Probability Theory Random Variables and Distributions

Rob Nicholls

MRC LMB Statistics Course 2014

Significance magazine (December 2013) Royal Statistical Society

Laxdæl Gísla Njáls

Significance magazine (December 2013) Royal Statistical Society

Have London's roads become more dangerous for cyclists?

Significance magazine (December 2013) Royal Statistical Society

Contents

- Set Notation
- Intro to Probability Theory
- Random Variables
- Probability Mass Functions
- Common Discrete Distributions

A set is a collection of objects, written using curly brackets {}

If *A* is the set of all outcomes, then:

$$A = \{heads, tails\}$$

$$A = \{one, two, three, four, five, six\}$$

A set does not have to comprise the full number of outcomes

E.g. if A is the set of dice outcomes no higher than three, then:

$$A = \{one, two, three\}$$

If *A* and *B* are sets, then:

- *A*' Complement everything but *A*
- $A \cup B$ Union (or)
- $A \cap B$ Intersection (and)
- $A \setminus B$ Not

 \varnothing Empty Set

Venn Diagram:

Venn Diagram:

 $A = \{two, three, four, five\}$

Venn Diagram:

 $B = \{four, five, six\}$

Venn Diagram:

 $A \cap B = \{four, five\}$

Venn Diagram:

 $A \cup B = \{two, three, four, five, six\}$

Venn Diagram:

 $(A \cup B)' = \{one\}$

Venn Diagram:

 $A \setminus B = \{two, three\}$

Venn Diagram:

 $(A \setminus B)' = \{one, four, five, six\}$

To consider Probabilities, we need:

- 1. Sample space: Ω
- 2. Event space: ${\cal F}$
- 3. Probability measure: P

To consider Probabilities, we need:

1. Sample space: Ω – the set of all possible outcomes

$$\Omega = \{heads, tails\}$$

$$\Omega = \{one, two, three, four, five, six\}$$

To consider Probabilities, we need:

2. Event space: \mathcal{F} – the set of all possible events

 $\Omega = \{heads, tails\} \\ \mathcal{F} = \{\{heads, tails\}, \{heads\}, \{tails\}, \emptyset\} \\$

To consider Probabilities, we need:

3. Probability measure: *P* $P: \mathcal{F} \rightarrow [0,1]$

P must satisfy two axioms:

 $P(\Omega) = 1$ Probability of any outcome is 1 (100% chance)

 $P(\bigcup_{i} A_{i}) = \sum_{i} P(A_{i})$ If and only if A_{1}, A_{2}, \dots are disjoint

To consider Probabilities, we need:

3. Probability measure: *P* $P: \mathcal{F} \rightarrow [0,1]$

P must satisfy two axioms:

 $P(\Omega) = 1$ Probability of any outcome is 1 (100% chance)

 $P(\bigcup_i A_i) = \sum_i P(A_i)$

If and only if
$$A_1, A_2, \ldots$$
 are disjoint

$$P(\{one, two\}) = P(\{one\}) + P(\{two\})$$
$$\frac{1}{3} = \frac{1}{6} + \frac{1}{6}$$

To consider Probabilities, we need:

- 1. Sample space: Ω
- 2. Event space: ${\cal F}$
- 3. Probability measure: P

As such, a *Probability Space* is the triple: (Ω, \mathcal{F}, P)

To consider Probabilities, we need:

The triple: (Ω, \mathcal{F}, P)

i.e. we need to know:

- 1. The set of potential outcomes;
- 2. The set of potential events that may occur; and
- 3. The probabilities associated with occurrence of those events.

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$P(A') = 1 - P(A)$$

$$A = \{one, two\}$$
$$A' = \{three, four, five, six\}$$

$$P(A) = 1/3$$

 $P(A') = 2/3$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

P(A') = 1 - P(A) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

P(A') = 1 - P(A) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$P(A') = 1 - P(A)$$
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$P(A') = 1 - P(A)$$
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$P(A') = 1 - P(A)$$
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $A = \{one, two\}$ P(A) = 1/3 $B = \{two, three\}$ P(B) = 1/3 $A \cup B = \{one, two, three\}$ $P(A \cup B) = 1/2$ $A \cap B = \{two\}$ $P(A \cap B) = 1/6$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$\begin{split} P(A') &= 1 - P(A) \\ P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ \text{If } A \subseteq B \quad \text{then } P(A) \leq P(B) \text{ and } P(B \setminus A) = P(B) - P(A) \end{split}$$

$A = \{one, two\}$	P(A) = 1/3
$B = \{one, two, three\}$	P(B) = 1/2
$B \setminus A = \{three\}$	$P(B \setminus A) = 1/6$

Notable properties of a Probability Space (Ω, \mathcal{F}, P) :

$$P(A') = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
If $A \subseteq B$ then $P(A) \le P(B)$ and $P(B \setminus A) = P(B) - P(A)$

$$P(\emptyset) = 0$$

Probability Theory

So where's this all going? These examples are trivial!

Probability Theory

So where's this all going? These examples are trivial!

Suppose there are three bags, B_1 , B_2 and B_3 , each of which contain a number of coloured balls:

- $B_1 2$ red and 4 white
- $B_2 1$ red and 2 white
- $B_3 5$ red and 4 white

A ball is randomly removed from one the bags. The bags were selected with probability:

- $P(B_1) = 1/3$
- $P(B_2) = 5/12$
- $P(B_3) = 1/4$

What is the probability that the ball came from B_1 , given it is red?

Probability Theory

Conditional probability: $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Partition Theorem:

$$P(A) = \sum_{i} P(A \cap B_i)$$
 If the B_i partition A

Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

A *Random Variable* is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by *P*

A *Random Variable* is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by *P*

Formally, a Random Variable is a function:

 $X: \Omega \to \mathbb{R}$

A *Random Variable* is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by *P*

Formally, a Random Variable is a function:

$$X: \Omega \to \mathbf{R}$$

Probability that the random variable X adopts a particular value x:

 $P(\{w \in \Omega : X(w) = x\})$

A *Random Variable* is an object whose value is determined by chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding probabilities as specified by *P*

Formally, a Random Variable is a function:

$$X: \Omega \to \mathbf{R}$$

Probability that the random variable X adopts a particular value x:

 $P(\{w \in \Omega : X(w) = x\})$

Shorthand: P(X = x)

Example:

If the result is *heads* then WIN – *X* takes the value 1 If the result is *tails* then LOSE – *X* takes the value 0 $\Omega = \{heads, tails\}$ $X : \Omega \rightarrow \{0,1\}$

$$P(X = x) = \begin{cases} P(\{heads\}) & x = 1 \\ P(\{tails\}) & x = 0 \end{cases}$$

$$P(X = x) = 1/2 \qquad x \in \{0, 1\}$$

Example:

 $\Omega = \{one, two, three, four, five, six\}$

Win £20 on a six, nothing on four/five, lose £10 on one/two/three $X: \Omega \rightarrow \{-10, 0, 20\}$

Example:

$$\Omega = \{one, two, three, four, five, six\}$$

Win £20 on a six, nothing on four/five, lose £10 on one/two/three $X: \Omega \rightarrow \{-10, 0, 20\}$ $P(\{six\}) = 1/6 \qquad x = 20$ $P(\{four, five\}) = 1/3 \qquad x = 0$ $P(\{one, two, three\}) = 1/2 \qquad x = -10$

Note - we are considering the probabilities of events in ${\mathcal F}$

Given a random variable:

 $X: \Omega \twoheadrightarrow A$

The Probability Mass Function is defined as:

 $p_X(x) = P(X = x)$

Only for discrete random variables

Example:

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

Notable properties of Probability Mass Functions:

$$p_X(x) \ge 0$$
$$\sum_{x \in A} p_X(x) = 1$$

Notable properties of Probability Mass Functions:

$$p_X(x) \ge 0$$
$$\sum_{x \in A} p_X(x) = 1$$

Interesting note:

If p() is some function that has the above two properties, then it is the mass function of some random variable...

For a random variable $X: \Omega \rightarrow A$

Mean:

$$E(X) = \sum_{x \in A} x p_X(x)$$

For a random variable $X : \Omega \rightarrow A$

Mean:

$$E(X) = \sum_{x \in A} x p_X(x)$$

Mean

For a random variable $X: \Omega \rightarrow A$

Mean:

$$E(X) = \sum_{x \in A} x p_X(x)$$

x

For a random variable $X : \Omega \rightarrow A$

Mean: $E(X) = \sum_{x \in A} x p_X(x)$

Median: any *m* such that:
$$\sum_{x \le m} p_X(x) \ge 1/2$$
 and

Mean Median

 $\sum p_X(x) \ge 1/2$

 $x \ge m$

For a random variable $X : \Omega \rightarrow A$

Mean: $E(X) = \sum_{x \in A} x p_X(x)$

The **Bernoulli** Distribution: $X \sim \text{Bern}(p)$

p : success probability

$$X: \Omega \to \{0,1\} \qquad p_X(x) = \begin{cases} p & x=1 \\ 1-p & x=0 \end{cases}$$

ſ

The **Bernoulli** Distribution: $X \sim \text{Bern}(p)$

p : success probability

$$X: \Omega \rightarrow \{0,1\} \qquad \qquad p_X(x) = \begin{cases} p & x=1\\ 1-p & x=0 \end{cases}$$

Example:

$$X: \{heads, tails\} \rightarrow \{0,1\}$$

$$p_X(x) = 1/2$$
 $x \in \{0,1\}$

Therefore $X \sim \text{Bern}(1/2)$

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- *n* : number of independent trials
- p : success probability

$$X: \Omega \longrightarrow \{0, 1, \dots, n\}$$

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- *n* : number of independent trials
- *p* : success probability

$$X: \Omega \to \{0, 1, \dots, n\} \qquad p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

- $p_x(x)$: probability of getting x successes out of n trials
 - p^x : probability of x successes
- $(1-p)^{n-x}$: probability of (n-x) failures $\binom{n}{x} = \frac{n!}{x!(n-x)!}$: number of ways to achieve x successes and (n-x) failures (Binomial coefficient)

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- *n* : number of independent trials
- p : success probability

$$X: \Omega \to \{0, 1, \dots, n\} \qquad p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

n=1:
$$p_X(x) = p^x (1-p)^{1-x} = \begin{cases} p & x=1 \\ 1-p & x=0 \end{cases}$$

 $X \sim Bin(1, p) \qquad \Leftrightarrow \qquad X \sim Bern(p)$

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- n : number of independent trials
- p : success probability

$$X: \Omega \to \{0, 1, \dots, n\} \qquad p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Number of Successes (x)

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- *n* : number of independent trials
- p : success probability

$$X: \Omega \to \{0, 1, \dots, n\} \qquad p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Number of Successes (x)

The **Binomial** Distribution: $X \sim Bin(n, p)$ E(X) = np

- *n* : number of independent trials
- p : success probability

$$X: \Omega \to \{0, 1, \dots, n\} \qquad p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

/ \

Number of Successes (x)

Example:

Number of heads in *n* fair coin toss trials $X: \Omega \rightarrow \{0, 1, ..., n\}$

n = 2 $\Omega = \{heads : heads, heads : tails, tails : heads, tails : tails \}$

In general: $|\Omega| = 2^n$

Example:

Number of heads in *n* fair coin toss trials $X: \Omega \rightarrow \{0, 1, ..., n\}$

n = 2 $\Omega = \{heads : heads, heads : tails, tails : heads, tails : tails \}$

In general: $|\Omega| = 2^n$

Notice: $X \sim Bin(n, 1/2)$

$$p_X(x) = \binom{n}{x} 0.5^n \qquad E(X) = n/2$$

The **Poisson** Distribution: $X \sim Pois(\lambda)$ $E(X) = \lambda$

Used to model the number of occurrences of an event that occur within a particular interval of time and/or space

 λ : average number of counts (controls rarity of events)

$$X: \Omega \to \{0, 1, ...\} \qquad p_X(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

The **Poisson** Distribution:

- Want to know the distribution of the number of occurrences of an event \Rightarrow Binomial?
- However, don't know how many trials are performed could be infinite!
- But we do know the average rate of occurrence: $E(X) = \lambda$

$$X \sim \operatorname{Bin}(n, p) \implies E(X) = np$$
$$\implies \lambda = np$$
$$\implies p = \frac{\lambda}{n}$$

Binomial:
$$p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

Binomial:
$$p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$p_X(x) = \frac{\lambda^x}{x!} \frac{n!}{n^x (n-x)!} \frac{\left(1 - \frac{\lambda}{n}\right)^n}{\left(1 - \frac{\lambda}{n}\right)^x}$$

Binomial:
$$p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

Binomial:
$$p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$p_X(x) = \lim_{n \to \infty} \left(\frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n} \right)^n \right)$$

Binomial:
$$p_X(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$p = \frac{\lambda}{n} \implies p_X(x) = \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

$$p_X(x) = \lim_{n \to \infty} \left(\frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n} \right)^n \right) = \frac{\lambda^x}{x!} e^{-\lambda}$$

The Poisson distribution is the Binomial distribution as $n \rightarrow \infty$

If
$$X_n \sim \operatorname{Bin}(n,p)$$
 then $X_n \xrightarrow{d} \operatorname{Pois}(np)$

If n is large and p is small then the Binomial distribution can be approximated using the Poisson distribution

This is referred to as the:

- "Poisson Limit Theorem"
- "Poisson Approximation to the Binomial"
- "Law of Rare Events"

$$\lambda$$
: fixed $n \rightarrow \infty \implies p \rightarrow 0$

Poisson is often more computationally convenient than Binomial

References

Countless books + online resources!

Probability theory and distributions:

 Grimmett and Stirzker (2001) Probability and Random Processes. Oxford University Press.

General comprehensive introduction to (almost) everything mathematics (including a bit of probability theory):

• Garrity (2002) All the mathematics you missed: but need to know for graduate school. Cambridge University Press.