cell cycle
roles of genes encoding proteins with other cellular functions.
The primary spermatogonial cell that arises from a germ line
stem cell undertakes four rounds of mitosis to form primary
spermatocytes that, following an extended G2 phase, under-
take the two meiotic divisions to produce spermatids. At the
so-called ‘onion stage’, the post-meiotic spermatid cysts offer
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Figure 1. Drosophila Syndapin localizes to the cleavage furrow in cytokinesis. (@) Comparison of Drosophila Syndapin (DmSyndapin) with human Syndapin (HsSyn-
dapin1, 2 and 3) showing principal domains and identities obtained by BLAST searches between primary sequences. (b) Immunoblot showing relative levels of
Syndapin (Synd) and Tubulin (Tub) as loading control in extracts of D.Mel-2 cells (DMel), total third instar larvae (total), third instar larval central nervous system
(brain) and third instar larval testes (testis). (c) D.Mel-2 cells immunostained to reveal endogenous Syndapin (red), Tubulin (green) and counterstained with DAPI to
reveal DNA (blue). (d) Asymmetrically dividing neuroblasts stained to reveal Syndapin (red), Tubulin (green) and DNA (blue). (e) Primary spermatocytes in telophase
of meiosis | expressing Syndapin::GFP (green) and stained to reveal Tubulin (red) and DNA (blue). Scale bars represent 10 m.

a highly effective way of assessing cytokinesis defects; in
controls, these cysts contain cells having a single spherical
nucleus and a mitochondrial aggregate, the Nebenkern and
very few multi-nucleated cells (0.55%; figure 2b,c, wild-type).
By contrast, we found that in Syndm”ﬂ flies, the proportion of
multi-nucleated cells increased by almost 20-fold (10.66%;
figure 2b,c, Synd/Df), indicating that Syndapin is required for
cytokinesis during male meiosis.

We further characterized these cytokinesis defects by exam-
ining Synd””‘ﬂ primary spermatocytes by immunofluorescence
microscopy. During normal cytokinesis, the central spindle, an
antiparallel array of microtubules (MTs), forms between segre-
gated chromosomes and contains the furrowing signalling
complex, centralspindlin (containing Pavarotti-KLP and Rac-
GAP50C) at its midzone. In wild-type cells, the central spindle
and its associated proteins were constricted by the contractile
ring as the cleavage furrow ingressed and no cells showed
abnormal cytoskeletal structures (figure 2d, wild-type). By
contrast, Synd™" mutant spermatocytes displayed a poorly
organized central spindle, and a fragmented distribution of

centralspindlin (Pavarotti) (38.5%, n = 13) and of the contractile
ring component Anillin (41.7%, n = 12) (figure 2d Synd/ Df).
To gain further insight into the cytokinesis defects in
Synd’””ﬂ, we carried out time-lapse imaging of primary sper-
matocytes in transgenic flies expressing Tubulin:GFP [27]
(figure 2¢) and a membrane marker PLCS-PH:GFP [28]
(figure 2f ). In wild-type spermatocytes, there are two distinct
populations of astral MTs: peripheral MTs (p) and interior
MTs (i) (figure 2¢, wild-type, —4 min, p and i; electronic sup-
plementary material, movie S3). In anaphase, the peripheral
MTs and interior MTs formed cortical and central spindle
MT bundles, respectively (figure 2e¢, wild-type, 0-12 min;
electronic supplementary material, movie S3), and were
finally pushed inwards and compacted by the ingressing
cleavage furrow (figure 2e, wild-type, 16—24 min; electronic
supplementary material, movie S3). In these processes, mem-
brane invagination occurred symmetrically in more than 90%
of cells (n = 21), and the overall cortical membrane behaviour
was well coordinated with chromosome segregation and cell
elongation (figure 2f, wild-type; electronic supplementary
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Figure 2. Syndapin is required for cytokinesis in male meiosis. (a) Immunoblot of extract from Oregon R (wild-type in a dilution series) and Syndapin mutant (Synd/
Df) third instar larvae reveal expression levels of Syndapin (Synd) and Tubulin (Tub). (b) Phase contrast images of onion-stage spermatids in Oregon R (wild-type)
and Syndapin mutant (Synd/Df) flies. Nuclei, white spheres; Nebenkern, black spheres. Multi-nulcleated cells are indicated (red arrows). (¢) The Syndapin mutant
(Synd/Df) showed 10.66% multi-nucleated spermatids in comparison with 0.55% in Oregon R (wild-type) flies. More than 60 and 400 cells were counted (n = 3)
for quantifying the average proportion of multi-nucleate cells of Synd/Df and wild-type flies, respectively. Bars indicate SEs. (d) Spermatocytes in telophase of
meiosis | from Oregon R (wild-type) and Syndapin mutant (Synd/Df) flies stained to reveal Pavarotti or Anillin (red), Tubulin (green) and DNA (blue). Pavarotti
and Anillin were mislocalized in 38.5% (n = 13) and 41.7% (n = 12) of primary spermatocytes in the Syndapin mutant, while these defects were not observed in
wild-type spermatids (n > 30). Scale bars represent 10 m. (e) Time-lapse series of wild-type (upper) and Syndapin mutant (Synd/Df, lower) spermatocytes
expressing tubulin::GFP in progression through cytokinesis. To highlight tubulin signals, inverted LUT images of tubulin::GFP (black) are shown. See Results for
detail. p, Peripheral MTs; i, interior MTs. The extensive gap between cortex and spindle is indicated by double-headed arrows in Syndapin mutant spermatocytes.
The arrows mark a rare example of peripheral central spindle bundles in the mutant that fails to ingress. Abnormal MT dynamics in cytokinesis were observed in
63.6% of Syndapin mutant spermatocytes (n = 11), while none of the wild-type spermatocytes (n = 21) showed the abnormalities. ( f) Time-lapse series of wild-
type (upper) and Syndapin mutant (Synd/Df; lower) spermatocytes expressing PLCS-PH::GFP together with tubulin::GFP in progression through cytokinesis. The
arrowheads mark asymmetrical ingression of the cleavage furrow in Syndapin mutant spermatocytes. Scale bars represent 10 m.
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material, movie S5). By contrast, the peripheral MTs of Synd™
spermatocytes were less robust (figure 2e, Synd/Df, —4 min;
electronic supplementary material, movie S4), and the central
spindle failed to form in an organized manner after anaphase
onset (figure 2e, Synd/Df, 0—12 min; electronic supplementary
material, movie S4). Unstable peripheral MT bundles occasion-
ally formed but then disintegrated with failure of cleavage
furrow ingression (figure 2e, Synd/Df, 16—40 min, arrowheads;
electronic supplementary material, movie S4). The spindles in
Synd™* spermatocytes were often mispositioned with a gap
between the centrosomes and cortex (figure 2e, Synd/Df,
—4min and 16 min, double-headed arrow; electronic sup-
plementary material, movie S4). The abnormal MT dynamics in
cytokinesis was observed in 63.6% of Syndapin mutant sperma-
tocytes (n = 11), whereas none of the wild-type spermatocytes
showed the abnormalities. Interestingly, ingression of the clea-
vage furrow in Syn spermatocytes was often asymmetric,
failing to progress to the interior of the cell and then regressing
(85.7%, n=7; figure 2f, Synd/Df, 0-10 min, arrowheads;
electronic supplementary material, movie S6), suggesting an
unstable interaction of cell membrane and cytokinetic machinery.

To confirm that Syndapin also functions in cytokinesis
following mitosis, we analysed the effect of its depletion on
cytokinesis in D.Mel-2 cells. Syndapin was substantially
depleted after 4 days of RNAI (see electronic supplementary
material, figure S2a). Interestingly, more than 60% of Synda-
pin RNAI cells showed irregular cortical structures near the

dmutl

cleavage furrow (see electronic supplementary material,
figure S2b,c) and about 10% of these failed cytokinesis (see
electronic supplementary material, figure S2d,e). Thus,
Syndapin is required for cytokinesis by contributing to the
cortical behaviour in both mitosis and male meiosis.

3.3. Syndapin colocalizes with PI(4,5)P, and Anillin at
the cleavage furrow

A previous study showed that Drosophila Syndapin associ-
ated with PI(4,5)P, in vitro [23]. In yeast and in animal cells,
PI(4,5)P; localizes to the cleavage furrow and plays important
regulatory roles in cytokinesis [29]. We therefore asked
whether Syndapin also colocalized with PI(4,5)P, during
cytokinesis. To visualize the localization of PI(4,5)P, in
D.Mel-2 cells, we used a PI(4,5)P, probe, Tubby-GFP, which
has been successfully used in Drosophila cells in a previous
study on cytokinesis [30]. As expected from previous find-
ings, Syndapin and Tubby-GFP colocalized at the cleavage
furrow (figure 3a), suggesting that Syndapin associated
with PI(4,5)P, during cytokinesis. We next asked whether
interfering with phosphoinositide homeostasis might affect
Syndapin localization. A PI(4,5)P, phosphatase, OCRL
(oculocerebrorenal syndrome of Lowe), is required for cyto-
kinesis in both Drosophila [30] and human cells [31]. OCRL
knockdown in Drosophila S2 cells induces large intracellular
giant vesicles enriched with PI(4,5)P, and destabilizes the
cleavage furrow [30]. Following OCRL RNAi, we found
that Syndapin redistributed from the cell cortex to these intra-
cellular giant vesicles (figure 3b). These results suggest that
Syndapin localization responds to the phosphoinositide
cycles associated with PI(4,5)P, synthesis.

The above findings indicate that Syndapin associates with
the plasma membrane at the cleavage furrow and raise the
question as to how it might interact with the cytokinetic

machinery. In our previous proteomic survey, Syndapin was
found as one of Anillin interactors [32]. In fact, Syndapin coloca-
lized with Anillin during cytokinesis in both cultured cells
(figure 3c) and spermatocytes (see electronic supplementary
material, figure S31). To determine whether Syndapin and Anil-
lin can interact, we tested this possibility by in vitro binding
assay using GST-tagged Syndapin and in vitro translated
*S labelled Anillin (figure 3d). This revealed a strong interaction
between Syndapin’s SH3 domain and the 149-262 amino acid
segment of Anillin previously described as a myosin II binding
domain [33], which contains two putative SH3-binding epitopes
(-Pro-X-X-Pro-) (figure 3d). We confirmed this interaction by a
co-immunoprecipitation assay between FLAG-tagged Syndapin
and GFP-tagged Anillin upon expression of these proteins in
cultured cells (figure 3¢). In contrast to membrane lipids, Anillin
was dispensable for Syndapin’s localization to the cleavage
furrow (figure 3f ), suggesting that Syndapin may function by
binding to membrane lipids, and so providing an interface
for association with Anillin. Accordingly, high-resolution
microscopy revealed that Syndapin, PI(4,5)P, and Anillin have
an overlapping distribution at the cleavage furrow, with Anillin
lying at a more interior position than Syndapin (figure 3g).

3.4. Syndapin influences cortical dynamics
in cytokinesis

To determine the functional contributions of lipid- and Anillin-
binding properties of Syndapin in cytokinesis, we analysed
localization of various segments of Syndapin to the cleavage
furrow and their effect on cytokinesis upon overexpression in
the presence of endogenous Syndapin. Deletion of Syndapin’s
SH3 domain (ASH3) and the NPF motif (ASH3ANPF) did not
affect its localization (figure 4a), whereas deletion of the
F-BAR domain (AF-BAR) or mutations in the F-BAR that dis-
rupt binding to anionic lipids such as PI(4,5)P, in wvitro
(K137E, K141E, K145E, K149E and K152E, which we refer to
as K5E) [23] prevented localization to the cleavage furrow
(figure 4a). Although necessary, the F-BAR domain of Synda-
pin alone was not sufficient for localization to the cleavage
furrow (figure 4a, F-BAR), and an additional flanking 65
amino acids C-terminal to the F-BAR domain were required
for it to localize to the cleavage furrow (figure 4a, F-BARX).
Together these results concur with our above findings that Syn-
dapin’s colocalization with PI(4,5)P, to the cleavage furrow
requires its lipid-binding F-BAR domain.

We then examined the effects of expressing various
GFP-tagged Syndapin fragments upon cytokinesis, includ-
ing full-length Syndapin::GFP. We found that expression of
Syndapin constructs that localized to the cleavage furrow
had a disruptive effect on cytokinesis. Thus, for example, the
full-length GFP-tagged protein induced an increase in multi-
nucleated cells of around 40% in comparison with expression
of GFP alone (figure 4b). Similarly, the other GFP-tagged
furrow-localizing fragments (i.e. ASH3, ASH3ANPF and
F-BARX) also induced a strong cytokinetic defect (figure 4b).
We also found that expression of Syndapin::GFP in spermato-
cytes induced robust cytokinesis defects (see electronic
supplementary material, figure S3bc). As expression of the
AF-BAR mutant did not show a cytokinetic defect, the defect
is unlikely to be owing to disruption of protein interactions
with the SH3 but more likely to reflect loss of membrane-bind-
ing ability conferred by the F-BARX region.
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phosphatase (dOCRL RNAi) or a control (GST RNAi). Staining reveals Syndapin (red), Tubulin (green) and DNA (blue). (c) D.Mel-2 cells at successive stages of mitosis
stained to reveal Syndapin (green), Anillin (red) and DNA (blue). (d) Segments of Anillin produced by coupled in vitro transcription/translation and used in binding
assays with bacterially expressed GST-Syndapin (GST-Synd), GST-Syndapin-SH3 (GST-SH3) or control (GST) as indicated on lane headers of autoradiogram (Inp =
Input). Segments of Anillin are indicated by each row as amino acid residues. (e) Co-immunoprecipitation experiment of FLAG-tagged Syndapin (SyndFLAG) co-
transfected into D.Mel-2 cells with either GFP or GFP-tagged Anillin N-terminal fragment (Ani1—409GFP). Immunoprecipitation using GFP-Trap was followed by
immunoblotting using anti-GFP (GFP) or anti-FLAG (oFLAG) antibodies. () Anillin is dispensable for Syndapin localization to the cleavage furrow in D.Mel-2 cells.
(i) D.Mel-2 cells after 3 days RNAi of Anillin showing localization of Syndapin (green), Anillin (red) and DNA (blue). (ii) Depletion of Anillin after Anillin RNAi was
confirmed by immunoblotting using anti-Anillin antibody (cAnillin) in comparison with the expression level of Syndapin (oSyndapin) and Tubulin (ccTubulin)
antibodies. (g) Relative distribution of Syndapin (red) with either PI(4,5)P, or Anillin (green) at the cleavage furrow of a D.Mel-2 cell. Intensity scan was carried
out along the indicated line on the micrograph.
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Figure 4. Syndapin controls cortical dynamics in cytokinesis. (a) Schematics of truncations or mutations of Syndapin tagged with GFP and expressed in D.Mel-2 cells.
Images showing localization of Syndapin fragments (green), Tubulin (red) and DNA (blue) in telophase cells. (b) Immunofluorescent images of cells transiently
expressing indicated (i) Syndapin fragments for 3 days and (i) quantification of the binucleated phenotype. More than 300 cells were counted (n = 3) for quantify-
ing the average proportion of multi-nucleate cells. Bars indicate s.e. Arrows indicate binucleated cells. (c) Time-lapse series of D.Mel-2 cells overexpressing either GFP
(GFP) or Syndapin::GFP (SyndGFP) at the indicated intervals. Time 000" is anaphase onset. Presumptive cleavage furrow sites are indicated in SyndGFP cells (yellow
arrowheads). (d) Kinetics of the cleavage furrow showing cortical dynamics of cells overexpressing either GFP or Syndapin::GFP. Width of the cleavage furrow was
measured from time-lapse series of cells overexpressing either GFP (GFP) or Syndapin::GFP (SyndGFP) and average width (n = 5 for each samples) were plotted over
time as relative value to the starting width. Time point zero is anaphase onset. Bars indicate SEs. (e) Immunofluorescent images of D.Mel-2 cells overexpressing
either GFP (GFP), Syndapin::GFP (SyndGFP) or F-BARx::GFP (F-BARXGFP) (green) revealing Pavarotti (Pav), Myosin Heavy Chain (MHC), Rho1 (Rho), Anillin (Ani) (red)
and DNA (blue). (f) Overexpression of cleavage furrow localization defective mutants (AF-BARGFP and K5SEGFP) of Syndapin showing GFP-tagged Syndapin
fragments (green), Pavarotti (red) and DNA (blue). Local blebs in the cleavage furrow are indicated (white arrows). Scale bars represent 10 m.
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We used time-lapse imaging to characterize better the
cytokinesis defects caused by increased Syndapin expression.
In control cells expressing GFP alone, the cleavage furrow
started to ingress within 4 min after anaphase onset at
224 pmmin~! (s.em. =0.15, n=5) and achieved maximal
ingression within 10 min (figure 4c, GFP; figure 4d; electronic
supplementary material, movie S7). By contrast, the cleavage
furrow of cells overexpressing exogenous Syndapin failed to
ingress during anaphase (figure 4c, SyndGFP, 0.00—6.00; elec-
tronic supplementary material, movie S8). At telophase, the
cytoplasm of overexpressing cells ballooned out around the
nascent nuclei (figure 4c, SyndGFP, 8.00-10.00; electronic
supplementary material, movie S8). At later times, there
was more generalized blebbing that appeared over the
entire cell surface (figure 4c, SyndGFP 12.00-20.00; electronic
supplementary material, movie S8). In such cells, cleavage
furrow ingression was slowed to 0.33 um min~! (s.em. =
0.13, n = 5; figure 4d). In cells expressing exogenous Synda-
pin or its F-BARx fragment, the central spindle formed
properly, but contractile ring components likely to have
membrane associations were mislocalized (figure 4e,
SyndGFP and F-BARXGFP). By contrast, membrane-bind-
ing-deficient mutants did not prevent proper formation of
the cleavage furrow, although some local blebbing was still
observed (figure 4f, AF-BARGFP and K5EGEFP).

3.5. Phosphoregulation of Syndapin in cytokinesis

The Synd F-BARx fragment (containing a 65-amino-acid
C-terminal extension to the F-BAR domain) localized well
to the cleavage furrow, a property that required residues
326-369 (figure 5a). The equivalent regions of fission yeast
Cdcl5p and budding yeast Hoflp have been reported to be
phosphoregulated during cytokinesis [35,36], leading us to
test the possibility that the 65-amino-acid extension to Synda-
pin’s F-BAR domain is a regulatory region for membrane
binding and has been evolutionarily retained from yeasts to
metazoans. We found the mobility of Synd F-BARx (1-369
fragment), expressed in D.Mel-2 cells, was shifted by treat-
ment with the protein phosphatase inhibitor okadaic acid
(OA), whereas mobility of the F-BAR+21 amino acids
(Synd1-325 fragment) was unchanged (figure 5b). This mobi-
lity shift is thus likely to be owing to the phosphorylation of
residues 326-369. OA differentially inhibits the two major
families of serine/threonine phosphatases, PP1 and PP2A
with respective ICsp s of 3nM and 0.2-1nM [37]. As we
observed the mobility shift of Syndapin only when cells
were treated with at least 10 nM OA, this implies that a PP1
family member may be responsible for dephosphorylation
(figure 5c¢). Consistent with this, 10 nM OA resulted in loss of
Syndapin from the cleavage furrow (figure 5d). Together
these results suggest that Syndapin’s localization to the
cleavage furrow requires its dephosphorylation.

A previous phosphoproteome analysis of Drosophila
embryos has identified multiple phosphorylation sites in Syn-
dapin [34]. We independently employed mass spectrometry to
map phosphorylation sites on affinity-purified Syndapin::PtA
from OA-treated D.Mel-2 cells (electronic supplementary
material, figure S4). Both approaches identified clusters of
phosphorylation sites between residues 326 and 369 and in
the F-BAR domain (figure 5¢). To evaluate the biological sig-
nificance of these phosphorylation sites, we mutated the 9
Ser (S) or Thr (T) target residues within amino acids 326-369

and 3 Ser residues in the F-BAR domain to either phosphomi- n

metic (S or T to D (ST>D)) or non-phosphorylatable (S or T to
A (ST>A)) amino acids and analysed both their subcellular
localization and their effects upon cytokinesis. Neither the
ST>A nor the ST>D mutants, with amino acid changes in
all the 12 residues, underwent a mobility shift after OA treat-
ment, confirming again that the electrophoretic shift of
endogenous protein was likely to be owing to phosphorylation,
and that the sites responsible for the shift had been identified
by our phospho-mapping (see electronic supplementary
material, figure S5a). Consistent with the mislocalization of
Syndapin after 10nM OA treatment, the phosphomimetic
mutant in all 12 sites of the combined regions failed to localize
to the furrow (figure 5f, 12ST>12D). By contrast, the non-phos-
phorylatable mutant could localize to the cleavage furrow
(figure 5f, 12ST>12A), suggesting that folding of the protein
was not perturbed by the mutations. Phosphomimetic mutants
in either the three sites in the F-BAR domain alone or in the
nine sites in the 326-369 segment still localized to the cleavage
furrow (see electronic supplementary material, figure S5b).
This strongly suggests that both the F-BAR and the extended
region need to be dephosphorylated for cleavage furrow local-
ization. Expression of the 125T>12A mutant led to robust
cytokinesis defects with ingression failure of the cleavage
furrow, whereas expression of the 12ST>12D mutant had
weak cytokinesis defects (figure 5¢,/). This is a similar obser-
vation to that shown of the Synd K5E mutant, which also
failed to localize to the cleavage furrow and gave no defect in
cytokinesis (figure 4).

To determine whether phosphorylation affects membrane
binding, as suggested by the above in vivo experiments, we
employed a liposome binding assay using purified fragments
of Syndapin and its mutants. Syndapin constructs containing
F-BAR domains efficiently bound and tubulated liposomes
giving tubule diameters around 55+ 11 nm (figure 6a,b,
Synd, F-BARx and F-BAR). The full-length protein was less
efficient in membrane binding and tubulation compared with
F-BAR and F-BARX, as has previously been observed for
mammalian Pacsin/Syndapin and reported to be owing to
auto-inhibition [38,39]. By contrast, the lipid-binding mutant
(K5E) bound to the liposomes much less efficiently and
showed very little tubulation (figure 6a,b, K5E), although
some rare but very narrow tubules are found. Interestingly,
unlike tubules induced by either full-length Syndapin or the
F-BARx fragment, tubules formed by the F-BAR domain
alone frequently formed tangles (figure 6b, F-BAR, arrow-
heads). Importantly, the phosphomimetic mutant showed
reduced membrane-binding and tubulating activity, while
the non-phosphorylatable mutant bound and tubulated lipo-
somes just as the wild-type protein (figure 6a,b, 125T>A and
12ST>D). Together these results suggest that the phosphoryl-
ation status of Syndapin regulates its membrane-binding and
deforming activity, and hence its role in cytokinesis.

4. Discussion

Here, we have provided the first compelling description of the
requirements for an F-BAR protein in cytokinesis in animal
cells. Our work does not exclude other F-BAR proteins from
participating in cytokinesis, but it does show a positive role
for Syndapin in cortical membrane dynamics at the cleavage
furrow. Syndapin’s localization to the cleavage furrow and
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Figure 5. Syndapin localization and function is regulated by phosphorylation. (a) Immunofluorescent images showing localization of the GFP-tagged 1-369 amino
acid fragment (F-BARx) and 1-325 amino acid fragment of Syndapin (Synd1-325) (green), Tubulin (red) and DNA (blue) at telophase. (b) Immunoblotting using
anti-GFP antibody to detect cells expressing either F-BARx::GFP or Synd1—325::GFP untreated or treated with 100 nM OA for 2 h. (c) Immunoblot to detect Syn-
dapin (Synd) or phosphorylated Syndapin (P-Synd) in total extracts of cells treated with indicated concentrations of OA for 2 h. (d) Localization of Syndapin (red),
Tubulin (green) and DNA (blue) in cells treated with DMSO (control) or 10 nM OA for 2 h. (e) Phosphorylation sites identified by our phosphomapping study and in
the published study [34] are shown in red. (f) Localization of GFP-tagged non-phosphorylatable (12ST>>12A) or phosphomimetic (125T>12D) forms of Syndapin
(green), Tubulin (red) and DNA (blue). (g) D.Mel-2 cells overexpressing indicated GFP-tagged Syndapin phosphomutants (green) and stained to show DNA (red).
More than 300 cells were counted (n = 3) for quantifying the average proportion of multi-nucleate cells. Bars indicate s.e. (h) Overexpression of Syndapin phos-
phomutants showing GFP-tagged Syndapin mutants (green), Tubulin (red) and DNA (blue). Scale bars represent 10 m.

its in vitro membrane binding and tubulation are regulated by
phosphorylation. The defects in cytokinesis ensuing from
phosphomimetic mutants imply that phosphorylation of
Syndapin regulates cytokinesis by affecting its membrane
association. However, this does not exclude a possible indirect
effect whereby phosphorylation may influence the association
between Syndapin’s SH3 and F-BAR domains, as has been pro-
posed to auto-inhibit its membrane association [38,39]. Our
findings would suggest that auto-inhibition results in reduced
membrane binding, and yet we do not see increased membrane
binding and tubulation with the full-length 12ST>A mutant
(figure 6a,b, compare Synd with F-BARx and 12ST>A). This
implies that the major effect of phosphorylation is directly
upon its membrane association. The phosphorylation of Syn-
dapin could be a mechanism to prevent its premature
association with the membrane at the cleavage furrow, as
with phosphoregulation of Cdcl5p during cytokinesis [36].
Thus, Syndapin joins the F-BAR proteins of S. pombe and S. cer-
evisize (Cdc15p and Hoflp, respectively) as proteins that are
also phosphoregulated during cytokinesis [35,36].

Syndapin’s localization to the cleavage furrow requires
its association with anionic lipids via its F-BAR domain

(figure 3a,b). Syndapin also colocalizes with and directly binds
to Anillin (figure 3c—e), but this interaction is dispensable
for Syndapin localization (figure 3f). By contrast, Anillin is
mislocalized during cytokinesis at least in primary spermato-
cytes of Syndapin mutants (figure 2d). Together these results
led us to hypothesize that Syndapin may be a component of
the coupling between the plasma membrane and the Anillin
ring and hence the contractile ring. Alternatively, as Anillin
itself has been proposed to have a role in linking the plasma
membrane and the contractile ring [8,9], it is possible that
Syndapin and Anillin share redundant function, and they
may function cooperatively at the interface of plasma membrane
and the contractile ring. Other candidate proteins for linking
the contractile ring to the plasma membrane in cytokinesis are
the C1 domain-containing MgcRacGAP of human cells [40]
and the C2 domain-containing protein Innl of budding yeast
[41]. Interestingly, Innl interacts with the F-BAR protein,
Hoflp, and together they may cooperatively regulate mem-
brane dynamics during cytokinesis in this organism. The
Drosophila  genome encodes several uncharacterized C2
domain-containing proteins, and it will be interesting to exam-
ine whether any of these proteins function cooperatively with
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Figure 6. Membrane-binding and membrane-deforming activity of Syndapin is regulated by phosphorylation. (a) (i) Phosphorylation suppresses membrane-binding
affinity of Syndapin. Liposome spin assay with purified recombinant Syndapin in full length (Synd), F-BAR domain —+linker (F-BARx), F-BAR domain (F-BAR), K5E
mutant (K5E), non-phosphorylatable mutant (12ST>A) and phosphomimetic mutant (12ST>D) was followed by SDS-PAGE. Black arrow indicates band corre-
sponding to liposomes. (ii) The amount of proteins pelleting with and without liposome was quantified and the % of protein that pellets with liposomes
was determined from three independent experiments, error bars + s.d.). (b) Phosphorylation inhibits liposome tubulation activity of Syndapin. Electron microscopic
images of liposome mixed with various Syndapin fragments. (i) Lower magpnification and (ii) higher magnification images are shown, nodes with tangled tubules
formed by Syndapin F-BAR domains are indicated (F-BAR, arrowheads). Scale bars represent 1 m and 200 nm for low magnification and high magnification
images, respectively. Liposome tubulation activity of each fragments was categorized as strong (+-+-), mild (4-+), weak (+) and no activity (—) in the table.

Syndapin in cytokinesis. It is also possible that some of the Such proteins could provide some functional redundancy to
other Drosophila F-BAR proteins (Cip4, Nwk, FCHo/CG8176, the molecular mechanism. Indeed, we cannot exclude the possi-
Fps85D and NOSTRIN/CG42388) function in cytokinesis. bility that other molecular components can participate in
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safeguarding the linkage of the membrane to the contractile
ring. The importance of such molecules might vary between tis-
sues, thus accounting for the differences in severity of Syndapin
phenotypes between different cell types.

Structure—function analyses demonstrated that expression
of Syndapin fragments comprising the minimum segments
required for the cleavage furrow localization (i.e. the F-BAR
domain plus its C-terminal 65 amino acids) could induce domi-
nant, strong cytokinesis defects (figure 4). Expression of
exogenous Syndapin also induced similar abnormal cortical
behaviour with furrow ingression failure and severe general-
ized blebbing. Surprisingly, despite the robustness of these
cytokinesis defects, the localization of the major components
of the central spindle (Pavarotti) was not affected, although
contractile ring components were misplaced around the central
part of the cell. By contrast, expression of Syndapin segments
that fail to bind to anionic lipids and localize to the cleavage
furrow (i.e. AFBAR and K5E) did not affect cytokinesis.
These results suggest that Syndapin affects cortical dynamics
during cytokinesis by directly associating with anionic lipids
on the plasma membrane. The S. pombe F-BAR protein,
Cdcl5p, has roles in organizing membrane domains into
lipid rafts as well as in the contractile ring formation [16].
Thus, it will be of future interest to determine whether Synda-
pin has an equivalent role in organizing membrane during
cytokinesis in animal cells as a means of regulating cortical
stiffness and dynamics [42,43].

Syndapin is required for synaptic vesicle recycling both in
mice [44] and in flies (LM.R. 2013, unpublished data), and an
involvement in neuronal morphogenesis is regulated by devel-
opmentally controlled phosphorylation [45]. This raises the
question of whether the functions of Syndapin in synaptic
vesicle trafficking and other developmental processes might
follow similar regulatory processes. The shape of a membrane
can be described by the radius of curvature in two perpendicu-
lar arcs [46]. At the cleavage furrow, the radius of curvature
along the axis of cell division will be positive, and perpendi-
cular to this it will be negative. Similar curvatures will arise
during vesicle recycling at the interface between the cap of a
nascent vesicle and its parent membrane. The banana-
shaped structure of F-BAR domains may make them ideal
for associating with membrane in the context of such curva-
ture, provided that all molecules orient in the one direction.
An involvement of Syndapin in both cytokinesis and synaptic
vesicle recycling would suggest that it can generate or stabilize
varying degrees of positive curvature. When overexpressed in
D.Mel-2 cells, we sometime see narrow tubules decorated
by Syndapin, and in vitro we observe tubules with approxi-
mate diameter of 55 nm. However, the diameter of positive
curvature of a cleavage furrow will be at least one order of
magnitude greater than this. Either Syndapin participates in
forming smaller buds that become incorporated into the clea-
vage furrow or it indeed associates with membranes having
larger diameters of curvature than may be suggested by the
diameter of the concave face of its F-BAR domain. This latter
possibility has some credibility because the extent of curvature
will depend on the local membrane concentration of the
F-BAR domain, and it would not be expected for the mem-
brane to be saturated with the protein in vivo (otherwise,
other membrane interacting proteins would be outcompeted).
Thus, we might expect only narrow tubules to be formed
either in vitro or, as a result of overexpression, in vivo when
membrane sites could be saturated.

Several future challenges lay ahead before we can fully
understand the regulation and roles of Syndapin in cytokinesis.
Although the OA sensitivity of the protein phosphatase that
dephosphorylates Syndapin suggests it is in the PP1 family,
further studies are required to identify precisely the protein
phosphatase(s) involved. Similarly, future studies will be
necessary to identify the kinase(s) required for Syndapin’s
phosphoregulation. An understanding of Syndapin’s precise
cytokinetic role will be aided by more detailed description of
its interacting partners. Although Syndapin interacts with
Anillin, we still await full description of its functions in cytoki-
netic network. Only with this knowledge will we begin to
understand how it might contribute to the coupling between
the contractile ring and central spindle MTs underlying the
cleavage furrow and the invaginating membrane.

5. Material and methods
5.1. Molecular biology

Expression constructs for GST-tagged Syndapin fragments
were generated by cloning of the corresponding PCR products
into pGEX4T-TEV (a gift from M. Mishima, University of War-
wick). Gateway technology (Life Technologies) was used for all
other cloning procedures as previously described [47]. Entry
vectors were prepared by B-P recombination cloning of PCR
products into pDONR221 vector, except for the entry vector
for Tubby C-terminal (a kind gift from Amy Kiger, UCSD).
Expression constructs for D.Mel-2 cells (GFP-, FLAG- or
Protein A-tagged proteins with constitutive actin 5c promoter)
or flies (GFP-tagged proteins with ubiquitin promoter) were
created by L-R recombination cloning of the entry clones
with corresponding destination vectors.

5.2. Cell culture, RNAi and DNA transfection

D.Mel-2 cells were grown in serum-free Express Five SFM
medium (Life Technologies) supplemented with 2 mM
L-glutamine and 1% Penicillin-Streptomycin at 25°C. For
RNAi treatment, double-stranded RNA (dsRNA) was prepared
using the T7 RiboMAX Express RNAi System (Promega) and
20 pg was used for transfecting 1 x 10° cells in six well plates
with TransFast transfection reagent (Promega) following man-
ufacturer’s instructions. The RNAi was induced for 3-5 days
and used for further phenotypic analyses. To transfect
D.Mel-2 cells, 3 x 10° cells in six well plates were transfected
with 1.5 pg expression plasmid using FuGENE (Promega). To
examine the consequences of the expression of Syndapin or
its fragments, cells were collected after 3 days of the transfection
for phenotypic analyses. For generating Blasticidin-resistant
stable cell lines, 0.3 g pCoBlast (Life Technologies) were co-
transfected together with expression plasmids and transgenic
cells were selected by adding Blasticidin (Life Technologies)
to the medium at the final concentration of 50 ug ml~'. The
same process also eliminated cells in which expression levels
resulted in lethality.

5.3. Fly stocks and genetics

Flies were raised on standard cornmeal medium at 25°C. The
Syndapin hypomorph mutant was generated by P-element
excision of the P{EP}Synd“""” obtained from Bloomington.
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We recovered a severe hypomorphic allele (Synd™") in which
a 536 bp deletion was found extending to the right of the
insertion site of EP(3)0877. The deletion removes approxi-
mately half of the first exon and part of the first intron. The
deficiency Df(3R)BSC43 which uncovers the Syndapin gene
was obtained from Bloomington. The B-Tubulin::GFP used in
the immunofluorescent microscopy was described previously
[27]. The transgenic flies expressing PLC3-PH-GFP (a gift
from Julie Brill, University of Toronto) was described pre-
viously [28]. Transgenic fly lines of Ub-Syndapin::GFP and
UASp-Syndapin::GFP were generated by BestGene, Inc.

5.4. Antibodies

Anti-Syndapin antibody was raised in rabbits against purified
His-tagged Syndapin F-BAR domain. Serum production was
performed by Harlan Laboratories. Other antibodies used in
this study were a mouse monoclonal anti-tubulin (clone
DM1A; Sigma-Aldrich), rabbit anti-Pav-KLP [48], rabbit anti-
Anillin (a gift from Julie Brill, University of Toronto), rabbit
anti-Myosin Heavy Chain (MHC) (a gift from Roger Karess,
Institut Jaques Monod), mouse anti-Rho antibody (clone
p1D9, Developmental Studies Hybridoma Bank), mouse
anti-GFP antibody (clones 7.1 and 13, Roche Applied Science)
Peroxidase-ChromPure anti-rabbit IgG and anti-mouse
IgG (Jackson ImmunoResearch Laboratories, Inc.). Alexa
Fluor—conjugated secondary antibodies were purchased from
Life Technologies.

5.5. Immunostaining of D.Mel-2 cells, spermatocytes
and neuroblast

For immunostaining of D.Mel-2, cells grown on coverslips
were fixed with a fixative (4% formaldehyde, 60 mM PIPES,
30 mM Hepes, 10 mM EGTA and 4mM MgSO4, pH 6.8)
for 12 min. After washing with PBS, the cells were permeabi-
lized and blocked with PBS containing 0.5% Triton X-100 and
3% BSA for 1 h. The samples were then incubated with pri-
mary antibodies diluted in PBSTB (PBS containing 0.1%
Triton X-100 and 1% BSA) overnight at 4°C in a humid
chamber. After washing with PBSTB, the cells were incubated
with secondary antibodies diluted in PBSTB for 4 h at room
temperature. Then, the cells are washed with PBSTB and
mounted in Vectashield with DAPIL For immunostaining
of spermatocytes, testes were dissected from third instar
larvae in PBS, squashed in PBS containing 5% glycerol and
quickly frozen in liquid nitrogen. The samples were then
fixed using ice-cold methanol for 10 min and permeabilized
in PBS with 0.5% Triton X-100 for 30 s. After washing with
PBS for 10 min, the samples were blocked with PBS contain-
ing 0.1% Triton X-100 and 1% BSA. Incubations with primary
antibodies were performed overnight at 4°C in a humid
chamber. Preparations were then incubated with secondary
antibodies at room temperature for 4h. Samples were
washed with PBS and mounted in Vectashield with DAPIL
Neuroblast immunostaining was performed as previously
described [49]. Dilution of antibodies were as follows:
anti-Syndapin (1:1000 for D.Mel-2 and 1:100 for spermato-
cytes and neuroblasts), anti-Pav-KLP (1:750 for D.Mel-2
and 1:75 for spermatocytes and neuroblasts), anti-Anillin
(1:100), anti-MHC (1:1000), anti-Rho (1:50) and Alexa

Fluor-conjugated secondary antibodies (1:500 for D.Mel-2 m

and 1:50 for neuroblasts and spermatocytes).

5.6. Microscopy

For phase-contrast imaging of onion-stage cysts, testes were
dissected in 0.7% NaCl solution and gently squashed under a
coverslip until the appropriate degree of flattening was
attained. Specimens were screened for intact cysts of primary
spermatocytes using phase contrast on a Nikon Microphot-
FX microscope at low magnification [25], and the morphology
and number of cells in those cysts were analysed. Images were
acquired with an AxioCam camera with AXIOVISION software
(Carl Zeiss, Inc.). Fixed D.Mel-2 cells were visualized using
an Axiovert 200 fluorescence microscope (Carl Zeiss, Inc.)
with a 100x NA 1.4 objective lens, and images were acquired
using a Coolsnap HQ camera (Photometrics) and METAMORPH
software (MDS Analytical Technologies). Fixed testes were
visualized on a confocal microscope (LSM510 Meta; Carl
Zeiss, Inc.) with 100x NA 1.4 objective lens. For time-lapse
imaging of D.Mel-2 cells expressing Syndapin::GFP and GFP,
cells were maintained in open chambers at 25°C and images
were acquired on a Zeiss Axiovert 200 microscope fitted with
RSIII spinning disc confocal unit using Vorociry software
(PerkinElmer Life Sciences). Ten optical sections were captured
at 30 sintervals witha 100x NA 1.4 lensand a2 x 2 bin. Time-
lapse imaging analyses of primary spermatocytes and neuro-
blasts were performed using a 100x NA 1.4 objective lens
on a fluorescence microscope outfitted with excitation, emis-
sion and neutral density filter wheels (Prior Scientific), and a
z-axis focus drive (PIFOC; Physik Instruments). Samples
were maintained at a constant temperature of 25°C throughout
filming. Images were acquired using a Coolsnap HQ camera
and METAMORPH software. All images were analysed using
ImMaGE] (National Institutes of Health) and processed in
ProrosHoP (Adobe).

5.7. In vitro protein binding assay and
co-immunoprecipitation assay

The GST-tagged Syndapin fragments were purified using
glutathione sepharose 4B according to the manufacturer’s
instructions (GE Healthcare). [35S]-methionine-labelled Anil-
lin fragments were prepared from the corresponding PCR
fragments amplified with primers harbouring a T7 promoter,
and then transcribed and translated in vitro using the TnT T7
Quick Coupled Transcription/Translation Systems (Promega)
in the presence of [35S]-methionine. Generally, 25 pl of gluta-
thione sepharose beads containing purified GST-Syndapin
fragments were mixed with 5 pl of [355]-methionine-labelled
Anillin fragments and 300 pl of NET-N+ buffer (50 mM
Tris-HCI, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40
and a cocktail of proteinase inhibitors commercially available
from Roche), and incubated on ice for 30 min with periodic
agitation. The mixture was then washed five times by
adding 500 pl of NET-N + buffer followed by centrifugation
at 1500 r.p.m. in a benchtop centrifuge for 1 min. Beads were
resuspended in 25 ul of 2x SDS sample buffer and typically
one-fifth of the mixture (10 pl) was loaded on 4-20% tris-
glycine gel (Invitrogen). Proteins were then transferred onto
a nitrocellulose membrane using the iBlot dry blotting
system (Invitrogen) and exposed to X-ray films at —80°C.
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Co-immunoprecipitation assay of Syndapin and Anillin
was performed using GFP-Trap (ChromoTek). In short,
D.Mel-2 cells were transfected with pAc-Syndapin::FLAG
and pAc-Anillin1-409::GFP for 3 days, and total cell extract
was used for co-immunoprecipitation analyses following
the manufacturer’s instructions.

5.8. Liposome co-sedimentation and in vitro
tubulation assays

For protein-membrane-binding experiments, 200 nm lipo-
somes were made by pore extrusion. Liposomes were
composed of 99% Folch brain-derived lipids—1:1 mixture
of Avanti Polar Lipids, (141101) and Sigma Folch (B1502)
and 1% PI(4,5)P,. Lipid components were mixed in 9:1
chloroform : methanol, dried in glass tubes by argon gas,
rehydrated in buffer (150 mM NaCl, 20 mM HEPES pH 7.4
and 2.5 mM DTT) to a final concentration of 1 mg ml~! and
filtered through Whatman 0.2 pm diameter polycarbonate fil-
ters. Syndapin proteins used in the assay were expressed and
purified as GST fusions, and the GST tag was removed by
TEV protease. For lipid co-sedimentation assays, 10 pM
protein was incubated with 5 pl of 0.5 mgml™ ' liposomes
in a total volume of 40 pl for 30 min at room temperature,
and then spun down in a benchtop ultracentrifuge (Optima
TL Ultracentrifuge) for 15min at 80000 r.p.m. (rotor
TLA100). The supernatant was separated from the pellet,
both were resuspended in sample buffer, and samples were
boiled and run on SDS-PAGE gels. For in vitro tubulation
assays, protein was incubated as above at room temperature
for 15-30 min and pipetted onto glow-discharged carbon-
coated copper TEM grids (Agar brand) for approximately
1 min. Grids were negatively stained with 2% uranyl acetate
for 60 s, washed in water briefly and dried by blotting. Samples
were examined on a PW6010/20 EM2055 transmission electron
microscope (Philips).
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analysed on a 4000 QTrap instrument and the MIDAS approach
was applied, essentially as described previously [51,52].
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SUPPLEMENTARY INFORMATION

Supplementary Table 1

Syndapin non-phosphorylatbale mutant
SyndS350A S351A gcctgaagaagaacaccgecgecttgageagtgteage
SyndS350A S351A antisense gctgacactgctcaaggeggeggtgttettcttcagge
SyndS356A S360A S363A  ccttgagcagtgtcgccagecagageggetgtgaaggecgaaatagegaccea
SyndS356A S360A S363A antisense tggtcgctatttcggecttcacageegcetetgetggegacactgetcaagg
SyndS371A cgaccacgcaatccgcagtcaccacatcg
SyndS371A antisense cgatgtggtgactgeggattgegtggteg
Syndapin phosphomimetic mutant

SyndS350D S351D aacagcctgaagaagaacaccgacgacttgagecagtgtcagecageag
SyndS350D S351D antisense ctgctgetgacactgctcaagtegteggtgttettettcaggetgtt
SyndS356D S360D S363D  caccttgagcagtgtcgacagcagageggatgtgaaggacgaaatagegaccacg

SyndS356D S360D S363D antisense cgtggtcgetatttcgtecttcacatcecgetetgetgtegacactgetcaaggtg

SyndS371D
SyndS371D_antisense
SyndS181A

SyndS181A antisense
SyndS181D

SyndS181D antisense
SyndS353354D
SyndS353354D_antisense
SyndT368D
SyndT368D_antisense
SyndS353354A
SyndS353354A antisense
SyndT368A

SyndT368A antisense

atagcgaccacgcaatccgatgtcaccacatcggaagcece
ggcttccgatgtggtgacatcggattgegtggtegetat
ccgatagctcgttggcgecggatcaggtg
cacctgatccggegecaacgagctatcgg
gccaatgccgatagetegttggatccggatcaggtgaagaaaatg
cattttcttcacctgatccggatccaacgagctatcggceattgge
agaagaacaccgacgacttggacgatgtcgacagcagageggatg
catccgctectgetgtcgacatcgtccaagtegteggtgttettet
gtgaaggacgaaatagcgaccgatcaatccgatgtcaccacatcg
cgatgtggtgacatcggattgatcggtegctatttcgtecttcac
gaacaccgecgcecttggeegetgtcgecagecagageg
cgctetgetggegacageggecaaggeggeggtgtte
ccgaaatagcgaccgegceaatccgeagtc

gactgcggattgegeggtegctatttcgg



SyndS178D

SyndS178D antisense
SyndS178A

SyndS178A antisense
Syndapin K5E mutant
SyndK137E_S
SyndK137E_AS

Synd K141E K145E S
Synd K141E _K145E AS
Synd K149E KI152E S

Synd K149E K152E AS

caggaacgcaatgccaatgccgatgacgatttggatccggatcaggtgaag
cttcacctgatccggatccaaatcgtcatcggceattggeattgegttectg
cgcaatgccaatgccgatgecgegttggegeeg

cggcgecaacgeggeatcggceattggceattgeg

cctggaggatctgttcgagaaggceccagaaacc
ggtttctgggcecttctcgaacagatccteccagg
gaaggcccaggagcecctgggecgagetgetgge
gccagceagetcggeccagggcetectgggcectte
ggecgagetgetggecagaggtcgaggaggecaaag

ctttggcctectcgacctetgecageagetecggece



Supplementary Figure S1. Drosophila F-BAR proteins (a) Schematic illustrations of 6
Drosophila  F-BAR  proteins, Syndapin(CG33094), Cip4(CG15015), Nwk(CG4684),
FCHo(CG8176), Fps85D(CG8874) and NOSTRIN(CG42388). (b) D.Mel-2 cells expressing a
stable Syndapin::GFP transgene (green) and stained to reveal Tubulin (red) and DNA
(blue). (c) D.Mel-2 cells expressing a stable Cip4::GFP transgene (green) and stained to
reveal Tubulin (red) and DNA. (d) D.Mel-2 cells expressing a stable FCHo::GFP

transgene (green) and stained to reveal Tubulin (red) and DNA.

Supplementary Figure S2. Syndapin RNAi induces mild cytokinesis defects with abnormal

cortical structures (a) Immunoblot of D.Mel-2 cells following control (GST) or Syndapin
(Synd) RNA! stained to reveal Syndapin (Synd) and Tubulin (Tub) as loading control. (b)

Depletion of Syndapin induces abnormal cortex in cytokinesis. Localisation of Syndapin

(Synd, green), Tubulin (Tub, red) and DAPI (DNA, blue) in telophase/cytokinesis cells
after control (GST RNAI) or Syndapin (Synd RNAi) RNAi are shown. Abnormal cortical
bulges at the cleavage furrow in induced after Syndapn RNAi are indicated (white
arrows). (c¢) Telophase / cytokinesis cells with abnormal cortical structures account for
15.3% (n>50, N=3) for control (GST) and 64.4% (n>50, N=3) for Syndapin (Synd)
RNAI treated cells. Error bars indicate SEs. (d) Binucleate D.Mel-2 cell (arrow) formed
after Syndapin RNAI treatment (right) but not control RNAi (left). Tubulin, red; DNA,
blue. (e) Binucleate cells account for 2.4% (n>350, N=3) or 5.80+0.44% (n>400, N=3)
for control (GST) RNAIi and Syndapin (Synd) RNAI treated cells, respectively. Error bars

indicate SEs.



Supplementary Figure S3. Syndapin localisation and overexpression phenotype in male
meiotic cytokinesis (a) spermatocytes showing localisation of Syndapin::GFP (green), Anillin
(red) and DNA (blue). (b) Phase contrast images of onion stage spermatids in Syndapin-
overexpressing flies. Binucleate cells in wild-type (Oregon R) and two different transgenic flies
of Syndapin::GFP (3M and 1M) are quantified by counting more than 80 spermatids. (c)
Immunofluorescent images of spermatocytes overexpresing Syndapin::GFP showing Anillin (red),

Tubulin (green) and DNA (blue). Scale bar, 10um.

Supplementary Figure S4. MS/MS spectra showing the major diagnostic fragment ions

enabling phosphorylation site determination.

Supplementary Figure S5. Characterization of Syndapin phosphomutants (a) Immunoblot
using anti-GFP antibody on extracts of D.Mel-2 cells expressing GFP fusions of either wild-type
(Synd::GFP), non-phosphorylatable (12ST>12A::GFP) or phosphomimetic (12ST>12D::GFP)
that were either untreated or treated with Okadaic acid (OA). (b) Localization of GFP-tagged
non-phosphorylatable (ST>A) or phosphomimetic (ST>D) mutants of Syndapin in either the F-
BAR (F-BAR, 3ST>3A and 3ST>3D), medial region (medial, 9ST>9A and 9ST>9D) or the two
regions together (F-BAR-+medial, 12ST>12A and 12ST>12D). GFP-fusion proteins (green),

Tubulin (red) and DNA (blue).

Supplementary movie S1 Syndapin::GFP in D.Mel-2 cells

Supplementary movie S2 Syndapin::GFP in primary spermatocytes

Supplementary movie S3 Tubulin::GFP in primary spermatocyte of wild type flies



Supplementary movie S4 Tubulin-GFP in primary spermatocyte of Syndapin mutant flies

Supplementary movie S5 PLCAPH::GFP in primary spermatocyte of wild type flies

Supplementary movie S6 PLCAPH::GFP in primary spermatocyte of Syndapin mutant flies

Supplementary movie S7 GFP overexpression in D.Mel-2 cells

Supplementary movie S8 Syndapin::GFP overexpression in D.Mel-2 cells
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