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Introduction 

Statistical hypotheses are in general different from scientific ones. Scientific hypotheses 
deal with the behavior of scientific subjects such as interactions between all particles in 
the universe. These hypotheses in general cannot be tested statistically. Statistical 
hypotheses deal with the behavior of observable random variables. These are ones that 
are testable by observing some set of random variables. They are usually based on the 
distribution(s) of observed random variables. 
For example if we have observed two sets of random variables x=(x1,x2,,,,xn)  and 
y=(y1,y2,,,,ym) then one natural question is: are the means of these two sets different? It 
is a statistically testable hypothesis. Another question may arise: do these two sets of 
random variables come from the population with the same variance? Or do these 
random variables come from the populations with the same distribution? These 
questions can be tested using observed samples. 



Examples of statistical hypotheses 

1.  Differences between means: effects of two or more different treatments. When can 
I say that what I observe is significant? 

2.  Outlier detection: Does my dataset contain an error? What does it mean to have an 
erroneous observation? 

3.  Model comparison: do I have enough data to distinguish between two models? 
Which models can I compare? Which model should I select? 



Hypothesis testing and probability distributions 

Hypotheses are usually expressed using some statistics: functions of observed 
quantities. Since observations are considered as random variables then any function 
depending on observations is also random variable:  
 
 
In particular mean, variance, median, parameters of linear models are functions of 
observations and therefore they are random variables. In principle if we know the 
distributions of observations then we can derive distributions of required statistics 
also. In practice it is rarely possible and we often use approximations. 
 
For some simple cases it is possible to derive distributions of statistics. These 
include mean, variance, ration of variances, ratio of mean and variances – under 
assumptions that observations are independent, identically distributed with 
Gaussian distribution. 

t = t(x1, x2,..., xn )



Distributions related with normal 



Sample mean 

Let us assume that we have drawn independently n values from the population with 
distribution  N(0,σ). It is our sample with independently and identically distributed 
(i.i.d.) random variables form the population with normal distribution. 

The sum of the normal random variables has normal distribution – N(0,√nσ). Then 
the sample mean has N(0, σ/√n) 

Small exercises:  
What happens if the population distribution is N(µ,σ), i.e. mean is not 0. What is the distribution of  
the sum of the sample points? What is the distribution of the sample mean?  
Let us complicate it a bit further: Let us remove the assumption that all means and variances are 
equal, i.e. i-th sample point comes form the population with normal distribution N(µi,σi).  What is the 
distribution of sum of these random variables and what  is the distribution of the sample mean? 



Sample variance 
If the i.i.d. random variables have N(0,1) distribution then 

the sum of the squares of these random variables has 
χ2 distribution with n degrees of freedom. 

If i.i.d. random variables have N(0,σ) distribution then 
 
 
has χ2 distribution with n degrees of freedom. 
If i.i.d. random variables have N(µ,σ) then y has non-

central χ2 distribution with n degrees of freedom and 
with non-centrality parameter – n(µ/σ)2 
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Sample variance 
Variance of the iid random variables with N(µ,1): 
 
 
 
is multiple of χ2 distribution. More precise (n-1)*var has χ2 distribution with n-1 

degrees of freedom. Degrees of freedom is n-1 because we have one linear 
constraint. In general the number of degrees of freedom is reduced by the number of 
linear constraints. 

Let us examine a very simple case. We have two random variables from N(µ,1). Then 
we can write: 

 
 
We see that 1*var is a square of a single random variable - x1-x2 that has normal 

distribution N(0,√2). So (x1-x2)/√2) has normal distribution N(0,1) and 1*var has χ2 
distribution with 1 degree of freedom. 
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Ratio of the sample mean to the sample variance 

Let us assume we have two random variables – x and y. x 
has N(0,1) and y has χ2 distribution with n degrees of 
freedom. Then the distribution of 

 
 
is Student’s t distribution with n degrees of freedom.  
If the distribution of x is N(µ,1) then the distribution of 

ratio – z has a non-central t distribution with n degrees 
of freedom and with non-centrality parameter – µ. 
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z = x / y /n
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Ratio of  mean and variance 

Let us assume a sample has iid n random variables from N(0,σ). Then the sample 
mean has N(0, σ/√n). Therefore              has N(0,1). Sample variance (n-1) var/σ2 
has χ2 distribution with n-1 degrees of freedom. Then: 

 
 
has t distribution with n-1 degrees of freedom. Attractive side of this random variable 

is that it does not depend on the population standard deviation – σ. 
If the sample points are from N(µ,σ) then              has N(√nµ/σ,1) and the ratio – z has 

non-central t distribution with non-centrality parameter √nµ/σ. This distribution 
depends on the population standard deviation. In practice it is replaced by the 
sample standard deviation. 

 

€ 

nx /σ

€ 

z =
nx /σ

(n −1)var/(σ 2(n −1))
=

nx 
var

=
nx 
sd

€ 

nx /σ



Ratio of variances of two independent samples 

If we have two random variables – x and y with χ2 
distributions with degrees of freedom n and m 
respectively then z = (x/n)/(y/m) has F distribution 
with (n,m) degrees of freedom.  

If x has non-central χ2 with non-centrality parameter λ 
then z has non-central F distribution with (n,m) 
degrees of freedom and non-centrality parameter λ. 
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Ratio of variances of two independent samples 

If we have two independent samples – x1 and x2 of sizes n1 and n2 from N(µ1,σ) and 
N(µ2,σ), then (n1-1)var1/σ2 and (n2-1)var2/σ2 have χ2 distributions with n1-1 and n2-1 
degrees of freedom respectively. Then the ratio: 
 
 
have F distribution with (n1-1,n2-1) degrees of freedom. Again z does not depend on 
the unknown parameter σ. 
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Departure from normal distribution 
Although χ2, t, F distributions are derived from normal distribution they work well in 
many cases when population distributions are not normal. Let us take an example: a 
sample from uniform distribution in the interval (-0.5,0.5). The distribution of the 
sample mean is very well approximated by the normal distribution. Distribution of the 
sample variance is not approximated by χ2 very well. 
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Departures from normal distribution 
Histogram of t
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χ2 does not approximate for the sample size 10, however t distribution approximates very 
well. When the number of samples increases then both  χ2 and t approximates the 
corresponding distributions very well. Approximation by F distribution of ratio of variances 
distribution is good. 
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Elements of hypothesis testing 



Types of hypotheses 

Hypotheses in general can be divided into two categories: a) parametric and b) non-
parametric. Parametric hypotheses concern with situations when the distribution of the 
population is known. Parametric hypotheses depend on the value of one or several 
parameters of this distribution. Non-parametric hypotheses concern with situations 
when none of the parameters of the distribution is specified in the statement of the 
hypothesis. For example hypothesis that two sets of random variables come from the 
same distribution is non-parametric one.  
Parametric hypotheses can also be divided into two families: 1) Simple hypotheses are 
those when all parameters of the distribution are specified. For example hypothesis 
that set of random variables comes from a population with normal distribution with 
known variance and known mean is a simple hypothesis 2) Composite hypotheses are 
those when some parameters of the distribution are specified and others remain 
unspecified. For example hypothesis that set of random variables comes from a 
population with normal distribution with a given mean value but unknown variance is 
a composite hypothesis. 



Errors in hypothesis testing 

Hypothesis is usually not tested alone. It is tested against some alternative one. 
Hypothesis being tested is called the null-hypothesis and denoted by H0 and 
alternative hypothesis is denoted H1. Subscripts may be different and may reflect 
the nature of the alternative hypothesis. Null-hypothesis gets “benefit of doubt”. 
There are two possible conclusions: reject null-hypothesis or not-reject null-
hypothesis. H0 is only rejected if the sample data contains sufficiently strong 
evidence that it is not true. Usually testing of a hypothesis comes to verification of 
some test statistic (a function of the sample points). If this value belongs to some 
region w hypothesis is rejected.. This region is called critical region. The region 
complementary to the critical region that is equal to W-w is called acceptance 
region. By rejecting or accepting hypothesis we can make two types of errors: 
Type I error: Reject H0 if it is true 
Type II error: Accept H0 when it is false. 
Type I errors usually considered to be more serious than type II errors. 
Type I errors define significance levels and Type II errors define power of the test. 
In ideal world we would like to minimize both of these errors. 



Power of a test 

The probability of Type I error is equal to the size of the critical region, α. The 
probability of the type II error is a function of the alternative hypothesis (say H1). This 
probability usually denoted by β. Using notation of probability we can write: 
 
 
Where x is the sample points, w is the critical region and W-w is the acceptance region. 
If the sample points belong to the critical region then we reject the null-hypothesis. 
Above equations are nothing else than Type I and Type II errors written using 
probabilistic language. 
Complementary probability of Type II error, 1-β is called the power of the test of the 
null hypothesis against the alternative hypothesis. β is the probability of accepting null-
hypothesis if alternative hypothesis is true and 1-β is the probability of rejecting H0 if 
H1 is true. 
Power of a test is the function of α,  the alternative hypothesis - H1 and probability 
distributions conditional on H0 and H1. 
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Critical regions and power 
The table shows schematically relation between relevant probabilities under null 

and alternative hypothesis.  

do not reject reject 

Null hypothesis is true 1-α α (Type I error) 

Null hypothesis is false β (Type II error) 1- β 



Critical region 

 Let us assume that we want to test if one parameter of the population is equal to a 
given value against alternative hypothesis. Then we can write (for example): 
 
Test statistic is usually a point estimation for θ or somehow related to it.  If critical 
region defined by this hypothesis is an interval (-∞;cu] then cu is called the critical 
value. It defines upper limit of the critical interval. All values of the statistic to the left 
of cu lead to rejection of the null-hypothesis. If the value of the test statistic is to the 
right of cu  this leads to not-rejecting the hypothesis. This type of hypothesis is called 
left one-sided hypothesis. Problem of the hypothesis testing is: either for a given 
significance level find critical value - cu or for a given sample statistic find the observed 
significance level (p-value).  

0100 :against     : θθθθ <= HH



Example of tests: Normal distribution 
We have a sample of size 10 from normal distribution. The sample mean is -0.3. Let us 
assume that the population standard deviation is 0.39. We want to test hypothesis: 

H0: µ=0  against alternative hypothesis H1: µ<µ0 
Under H0 the sample mean has normal distribution with 0 mean and  0.39/√10≈0.12 
standard deviation. Let us set significance level at 0.05. To find critical region we need 
to solve P(x<cu)=0.05. We do it using R command qnorm(0.05,sd=0.39/101/2) and it is 
-0.203.  
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The size of the shaded are is 0.05 i.e. if H0 is 
true the  probability that an observed mean 
will  belong to this area is 0.05. Critical value 
is -0.203. Since the observed mean, -0.3 is 
less than this value we reject H0 at a 
significance level 0.05. 



Example of tests: Normal distribution 
Since the observed mean -0.3 now we can calculate the probability of observing -0.3 or 
less if the H0 is true. It can be done using R command – pnorm(-0.3,sd=0.39/101/2). That 
is equal to 0.007. This value is called observed p-value and quoted by stat packages. It 
can be interpreted as follows: If we would have 1000 samples of sizes 10 from the 
normal distribution N(0,0.39) then only around 7 times the sample mean would be -0.3 
or less.   
 

Black aree is the observed critical region and 
the size of this region is 0.007 
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Example of tests: Normal distribution 
To calculate the power of the test we need to specify an alternative hypothesis. Let us 
assume that alternative hypothesis is specified as H1:µ=-0.3.  
We have already critical region for a given significance level 0.05. That is equal -0.203. 
We want to calculate the probability of rejecting H0 if H1 is true. If H1 is true then the 
distribution of the sample mean will be N(-0.3,0.39/101/2). Power of the test can be 
calculated using R command - pnorm(-0.203,mean=-0.3,sd=0.39/101/2)=0.78 

Thin line – distribution under null-hypothesis 
Thick line – distribution under H1 
Dark area – size of the critical region under H0. 
Size of this area is the significance level (0.05). 
Shaded area – probability of rejecting H0 when 
H1 is true. The size of this area is 0.78 and 
therefore power of the test is 0.783 
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Composite hypothesis 
In the above example we assumed that the population variance is known. It was a 
simple hypothesis (all parameters of the normal distribution have been specified). But 
in real life it is unusual to know the population variance. For example if the population 
variance is not known the hypothesis becomes composite (hypothesis defines the 
population mean but population variance is not known). In this case variance is 
calculated from the sample and it replaces the population variance. Then t distribution 
with n-1 degrees of freedom is used. When n (>50) is large then as it can be expected 
normal distribution very well approximates t distribution. 
If we have two samples from the population with equal but unknown variances then 
tests of differences between two means comes to t distribution with (n1+n2-2) degrees 
of freedom. Where n1 is the size of the first sample and n2 is the size of the second 
sample. When variances of the populations are different then approximation to t 
distribution (Welch approximation) is used and in this case degrees of freedom could be 
non-integer and less than n1+n2-2. 
If the variances for both population would be known then test statistics for differences 
between two means has a normal distribution. 



Composite hypothesis. 
If we do not know the population variance then we cannot use normal distribution since 
the distribution of the sample mean – N(µ0,σ/n1/2) depends on the population variance. 
We need another statistic that has no unknown parameters.  
We know: u=n1/2*(mean-µ0)/σ has N(0,1), and v=(n-1)var/σ2 has χ2 distribution with 
n-1 degrees of freedom then u/(v/(n-1))1/2 = n1/2(mean-µ0)/(var)1/2=n1/2(mean-µ0)/sd has 
t distribution with n-1 degrees of freedom and it does not depend on unknown 
parameter – population variance. Now we have a statistic that is fully specified and we 
can use it to design tests. 
To calculate power we specify the alternative hypothesis, e.g. H1: µ=µ1. We need the 
distribution of the statistic under H1 also. This distribution becomes non-central t 
distribution with n-1 degrees of freedom and with non-centrality parameter n1/2(µ1-µ0)/
σ, where σ is unknown population standard deviation. In practice it is replaced by the 
sample standard deviation. 
 



Example 
Let us use the same example but this time we do not know the population variance. This time we 
test H0 against two sided alternative hypothesis. 

H0: µ=0 against H1:µ≠0 
Again the sample mean is -0.30 and the sample standard deviation is 0.39, the sample size is 10. 
If H0 is true then t=101/2*mean/sd has the t distribution with 9 degrees of freedom. Observed 
value is ts=-2.43. For a given significant level (α=0.05) let us calculate critical region.  To find 
left and right critical values we need to to solve the equation: 

P(t<tl) + P(t>tr) = 0.05 
There can be many solution of this equation. Since the probability distribution is symmetric we 
want to make this region also symmetric (in general we would like to minimise the Euclidean 
measure of the acceptance region), i.e.  

 P(t<tl) = P(t>tr) è 2P(t<tl))=0.05 è P(t<tl)=0.025 
It can be solved using R command qt(0.025,df=9) for the left critical point and qt(0.975,df=9) for 
the right critical point. These are: -2.262 and 2.262. 
Observed critical region is (-∞,-abs(ts)) U (abs(ts), ∞), Observed p.value is calculated using pt(-
abs(ts),df=9)+1-pt(abs(ts),df=9). In this case p.value is 0.038. We could reject null-hypothesis at 
sig.level 0.05 but we could not reject at sig.level 0.01. Once we have the critical values for t 
distribution we can calculate them for our sample. For example confidence interval is (say 95% 
confidence interval): 
 
It does not contain 0 so we can say with 95% confidence that mean is not 0. 
 
 

(x − qt(0.025,df = 9)* sd / n, x + qt(0.975,df = 9)) = (−0.58,−0.21)



Example: Critical region 
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Power of test 
Power of the test depends on the significance level, null hypothesis and the alternative 
hypothesis. All they must be fully specified. Let us specify alternative hypothesis, for example. 
H1:µ=-0.3. Recall that observed value of t is -2.43, standard deviation is 0.39, the sample size is 
10. Since H0:µ=0 to calculate the power we need non-central t distribution with degrees of 
freedom 9 and non-centrality parameter ncpp = n1/2(µ1-µ0)/sd=101/2(-0.3)/0.39=-2.43.  We know 
the observed critical region (rejection area). The power of the test can be calculated using R 
command:  
pt(-abs(ts),df=9,ncp=ncpp)+1-pt(abs(ts),df=9,ncp=ncpp)=0.525. 
  

Thin line: the distribution under H0 
Thick line: the distribution under H1 
Black area: Critical region. Size of this region gives 
p.value 
Dashed region: Power of the test. Size of this region 
gives probability of rejecting null hypothesis if the 
alternative is true. For current case the power is 0.525 
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Power of test 

For a simple sample mean test power is calculated using the following formula (for two sided 
test) 

 
pw = pt(qt(α/2,df=n-1),df=n-1,ncp=n1/2 Δ/σ)+1-= pt(qt(1-α/2,df=n-1),df=n-1,ncp=n1/2 Δ/σ) 
 
Where α is significance level, n is the sample size, σ is population standard deviation, Δ is desired 

effect: i.e. difference between means under H1 and H0 
In this equation there are four unknowns. We need to set up three of them to find the fourth.  



Power of test 
Power of a test can be used before as well as after experimental data have been collected. Before 
the experiment it is performed to find out the sample size and measurement accuracy (standard 
deviation) to detect a given effect. It can be used as a part of the design of an experiment. 
After the experiment it uses the sample size, effect (e.g. observed difference between means), 
standard deviation and calculates the power of the test, i.e. probability of rejecting null hypothesis 
when alternative is true. 
For example if we want to detect difference between means equal to 1 (delta) in paired design 
with power equal 0.8 at a significance level 0.05 in one sided test then we need around 8 
observations.  

It is done in R using the command 
power.t.test(delta=1,sd=1,power=0.8,type='paired',alt='one.sided') 
The result of R function: 
Paired t test power calculation !
!
              n = 7.7276!
          delta = 1!
             sd = 1!
      sig.level = 0.05!
          power = 0.8!
    alternative = one.sided!
 



Likelihood ratio test 
Likelihood ratio test is one of the techniques to calculate test statistics. Let us assume that we 
have a sample of size n (x=(x1,,,,xn)) and we want to estimate a parameter vector θ=(θ 1,θ2).  
Both θ1 and θ2 can also be vectors. We want to test null-hypothesis against alternative one: 
 
Let us assume that likelihood function is L(x| θ). Then likelihood ratio test works as follows: 1) 
Maximise the likelihood function under null-hypothesis (i.e. fix parameter(s) θ1 equal to θ10 , find 
the value of likelihood at the maximum, 2) maximise the likelihood under alternative hypothesis 
(I.e. unconditional maximisation), find the value of the likelihood at the maximum, then find the 
ratio: 
 
 
 
 
w is the likelihood ratio statistic. Tests carried out using this statistic are called likelihood ratio 
tests. In this case it is clear that: 
 
If the value of w is small then null-hypothesis is rejected. If g(w) is the the density of the 
distribution for w then critical region can be calculated using: 
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R commands for tests 
t.test - one, two-sample and paired t-test 
pairwise.t.test – pairwise test for mutiple samples with or without corrections to 

multiple hypothesis 
var.test - test for equality of variances 
 
power.t.test - to calculate power of t-test 
 
Some other tests. These are nonparametric tests and are less sensitive to distribution 

assumptions and outliers 
wilcox.test - test for differences between means (works for one, two sample and paired 

cases) 
ks.test - Kolmogorov-Smirnov test for equality of distributions 



Multiple hypotheses testing 



Multiple comparison 

•  One comparison - use t-test or equivalent 
•  Few comparisons - use Bonferroni 
•  Many comparisons - Tukey’s honest significant differences, Holm, Scheffe or 

others 



Bonferroni correction 
If there is only one comparison then we can use t-test or intervals based on t 

distribution. However if the number of tests increases then probability that 
significant effect will be observed when there is no significant effect becomes 
very large. It can be calculated using 1-(1-α)n, where α is significance level and 
n is the number of comparisons. For example if the significance level is 0.05 
and the number of comparisons (tests) is 10 then the probability that at least 
one significant effect will be detected by chance is 1-(1-0.05)10=0.40. 
Bonferroni suggested using α/n instead of α for designing simultaneous 
confidence intervals. It means that the intervals will be calculated using 

µi-µj ± tα/(2n)(se of comparison)0.5 
Clearly when n becomes very large these intervals will become very conservative. 

Bonferroni correction is recommended when only few effects are compared. 
pairwise.t.test in R can do Bonferroni correction. 

If Bonferoni correction is used then p values are multiplied by the number of 
comparisons (Note that of we are testing effects of I levels of factor then the 
number of comparisons is I(I-1)/2 

!



Bonferroni correction: Example 
Let us take the example dataset -  poisons and try Bonferroni correction for each factor: 
pairwise.t.test(poison,treat,”none”,data=poisons)!

! 1       2      !
2 0.32844 -      !
3 3.3e-05 0.00074!
pairwise.t.test(poison,treat,”bonferroni”,data=poisons)!
  1      2     !
2 0.9853 -     !
3 1e-04  0.0022!
As it is seen each p-value is multiplied by the number of comparisons 3*2/2 = 3. If the 

corresponding adjusted p-value becomes more than one then it is truncated to one.  
It says that there are significant differences between effects of poisons 1 and 3 and between 2 

and 3. Difference between effects of poisons 1 and 2 is not significant.  
 
Note: Command in R - pairwise.t.test can be used for one way 

anova only.!



Holm correction 

Another correction for multiple tests – Holm’s correction is less conservative than 
Bonferroni correction. It is a modification of Bonferroni correction. It works in 
a sequential manner. 

Let us say we need to make n comparisons and significant level is α. Then we 
calculate p values for all of them and sort them in ascending order and apply 
the following procedure: 

1)  set  i = 1  
2)  If pi< α/(n-i+1) then it is significant, otherwise it is not. 
3)  If a comparison number i is significant then increment i by one and if i ≤ n go 

to the step 2 
The number of significant effects will be equal to i where the procedure stops. 
When reporting p-values Holm correction works similar to Bonferroni but in a 

sequential manner. If we have m comparisons then the smallest p value is 
multiplied by m, the second smallest is multiplied by m-1, j-th comparison is 
multiplied by m-j+1 



Holm correction: example 

Let us take the example - the data set poisons and try Holm correction for each factor: 
pairwise.t.test(poison,treat,”none”,data=poisons)!

! 1       2      !
2 0.32844 -      !
3 3.3e-05 0.00074!
pairwise.t.test(poison,treat,”holm”,data=poisons)  # this correction is the default in R!
  !
  1      2     !
2 0.3284 -     !
3 1e-04  0.0015!
The smallest is multiplied by 3 the second by 2 and the largest by 1 
It says that there is significant differences between effects of poisons 1 and 3 and between 2 

and 3. Difference between effects of poisons 1 and 2 is not significant.  
!

 



Tukey’s honest significant difference 

This test is used to calculate simultaneous confidence intervals for differences of all 
effects. 

Tukey’s range distribution. If we have a random sample of size N from normal 
distribution then the distribution of stundentised range - (maxi(xi)-mini(xi))/sd is 
called Tukey’s distribution.  

Let us say we want to test if µi- µj is 0. For simultaneous 100α% confidence intervals 
we need to calculate for all pairs lower and upper limits of the interval using: 

difference  ± ql,ν sd (1/Ji+1/Jj)0.5 /√2 
Where q is the α-quantile of Tukey’s distribution, Ji and Jj are the numbers of 

observations used to calculate µi and µj, sd is the standard deviation, l is the 
number of levels to be compared and ν is the degree of freedom used to 
calculate sd. 

 



Tukey’s honest significant difference 
R command to perform this test is TukeyHSD. It takes an object derived using aov as an input 

and gives confidence intervals for all possible differences. For example for poison data 
(if you want to use this command you should use aov for analysis) 

lm1 = aov(time~poison+treat,data=poisons) 
TukeyHSD(lm1)!
$poison!
         diff        lwr        upr     p adj!
2-1 -0.073125 -0.2089936  0.0627436 0.3989657  # insignifacnt!
3-1 -0.341250 -0.4771186 -0.2053814 0.0000008  # significant!
3-2 -0.268125 -0.4039936 -0.1322564 0.0000606  # significant!

$treat!
           diff         lwr         upr     p adj!
B-A  0.36250000  0.18976135  0.53523865 0.0000083 #sginificant!
C-A  0.07833333 -0.09440532  0.25107198 0.6221729 #insgnific!
D-A  0.22000000  0.04726135  0.39273865 0.0076661 #significant!
C-B -0.28416667 -0.45690532 -0.11142802 0.0004090 #significant!
D-B -0.14250000 -0.31523865  0.03023865 0.1380432 #insignific!
D-C  0.14166667 -0.03107198  0.31440532 0.1416151 #insignific 



Scheffe’s simultaneous confidence intervals 

If we have a parameter vector β then a linear combination cTβ is estimatable if there 
exists a vector a so that E(aTy) = cTβ.  

Scheffe’s theorem states that simultaneous 100(1-α)% confidence interval for all 
estimatable ψ is: 

 
ψ ± (q Fq,n-r(α) )1/2 (var(ψ)1/2 
 
q is the dimension of the space of all possible contrasts, r is the rank of X (design 

matrix), n is the number of observations. It can also be applied for regression 
surface confidence intervals 

 
xTβ ± (q Fq,n-r(α) )1/2 (var(xT(XTX)-1x))1/2 



More tests 

Mann-Whitney-Wilcoxon test – non-parametric test for median 
Kolmogorov-Smirnoff test – test if distribution of two random variables are same 
Grubbs test – tests for outliers (more in R package – outliers) 
 



Conclusions 

1)  Hypotheses are designed to be rejected 
2)  Testing hypotheses is reduced to analysis of few statistics – functions of 

observations 
3)  Many tests are reduced to analysis of means and variances of distributions 
4)  When multiple hypotheses are tested then one need to add corrections 
 



Further reading 
Full exposition of hypothesis testing and other statistical tests can be found in: 
 
Stuart, A., Ord, JK, and Arnold, S. (1991) Kendall’s advanced Theory of statistics. 

Volume 2A. Classical Inference and the Linear models. Arnold publisher, 
London, Sydney, Auckland 

Box, GEP, Hunter, WG, Hunter, JS (1978) Statistics for experimenters 
Peter Dalgaard, (2008) Introductory statistics with R 


