
 

Phosphoinositide-specific phospholipase C: structural basis
for catalysis and regulatory interactions
Matilda Katan and Roger L. Williams*

Phosphoinositide-specific phospholipase C (PI-PLC) isozymes
have an important role in cellular responses to a variety of
extracellular signals. Recently, the three-dimensional
structures of their isolated domains and of the multidomain
core, common to all PI-PLCs, have been solved. This provided
an insight into the domain organization of PI-PLCs and,
together with the structure–function analysis, contributed
towards an understanding of the molecular mechanisms of
catalysis and regulation.
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A LARGE NUMBER of extracellular signals stimulate
hydrolysis of phosphatidylinositol 4,5-bisphophate
(PIP2) by phosphoinositide-specific phospholipase C
(PI-PLC) (Figure 1). For the regulation of cellular
processes, the best documented consequence of this
hydrolysis is the generation of two second messengers,
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol,
involved in calcium release from intracellular stores
and stimulation of protein kinase C isozymes.1,2 In
addition to the second messenger production, regula-
tion of PIP2 concentrations itself could be relevant for
cell signalling since many proteins bind and/or
require PIP2 to function.3,4

Extensive studies of PI-PLC carried out during the
past 10 years revealed the existence of many PLC
isozymes and multiple pathways linking these iso-
zymes to various receptors.5-8 Determination of PI-
PLC primary structures allowed the classification of 10
mammalian isozymes into three families: PLCâ
(â1–â4), PLCγ (γ1–γ2) and PLCδ (δ1–δ4). While all
isozymes have similar catalytic properties, different
families are characterized by distinct ways of regula-

tion. The PLCâ isozymes are activated through
interaction with the α subunits of the pertussis toxin-
insensitive Gq family of heterotrimeric G-proteins.
The G-protein coupled receptors that are known to
utilize this Gqα/PLCâ pathway include those for
bradykinin, bombesin, angiotensin, histamine, vaso-
pressin as well as muscarinic (m1, m2 and m3) and α1
adrenergic agonists. PLCâ isozymes are also activated
by the âγ subunits of pertussis toxin-sensitive G-pro-
teins from the Gi/o family. The m2 and m4 muscari-
nic acetylcholine receptors and interleukin-8 receptor
seem to be linked to the Gâγ/PLCâ pathway. Mem-
bers of the PLCγ family are activated by receptor and
non-receptor protein tyrosine kinases. Agonists for
receptor tyrosine kinases such as PDGF, EGF, FGF and
NGF are known to stimulate PLCγ in a wide variety of
cells. Non-receptor protein tyrosine kinases that
provide a link between different receptors (e.g.
multicomponent T-cell antigen receptor and some
G-protein coupled receptors) and PLCγ isozymes are
likely to include members of Src, Syk and Jak/Tyk
families. PLCγ isozymes could also be activated
independently of the tyrosine kinase stimulation, for
example, in the presence of arachidonic acid and
microtubule-associated tau proteins.9 The stimulation
by arachidonic acid could serve as a link between
receptor activation of phospholipase A2 (PLA2) and
the PI-PLC pathway. In comparison to PLCâ and
PLCγ isozymes, the physiological role and regulation
of members of the PLCδ family have remained poorly
defined. Studies of these isozymes have focused on
PLCδ1 and on recently described PLCδ4. PLCδ4, but
not PLCδ1, is expressed at S-phase of the cell cycle
and is found predominantly in the nucleus.10 Studies
of PLCδ1 have shown binding of this isozyme to p122
protein with Rho GAP activity11 and a novel type of a
GTP-binding protein Gh,12 suggesting regulation
through protein–protein interactions. Interaction of
PLCδ1 with Gh is likely to provide a direct link with
transmembrane signalling by coupling this isozyme to
the α1-adrenergic receptor. Studies of PLCδ1 also
revealed that molecules such as calcium13 and IP314,15

could have an important regulatory role.
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Figure 1. Hydrolysis of PIP2 by PI-PLC.

Figure 2. Structure and ligand binding sites of PLCδ1. PLCδ1 has four domains: the pleckstrin
homology (PH) domain, the EF-hand domain, the catalytic domain and the C2 domain. The PH
domain (white) is a seven-stranded â-sandwich formed by two antiparallel â-sheets, closed at one
end with an α-helix. Loops connecting the â strands are involved in binding of IP3 (shown in a ball-
and-stick representation) and phospholipid headgroup of PIP2. The EF-hand domain (light grey)
consists of four EF-hand structural motifs with a characteristic helix-loop-helix topology. They are
distributed in two lobes, each containing two EF-hands. The catalytic domain (white) is an α/â- or
distorted TIM-barrel and consists of eight parallel â-strands connected by seven helical elements.
The active site is a broad depression at the C-terminal end of the barrel shown to accommodate the
substrate headgroup (ball-and-stick) and one calcium ion (large black sphere). The C2 domain
(dark grey) has an antiparallel, eight-stranded â-sandwich architecture and a calcium binding
region formed by flexible loops that coordinate binding of multiple calcium ions (black spheres).
The lipid bilayer is not drawn to scale.
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Although a large number of PI-PLC isozymes have
been identified and their main regulatory pathways
mapped, questions related to molecular mechanisms
of catalysis and regulation remained: What is the
structural basis of substrate recognition and reg-
ulatory interactions? What is the mechanism of
substrate hydrolysis? What changes underlie the tran-
sition from an inactive into an active PI-PLC after
stimulation? In this review we discuss how recent
progress in the determination of three-dimensional
structures and structure–function analysis of PI-PLCs
provided some of the answers to these questions.

PI-PLC structures

Insights into the structure of PI-PLC isozymes resulted
from the determination of three-dimensional struc-
tures of their isolated domains and groups of
domains.16–20 The picture is almost complete for one
of the isozymes from the PLCδ family, PLCδ1, where
the structure of the N-terminal part17 and of the
enzymatically active deletion mutant lacking the
N-terminus16 have been solved (Figure 2). The
N-terminal part corresponds to the pleckstrin homol-
ogy (PH) domain while the rest of the molecule

comprises the EF-hand, catalytic and C2 domain.
What remains to be clarified is how the PH domain
interacts with the three-domain core structure cen-
tered on the C2 domain. Structural studies and
limited proteolysis have indicated a flexible surface-
exposed link between the PH and EF-hand
domain.16,21

Based on sequence similarity and structural studies,
modular PH, EF-hand and C2 domains have been
described in many proteins.22-24 PLCδ1 PH domain
shares a high degree of structural similarity with other
known PH domains.17 Similarly, structures of the
PLCδ1 C2 domain16 and the C2 domain from
synaptotagmin I25 superimpose well. Four EF struc-
tural motifs within the EF-hand domain are distrib-
uted in two lobes, showing similar arrangement as
described for calmodulin.16 Each of these structural
modules found in different proteins is, however, likely
to perform a variety of functions that could be
mediated by interactions with different ligands. An
insight into ligand binding properties of PLCδ1
modular domains has been obtained from complexes
with IP3 and calcium.16,17 These studies revealed how
the loop region of the PH-domain can provide the
non-catalytic substrate binding site. They also pro-
vided an insight into likely calcium binding sites

Figure 3. Domain organization of PLCδ, PLCâ and PLCγ isozymes. Domains present in PLCδ1
(black) represent a core structure of PI-PLC isozymes. PLCâ and PLCγ isozymes have additional
regions unique for these PI-PLC families (grey).
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Figure 4.
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within the C2 domain. The active site of the catalytic
(α/â-barrel26) domain accommodates both the cata-
lytic calcium and the substrate headgroup.

PLCδ1 shares similarity with other PI-PLC isozymes
throughout its sequence.5,27 An alignment of PI-PLC
sequences has suggested that most PLCâ, PLCγ and
PLCδ isozymes have all four domains found in
PLCδ116,66 (Figure 3). Interactions between the
domains are also expected to be similar. The regions
of highest sequence similarity between different
isozymes are contained within the catalytic domain
and include all residues implicated in substrate
binding and hydrolysis. Ligand binding properties of
other domains (PH, EF-hand and C2 domain) are
difficult to predict since, in most instances, the
relevant residues present in PLCδ1 do not seem to be
strictly conserved in other isozymes. In addition to the
common domains, PLCâ and PLCγ isozymes have
domains unique for each of these families (Figure 3).
The PLCâ isozymes have a C-terminal extension of
unknown structure; secondary structure prediction
indicates that this region may be mostly helical. The
PLCγ isozymes have an array of domains connected to
the catalytic domain through a flexible region
between the fourth â strand and the following α helix
of the α/â-barrel. A likely arrangement of these
domains could be described as a PH domain with one
of its loops extended to accommodate two SH2 and
SH3 domain. The three-dimensional structure is
known only for the isolated C-terminal SH2 domain19

and the SH3 domain18 of PLCγ1.

Catalysis at an interface

PI-PLC isozymes, like many other enzymes involved in
lipid signalling and metabolism, interact with their
substrate at the lipid–water interface. The interfacial
catalysis of mammalian PI-PLCs has been studied
using phospolipid vesicles or monolayers and can be
described as a two-step mechanism in which these

enzymes first associate with the membrane via a site(s)
distinct from the active site and then carry out
substrate hydrolysis in the active site. Kinetic studies
with purified PLCâ, PLCγ and PLCδ in the absence of
other proteins have suggested that the membrane-
associated isozymes can catalyse several cycles of PIP2
hydrolysis, functioning in a processive mode of
interfacial catalysis.28-30

Interactions with the membrane

Interaction of PLCδ1 with the plasma membrane
could involve the PH-domain, C2-domain and a
hydrophobic ridge at the rim of active site opening16

(Figure 4A). Several lines of experimental evidence
support a role of the PH-domain in membrane
attachment, mediated by the binding to PIP2 present
in cellular membranes. In vitro, the high affinity
binding of PLCδ1 to phospholipid vesicles occurs only
if they contain PIP2.31 Recognition of the PIP2 polar
headgroup is critical and interactions with the vesicles
could be inhibited by IP3.14,15 The high-affinity,
stereospecific binding to PIP2 and the processive
catalysis require an intact PH domain.29,32 The crystal
structure of the PLCδ1 PH domain in a complex with
IP3 revealed that the recognition of the PIP2 head-
group involves extensive interactions with the 4- and
5- phosphoryl groups and fewer interactions with the
1-phosphate.17 Measurements of the binding affinity
for PIP2 in vitro (Kd ~ 2 µM)33 suggest that it is
sufficiently high to mediate the PH domain binding to
the phospholipid in vivo at its estimated physiological
concentrations (30–150 µm).34 A role of the PH
domain/PIP2 interactions in vivo is further supported
by the studies of PLCδ1 localization in living cells;
these studies have demonstrated that the PH domain
is necessary for the plasma–membrane attachment.35

It has also been suggested that changes in cellular
concentrations of PIP2 and IP3 could regulate mem-
brane binding of PLCδ1 and, consequently, its
activity.22

At present, there is no direct evidence that the C2
domain of PLCδ1 interacts with the phospholipid
membranes. However, since the similarity with the
first C2 domain of synaptotagmin I is not limited to
the overall structure and includes coordination of
calcium analogues,16,20 it is possible that the PLCδ1
C2 domain has the calcium-dependent lipid-binding
(CaLB) function well documented for synaptotagmin
I and cPLA2.36,37 The calcium binding loops of the
PLCδ1 C2 domain are on the same side of the
molecule as the substrate binding site, in a position

Figure 4. Catalysis at an interface: Association with the
membrane (A) and recognition and hydrolysis of the
substrate within the active site (B). The PH domain is the
main determinant of membrane tethering in PLCδ1. The
C2 domain and the hydrophobic part of the catalytic
domain could form additional interactions that fix PLCδ1 at
the membrane surface (A). The residues involved in the
substrate/calcium binding in the active site (B, upper
panel) are highly conserved among PI-PLC isozymes. The
hydrolysis of substrate is carried out by a sequential two-step
mechanism (B, lower panel).
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suitable for this putative calcium-dependent phospho-
lipid headgroup binding. Studies of a PLCδ1 deletion
mutant lacking the PH domain suggested that the
interactions via the C2 domain may not be sufficient
to independently mediate membrane interaction.35

The function of this domain could be to, after
membrane ‘tethering’ of PLCδ1 via the PH domain,
provide additional interaction sites and ‘fix’ the
catalytic domain into a productive orientation. In this
orientation the hydrophobic ridge of the catalytic
domain would presumably partially penetrate the
membrane.

Studies of PLCâ and PLCγ have indicated that, like
PLCδ1, these isozymes can directly bind to phospho-
lipid vesicles. The structural basis for these inter-
actions could be provided by the PH and C2 domains
or by the domains specific for PLCâ and PLCγ
isozymes. Studies limited to PLCâ1 and PLCâ2 iso-
zymes have shown that the C-terminal extension was
not required for binding to phospholipid vesicles.38

However, it is not clear to what extent interactions
observed with lipid vesicles contribute to interactions
with the cellular membrane since studies of sub-
cellular distribution of PLCâ isozymes demonstrated
involvement of the C-terminal extension in binding to
the particulate (membrane and cytoskeleton contain-
ing) fraction.39

Binding and hydrolysis of inositol lipids within the
active site

The crystal structure of the PLCδ1 complex with
different inositol phosphates and calcium revealed
the structural basis for the substrate headgroup
recognition and the calcium dependent hydroly-
sis16,40 (Figure 4B). A number of amino acid residues
within the active site are involved in hydrogen
bonding and electrostatic interactions with the
hydroxyl and phosphoryl groups of IP3 and the
catalytic calcium ion. Residues interacting with 4 and
5 phosphates (Lys 438, Ser 522, Arg 549 and Lys 440)
could be determinants of the substrate preference for
PIP2 > PIP > > PI.16 Consistent with this role are the
data from mutational analysis of Arg 549, demonstrat-
ing the requirement of its positive charge for recogni-
tion and hydrolysis of PIP2 but not PI.41

Hydrolysis of the bound substrate generates acyclic
inositol phosphate(s) as the main water soluble
product. In addition, small amounts (5–30%) of cyclic
inositol phosphates are produced by all PI-PLC
isozymes.5 To explain generation of cyclic and acyclic
products two major models have been considered: a

parallel mechanism in which these reaction products
are formed simultaneously and a sequential mecha-
nism which proposed formation of cyclic inositol
phosphate as the reaction intermediate.42 Recent
structural and kinetic studies have provided evidence
that strongly supported general acid/base catalysis in
a sequential mechanism.40 The formation of cyclic
inositol involves calcium-facilitated deprotonation of
the 2-hydroxyl group by a general base. The most
likely candidate residues for the general base are Glu
341 and Glu 390. His 356 is suitably positioned to act
as a general acid catalyst for the protonation of the
diacylglycerol leaving group. The calcium ion and His
311 probably stabilize the transition state in the
formation of the cyclic inositol phosphate. The
enzyme-bound cyclic intermediate is subsequently
hydrolysed and in this reaction His 356 would
promote the nucleophilic attack of water as a general
base catalyst while Glu 341 or Glu 390 would then
have the role of the acid catalyst. Mutations of PLCδ1
His 356, His 311 and Glu 341 (and the corresponding
histidines in PLCγ) greatly reduce or abolish enzyme
activity.43-46

Regulation of PI-PLCs

As a part of signalling pathways PI-PLC isozymes are
stringently controlled and the rate of PIP2 hydrolysis
is stimulated only transiently in response to different
input signals. As summarized in the introductory
section, a large number of interactions between PI-
PLC and other signalling components can cause this
stimulation. In the cellular setting, an additional
complexity results from the presentation and availa-
bility of PIP2. Many proteins with different cellular
localization bind PIP2 and could affect its hydrolysis
by PI-PLC.3 For example, phospatidylinositol transfer
protein greatly stimulates PI-PLC by increasing the
pool of accessible PIP2.47 Binding of PIP2 by other
proteins could have an inhibitory effect by sequester-
ing this phospholipid from PI-PLC; this function has
recently been suggested for MARCKS (myristoylated
alanine-rich C kinase substrate) protein.48

Despite this complexity, some of the regulatory
interactions that mediate stimulation of PI-PLC iso-
zymes have been extensively studied; these include
interaction of PLCγ with tyrosine kinase receptors and
interactions between G-protein subunits and PLCâ
isozymes (Figure 5). Most of the data have been
obtained from mutational analysis.
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Activation of PLCγ by tyrosine kinase receptors

Activation of PLCγ by tyrosine kinase receptors is
accompanied by phosphorylation on several tyrosine
residues, two of which (tyrosine residues 783 and 1254
in PLCγ1) were shown by mutational analysis to be
essential for agonist-induced activation of PIP2
hydrolysis.49 However, the phosphorylation of PLCγ is
not sufficient for the activation which also requires
high affinity association with the receptor, independ-
ently of the enzyme phosphorylation. This has been
best documented using a mutant PDGF receptor that
could readily phosphorylate PLCγ 1 but was unable to
associate with or activate this isozyme.50 The associa-
tion between PLCγ and tyrosine kinase receptors
involves binding by the SH2 domains of PLCγ
isozymes to a subset of phosphorylated tyrosine
residues within the cytoplasmic portion of a receptor.
For example, the autophosphorylated Tyr1021 in the

PDGF receptor is specifically recognized by the
second SH2 domain of PLCγ1.50 The recognition is
accomplished by a specific fit of the acidic phospho-
tyrosine residue into a positively charged pocket on
the SH2 domain, while several residues neighbouring
the pTyr1021 in the PDGF receptor fit into an
extended hydrophobic groove in the SH2 domain.19

Studies of the PDGF phosphopeptide/PLCγ1 inter-
action by CD spectroscopy have indicated a conforma-
tional change in the enzyme that could be a part of
the PLCγ activation mechanism by the receptor
binding.51 Phosphorylation on PLCγ by the receptor
tyrosine kinase could lead to further changes where,
by analogy with c-Src,52 intramolecular interactions
could be formed between SH2 domains and phos-
phorylated tyrosines. There are several possibilities
how conformational changes resulting from the
receptor stimulation could, in turn, lead to stimula-
tion of PLCγ activity. A conformational change could
either affect subcellular localization of PLCγ53,54 or
have a direct influence on the substrate access to the
active site that, under specific conditions of substrate
presentation, seems to be limiting for the non-
stimulated enzyme.30,55 Several lines of experimental
evidence indicate that the part of PLCγ that could
have a role in restricting substrate access includes the
SH2/SH3 domain array.56-58

Activation of PLCâ by G-protein subunits

Studies of PLCâ deletion mutants and experiments
based on limited proteolysis clearly demonstrated a
requirement for the unique C-terminal portion of
these isozymes to bring about stimulation with
Gqα.59,60 This tail region has also been shown to have
a GTP-ase activating role for Gqα.8 The interaction
site with Gqα has been mapped to residues 903–1142
of PLCâ1.59 According to secondary structure predic-
tion, this region has several helical segments, each
containing a cluster of basic residues.39 Further
analysis has shown the importance of several basic
residues within this region for the stimulation by
Gqα.39 The interaction site with Gâγ is clearly
different from that for Gqα61,62 but still needs to be
more precisely defined. Studies of other proteins that
are regulated by Gâγ, most notably â-adrenergic
receptor kinase, demonstrated that the C-terminal
part of the PH domain and about 30 residues
following it, participate in binding of Gâγ. It has been
shown that the corresponding region in PLCâ2,
present within the N-terminal part of this isozyme, was
indeed required for stimulation by Gâγ.61 However,

Figure 5. Interactions of PLCâ and PLCγ isozymes with their
regulatory proteins. The arrows indicate interaction sites in
PLCâ with the G-protein subunits, Gâγ (likely to interact
with a part of the PH domain and EF-hand domain) and
Gqα (binding to a ‘tail’ region). PLCâ isozymes differ in
their sensitivity to each of these G-protein subunits. The
interaction site of PLCγ with tyrosine kinase receptors is also
indicated and involves binding to the SH2 domains. PLCγ is
phosphorylated by receptor tyrosine kinases and two critical
residues (*) are present within the region between the SH2
and SH3 domains (Tyr 783 in PLCγ1) and near the
C-terminus (Tyr 1254 in PLCγ1). Colour coding is as in
Figure 3.
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this region of PLCâ2 was not sufficient to confer high
levels of responsiveness to Gâγ when incorporated
into the much less sensitive PLCâ1 isozyme. Further
analysis of PLCâ2 indicated that additional sites,
present in the catalytic domain, could contribute to
Gâγ stimulation.63

Experimental evidence needed to explain the
molecular mechanism of PLCâ activation by Gqα and
Gâγ is still very limited. Nevertheless, recent studies of
PLCâ interaction with phospholipid vesicles in the
presence and absence of Gâγ have shown that these
subunits did not mediate enzyme translocation to the
vesicle membrane.64,65 In this system, saturation of
membrane binding was achieved in the absence of
G-protein subunits and their stimulatory effect was
exerted through interaction with the membrane-
bound enzyme. A function of these protein/protein
interactions could be to stabilize PLCâ interactions
with the membrane surface and perhaps to orient the
catalytic domain more favourably with respect to the
membrane-resident substrate. Although the function
of G-protein subunits in the cellular context is more
complex than in the system using phospholipid
vesicles, protein–protein interactions between mem-
brane-bound components are likely to be an impor-
tant part of the PLCâ activation mechanism.
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