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Set Notation 

A set is a collection of objects, written using curly brackets {}

If A is the set of all outcomes, then:

A set does not have to comprise the full number of outcomes

E.g. if A is the set of dice outcomes no higher than three, then:

A = {heads, tails}

A = {one, two, three, four, five, six}

A = {one, two, three}



Set Notation 

If A and B are sets, then:

!A

A∪B

A∩B

A \ B

∅

Complement – everything but A

Union (or)

Intersection (and)

Not

Empty Set
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Venn Diagram:
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Set Notation 

Venn Diagram:

A    B

A = {two, three, four, five}
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Set Notation 

Venn Diagram:

A    B

B = { four, five, six}
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Set Notation 

Venn Diagram:

A    B

A∩B = { four, five}
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Set Notation 

Venn Diagram:

A    B

A∪B = {two, three, four, five, six}
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Set Notation 

Venn Diagram:

A    B

(A∪B ") = {one}
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Set Notation 

Venn Diagram:

A    B

A \ B = {two, three}
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Set Notation 

Venn Diagram:

A    B

(A \ B !) = {one, four, five, six}
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1.  Sample space: Ω

2.  Event space: 

3.  Probability measure: P



Probability Theory 

To consider Probabilities, we need:

1.  Sample space: Ω  - the set of all possible outcomes


Ω = {heads, tails}

Ω = {one, two, three, four, five, six}



Probability Theory 

To consider Probabilities, we need:

2.  Event space:   - the set of all possible events

Ω = {heads, tails}
Ω = {{heads, tails},{heads},{tails},∅}



Probability Theory 

To consider Probabilities, we need:

3. Probability measure: P

P must satisfy two axioms:



P :F→ [0,1]

P(Ω) =1

P(
i
Ai ) = P(Ai )

i
∑

Probability of any outcome is 1 (100% chance)


If and only if                are disjointA1,A2,…



Probability Theory 

To consider Probabilities, we need:

3. Probability measure: P

P must satisfy two axioms:



P :F→ [0,1]

P(Ω) =1

P(
i
Ai ) = P(Ai )

i
∑

Probability of any outcome is 1 (100% chance)


If and only if                are disjointA1,A2,…

P({one, two}) = P({one})+P({two})
1
3
=
1
6
+
1
6



Probability Theory 

To consider Probabilities, we need:

1.  Sample space: Ω
2.  Event space: 
3.  Probability measure: P

As such, a Probability Space is the triple: (Ω,    ,P )




Probability Theory 

To consider Probabilities, we need:

The triple: (Ω,    ,P )

i.e. we need to know:
1.  The set of potential outcomes;
2.  The set of potential events that may occur; and
3.  The probabilities associated with occurrence of those events.



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

A = {one, two}
!A = {three, four, five, six}

P(A) =1/ 3
P( !A ) = 2 / 3
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P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)
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Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A    B
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Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)
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Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A    B



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A = {one, two}
B = {two, three}
A∪B = {one, two, three}
A∩B = {two}

P(A) =1/ 3
P(B) =1/ 3
P(A∪B) =1/ 2
P(A∩B) =1/ 6



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A ⊆ B P(A) ≤ P(B) P(B \ A) = P(B)−P(A)If               then                       and 

A    B
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Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A ⊆ B P(A) ≤ P(B) P(B \ A) = P(B)−P(A)If               then                       and 

A    B



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(A∪B) = P(A)+P(B)−P(A∩B)

A ⊆ B P(A) ≤ P(B) P(B \ A) = P(B)−P(A)If               then                       and 

A = {one, two}
B = {one, two, three}
B \ A = {three}

P(A) =1/ 3
P(B) =1/ 2
P(B \ A) =1/ 6



Probability Theory 

Notable properties of a Probability Space (Ω,    ,P ):

P( !A ) =1−P(A)

P(∅) = 0

P(A∪B) = P(A)+P(B)−P(A∩B)

A ⊆ B P(A) ≤ P(B) P(B \ A) = P(B)−P(A)If               then                       and 
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Probability Theory 
So where’s this all going? These examples are trivial!

Suppose there are three bags, B1, B2 and B3, each of which contain 
a number of coloured balls:
•  B1 – 2 red and 4 white
•  B2 – 1 red and 2 white
•  B3 – 5 red and 4 white

A ball is randomly removed from one the bags.
The bags were selected with probability:
•  P(B1) = 1/3
•  P(B2) = 5/12
•  P(B3) = 1/4

What is the probability that the ball came from B1, given it is red?



Probability Theory 

Conditional probability:



Partition Theorem:



Bayes’ Theorem:


P(A | B) = P(A∩B)
P(B)

P(A) = P(A∩Bi )
i
∑ If the     partition	  

P(A | B) = P(B | A)P(A)
P(B)

Bi A



Random Variables 

A Random Variable is an object whose value is determined by 
chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding 
probabilities as specified by P




Random Variables 

A Random Variable is an object whose value is determined by 
chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding 
probabilities as specified by P

Formally, a Random Variable is a function:




X :Ω→R



Random Variables 

A Random Variable is an object whose value is determined by 
chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding 
probabilities as specified by P

Formally, a Random Variable is a function:


Probability that the random variable X adopts a particular value x:

P({w ∈Ω : X(w) = x})

X :Ω→R



Random Variables 

A Random Variable is an object whose value is determined by 
chance, i.e. random events

Maps elements of Ω onto real numbers, with corresponding 
probabilities as specified by P

Formally, a Random Variable is a function:


Probability that the random variable X adopts a particular value x:

P({w ∈Ω : X(w) = x})

P(X = x)Shorthand:

X :Ω→R



Random Variables 

Example:


Ω = {heads, tails}
X :Ω→ {0,1}

P(X = x) =
P({heads}) x =1

P({tails}) x = 0

!

"
##

$
#
#

If the result is heads then  WIN  - X takes the value 1
If the result is  tails   then LOSE - X takes the value 0

P(X = x) =1 2 x ∈ {0,1}



Random Variables 

Example:




Win £20 on a six, nothing on four/five, lose £10 on one/two/three

Ω = {one, two, three, four, five, six}

X :Ω→ {−10,0, 20}



Random Variables 

Example:




Win £20 on a six, nothing on four/five, lose £10 on one/two/three

Ω = {one, two, three, four, five, six}

X :Ω→ {−10,0, 20}

P(X = x) =

P({six}) =1 6 x = 20

P({ four, five})=1 3 x = 0

P({one, two, three}) =1 2 x = −10

"

#

$
$
$

%

$
$
$

Note – we are considering the probabilities of events in 



Probability Mass Functions 

Given a random variable:




The Probability Mass Function is defined as:





Only for discrete random variables


X :Ω→ A

pX (x) = P(X = x)



Probability Mass Functions 
Example:

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

pX (x) =

P({six}) =1 6 x = 20

P({ four, five})=1 3 x = 0

P({one, two, three}) =1 2 x = −10

"

#

$
$
$

%

$
$
$



Probability Mass Functions 

Notable properties of Probability Mass Functions:

pX (x) ≥ 0

pX (x)
x∈A
∑ =1



Probability Mass Functions 

Notable properties of Probability Mass Functions:


Interesting note:
If p() is some function that has the above two properties, 
then it is the mass function of some random variable…

pX (x)
x∈A
∑ =1

pX (x) ≥ 0



Mean:

X :Ω→ AFor a random variable

E(X) = xpX (x)
x∈A
∑

Probability Mass Functions 



Probability Mass Functions 

Mean:

X :Ω→ AFor a random variable

E(X) = xpX (x)
x∈A
∑



Probability Mass Functions 

Mean:

X :Ω→ AFor a random variable

E(X) = xpX (x)
x∈A
∑ 1

n
xi

i=1

n

∑Compare with:



Probability Mass Functions 

Mean:

X :Ω→ AFor a random variable

E(X) = xpX (x)
x∈A
∑

Median: pX (x)
x≤m
∑ ≥1 2 pX (x)

x≥m
∑ ≥1 2any m such that:                               and



Probability Mass Functions 

Mean:

X :Ω→ AFor a random variable

E(X) = xpX (x)
x∈A
∑

Median: any m such that:                               and

Mode:       : most likely valueargmax
x

pX (x)( )

pX (x)
x≤m
∑ ≥1 2 pX (x)

x≥m
∑ ≥1 2



Common Discrete Distributions 



Common Discrete Distributions 

The Bernoulli Distribution:


p : success probability

X :Ω→ {0,1} pX (x) =
p x =1

1− p x = 0

"

#
$$

%
$
$

X ~ Bern(p)



Common Discrete Distributions 

The Bernoulli Distribution:


p : success probability

X :Ω→ {0,1}

X ~ Bern(p)

Example:

X : {heads, tails}→ {0,1}

pX (x) =1 2 x ∈ {0,1}

X ~ Bern(1 2)Therefore

pX (x) =
p x =1

1− p x = 0

"

#
$$

%
$
$



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

E(X) = np



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

pX (x) : probability of getting x successes out of n trials

: probability of x successes

: probability of (n-x) failures

: number of ways to achieve x successes and (n-x) failures
    (Binomial coefficient)

px

(1− p)n−x

n
x
!

"
#
$

%
&=

n!
x!(n− x)!

E(X) = np



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

n =1 : pX (x) = px (1− p)1−x =
p x =1

1− p x = 0

"
#
$

%$

X ~ Bin(1, p) ⇔ X ~ Bern(p)

E(X) = np



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

E(X) = np

n =10
p = 0.5



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

E(X) = np

n =100
p = 0.5



Common Discrete Distributions 

X ~ Bin(n, p)

pX (x) =
n
x
!

"
#
$

%
& px (1− p)n−xX :Ω→ {0,1,...,n}

The Binomial Distribution:


n : number of independent trials
p : success probability

E(X) = np

n =100
p = 0.8



Common Discrete Distributions 

Example:

Number of heads in n fair coin toss trials

Ω = {heads :heads,heads : tails, tails :heads, tails : tails}n = 2

Ω = 2nIn general:

X :Ω→ {0,1,...,n}



Common Discrete Distributions 

Example:

X ~ Bin(n,1 2)

Number of heads in n fair coin toss trials

Ω = {heads :heads,heads : tails, tails :heads, tails : tails}n = 2

Ω = 2n

pX (x) =
n
x
!

"
#
$

%
&0.5n

In general:

E(X) = n 2

Notice:

X :Ω→ {0,1,...,n}



Common Discrete Distributions 

X ~ Pois(λ)

pX (x) =
λ xe−λ

x!
X :Ω→ {0,1,...}

The Poisson Distribution: E(X) = λ

λ : average number of counts (controls rarity of events)	


Used to model the number of occurrences of an event 
that occur within a particular interval of time and/or space



Common Discrete Distributions 

•  Want to know the distribution of the number of occurrences of an event 
     Binomial?

•  However, don’t know how many trials are performed – could be infinite!

•  But we do know the average rate of occurrence:

The Poisson Distribution:

⇒

E(X) = λ

X ~ Bin(n, p) ⇒ E(X) = np
⇒ λ = np

⇒ p = λ
n



Common Discrete Distributions 

Binomial: pX (x) =
n!

x!(n− x)!
px (1− p)n−x

p = λ
n

⇒ pX (x) =
n!

x!(n− x)!
λ
n
#

$
%

&

'
(
x

1− λ
n

#

$
%

&

'
(
n−x



Common Discrete Distributions 

Binomial: pX (x) =
n!

x!(n− x)!
px (1− p)n−x

p = λ
n

⇒ pX (x) =
n!

x!(n− x)!
λ
n
#

$
%

&

'
(
x

1− λ
n

#

$
%

&

'
(
n−x

pX (x) =
λ x

x!
n!

nx (n− x)!

1− λ
n

#

$
%

&

'
(
n

1− λ
n

#

$
%

&

'
(
x



pX (x) =
n!

x!(n− x)!
px (1− p)n−x

p = λ
n

⇒ pX (x) =
n!

x!(n− x)!
λ
n
#

$
%

&

'
(
x

1− λ
n

#

$
%

&

'
(
n−x

pX (x) =
λ x

x!
n!

nx (n− x)!

1− λ
n

#

$
%

&

'
(
n

1− λ
n

#

$
%

&

'
(
x

Common Discrete Distributions 

Binomial:

1	  

1	  
as n→∞



pX (x) =
n!

x!(n− x)!
px (1− p)n−x

p = λ
n

⇒ pX (x) =
n!

x!(n− x)!
λ
n
#

$
%

&

'
(
x

1− λ
n

#

$
%

&

'
(
n−x

pX (x) =
λ x

x!
n!

nx (n− x)!

1− λ
n

#

$
%

&

'
(
n

1− λ
n

#

$
%

&

'
(
x

Common Discrete Distributions 

Binomial:

1	  

1	  
as n→∞

pX (x) = Limn→∞

λ x

x!
1− λ

n
$

%
&

'

(
)
n$

%
&&

'

(
))



pX (x) =
n!

x!(n− x)!
px (1− p)n−x

p = λ
n

⇒ pX (x) =
n!

x!(n− x)!
λ
n
#

$
%

&

'
(
x

1− λ
n

#

$
%

&

'
(
n−x

pX (x) =
λ x

x!
n!

nx (n− x)!

1− λ
n

#

$
%

&

'
(
n

1− λ
n

#

$
%

&

'
(
x

Common Discrete Distributions 

pX (x) = Limn→∞

λ x

x!
1− λ

n
$

%
&

'

(
)
n$

%
&&

'

(
)) =

λ x

x!
e−λ

Binomial:

1	  

1	  
as n→∞

☐



This is referred to as the:
•  “Poisson Limit Theorem” 
•  “Poisson Approximation to the Binomial”
•  “Law of Rare Events”

Common Discrete Distributions 

The Poisson distribution is the Binomial distribution as

If      then

If n is large and p is small then the Binomial distribution can be 
approximated using the Poisson distribution

n→∞

Xn ~ Bin(n, p) Xn
d! →! Pois(np)

λ:        n→∞ ⇒ p→ 0fixed

Poisson is often more computationally convenient than Binomial
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