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Phosphoinositide 3-kinases (PI3Ks) are ubiquitous lipid kinases
that function both as signal transducers downstream of cell-
surface receptors and in constitutive intracellular membrane
and protein trafficking pathways. All PI3Ks are dual-specificity
enzymes with a lipid kinase activity which phosphorylates phos-
phoinositides at the 3-hydroxyl, and a protein kinase activity. The
products of PI3K-catalysed reactions, phosphatidylinositol 3,4,5-
trisphosphate (PtdIns(3,4,5)P;), PtdIns(3,4)P, and PtdIns(3)P, are

NATURE\VOL 402|18 NOVEMBER 1999 \ www.nature.com

A2 © 1999 Macmillan Magazines Ltd

letters to nature

second messengers in a variety of signal transduction pathways,
including those essential to cell proliferation, adhesion, survival,
cytoskeletal rearrangement and vesicle trafficking”. Here we
report the 2.2 A X-ray crystallographic structure of the catalytic
subunit of PI3Ky, the class I enzyme that is activated by hetero-
trimeric G-protein B+ subunits and Ras. PI3Ky has a modular
organization centred around a helical-domain spine, with C2 and
catalytic domains positioned to interact with phospholipid mem-
branes, and a Ras-binding domain placed against the catalytic
domain where it could drive allosteric activation of the enzyme.

The mammalian PI3Ks can be divided into three classes on the
basis of their structure and substrate specificity®. The class I PI3Ks
are receptor-regulated heterodimeric enzymes that preferentially
phosphorylate PtdIns(4,5)P, in vivo. The class IA PI3Ks (consisting
of p110c;, p110B or p110d catalytic subunits) associate with a p85
adaptor protein that is essential for interaction of these PI3Ks with
receptor tyrosine kinases. The class IB PI3K (PI3Kv) is activated by
heterotrimeric G-protein subunits and associates with a pl01
adaptor that is required for full responsiveness to GRy
heterodimers™*. Class I PI3Ks are also activated by Ras. Class II
PI3Ks are distinguished by a carboxy-terminal C2 domain and
preferentially use PtdIns and PtdIns(4)P as substrates. Class III
enzymes phosphorylate only PtdIns and lack the Ras-binding
domain.

We have determined the structure of the catalytic subunit
(residues 144-1,102) of porcine PI3Ky. This construct contains
all of the homology regions (HR) found in class I PI3Ks (HR1, HR2,
HR3 and HR4) and has a catalytic activity similar to that of the full-
length enzyme. The amino-terminal region missing from our
construct of PI3Ky is important for interaction with the p101
adaptor’, and the analogous region of PI3Ka interacts with the
p85 adaptor. The enzyme has a modular structure consisting of four
domains: a Ras-binding domain (RBD), a C2 domain, a helical
domain and a catalytic domain (Fig. 1). The RBD, C2 and catalytic
domains have folds similar to these modules in other proteins
involved in signal transduction. The helical domain has a fold akin
to HEAT repeat containing structures involved in protein—protein
interactions.

The catalytic domain of the enzyme consists of a smaller N-
terminal lobe (residues 726—883) and a larger C-terminal lobe
(884-1092). The N-terminal lobe from kB3 to ka3 and the first
part of the C-terminal lobe (up to the end of kB10) have a fold
similar to protein kinases (reviewed in ref. 6), and this similarity
extends to many of the details of the ATP-binding site (Fig. 2). This
region is among the most conserved regions of the PI3Ks (Fig. 3).
The structural similarity of PI3K to protein kinases is consistent
with PI3Ks having protein kinase activity in addition to their lipid
kinase activities”®. The sequence alignment in Fig. 3 shows the
regions of PI3K that structurally superimpose with tyrosine protein
kinase c-Src. The N-terminal lobe comprises a five-stranded anti-
parallel B-sheet flanked on one side by a helical hairpin (kal-ka2)
and a small two-stranded 3-sheet (31—-[2), and on the other side by
the ka3 helix and the C-terminal lobe. Strands kB3-kRB7 corre-
spond to the five-stranded 3-sheet found in the protein kinases. The
kB3-kp4 loop corresponds to the protien kinase 31—p2 loop (also
known as the glycine-rich or P-loop). This loop interacts closely
with the phosphates of the bound ATP, but unlike the protein
kinases, it contains no glycine. Instead, the side chain of Ser 806, a
residue that is conserved in all PI3Ks, interacts with the B-phosphate
(Fig. 2). Lys 833 at the end of kB5, corresponding to Lys72 of
c-AMP-dependent protein kinase, interacts with the a-phosphate
of ATP. This residue is conserved in all PI3Ks and is covalently
modified by wortmannin’. There are two metal-binding sites (Me;
Fig. 2). Me I interacts with the conserved Asn 951, whereas Me II
interacts with Asp 836 and Asp 964.

N- and C-terminal lobes are linked through a loop between
strands kB7 and kB8. This loop forms the deepest wall of the ATP-
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binding pocket and provides two hydrophobic contacts with the
adenine moiety of the ATP. The C-terminal lobe forms part of the
ATP-binding site, as well as the binding site for phospholipid
substrates. The region between ka6 and kB9 (residues 943-951)
corresponds to the catalytic loop of the protein kinases; mutations
of residues in this loop corresponding to Asp 946, Arg 947, Asp 950
and Asn 951 of PI3Ky abolish kinase activity of PI3Ks"*.

The C-terminal lobe contains a segment (964—988) analogous to
the activation loop in the protein kinases; this loop is essential for
the substrate specificity of the PI3Ks'. In the ATP—Lu’* complex,
much of this loop (968-982) is disordered. In the structure of an
enzyme/chloramine T complex, all but two residues (Phe 975 and
Leu 976) are visible, although high B-factors suggest that this loop is
flexible. The activation loop is on the surface of the enzyme between
the C-terminal helix ka12 on one side and ka10 on the other. We
attempted to soak phospholipid analogues into PI3Kvy crystals, but
no substrate was evident in the electron density. Consequently, we
modelled phospholipid headgroup binding, but because conforma-
tional changes probably occur in the activation loop and possibly in
the C-terminal helix upon substrate binding, our model is only
approximate. In the model, the headgroup is positioned in a cavity
lined by the C-terminal helix kal2, the activation loop and
the catalytic loop (Fig. 4). This places the 5-phosphate of a
PtdIns(4,5)P, adjacent to Lys973 and the I-phosphate near
Lys 807 and Lys 808. Lys 973 acting as a ligand of the 5-phosphate
may explain why this residue is not found in the class IT PI3Ks that
do not phosphorylate phosphoinositides with a 5-phosphate. The
basic residues nearest the 4-phosphate are Arg 947 and Lys 973. The
specificity of the class III PI3Ks for phosphatidylinositol may be
explained by their shorter activation loop, which may not leave
sufficient space to accommodate a 4-phosphate at the bottom of the
headgroup-binding pocket. PI3K3 autophosphorylates in a region
just beyond the C-terminal helix ka12", which results in enzyme
inhibition probably by sterically preventing substrate binding. The
proximity of the C-terminal segment to the substrate-binding site is
consistent with autophosphorylation of this region.
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The mechanism originally proposed for the enzymatic activity of
protein kinases involved a residue acting as a general base to
deprotonate the hydroxyl of the substrate and generate a nucleo-
phile that would attack the y-phosphate of ATP. In cAMP-depen-
dent protein kinase (cAPK), this base has been proposed to be
Asp 166, which corresponds to Asp 946 of the PI3Ky-946-DRH-948
sequence that is conserved in all PI3Ks. In the structure of PI3Ky,
however, Asp 946 is not in a location where it could function as a
general base catalyst. The constellation of residues in the active site
in the presence of ATP—metal suggests that Asp 946 may simply
have a structural role in maintaining the ATP-binding pocket.
Therefore, either PI3K has no general base catalyst, in which case
the mechanism could be primarily dissociative, involving a meta-
phosphate transition state'?, or a different residue assumes this
function. One possible candidate is His 948; although its side chain
is not near the y-phosphate of ATP, a rotation around x1 would
place it in a location such that it could interact with the 3-hydroxyl
of the lipid headgroup.

PI3Ks are one of the effectors for Ras proteins (reviewed in ref.
13). Binding of PI3K to Ras is affected by mutations in both switch I
and switch II regions of Ras (residues 30-38 and 60-76,
respectively)'*'>. These two regions change conformation upon
GTP binding and are binding sites for a diverse array of downstream
effectors; however, mutations in these switch regions differentially
affect the binding of various effectors.

The RBD of PI3K+y (residues 220—-311) has the same fold as the
RBD of Raf'® and RalGDSY, two other well-characterized effectors
of Ras (Fig. 5). The RBD of PI3K consists of a five-stranded mixed
B-sheet (RB1-RP5) flanked by two a-helices (Ral and Ra2).
Residues 228-230 (in the RB1-RB2 loop) and 257-265 (in the
Ral1-RB3 loop) are disordered.

The crystal structure of Ras-related protein RaplA in complex
with the RBD of protein kinase c-Raf'® and the structure of Ras in
complex with the RBD of RalGDS" suggest a structural basis for
effector specificity. The structures of both of these complexes were
determined using the isolated RBD, without the catalytic portions

Table 1 Data collection, structure determination and refinement statistics

Data collection and multiple isomorphous replacement phasing statistics

Data set Resolution Observations/ Completeness (last shell) Rrergett (l/a) No. of sites Phasing Riso8§

(A) unique reflections (%) (last shell) powerlll
Native*tt 2.4 144,973/37,485 97.2 (90.6) 8.5 16.0 (3.1) - - -
LuClg-11* 2.2 191,292/49,599 95.5 (93.3) 9.5 14.3(1.1) 7 1.7 0.23
LuClz-23tt 3.5 43,038/12,484 99.7 (98.2) 8.5 11.3(3.4) 3 1.9 0.18
Lanthanides§tt 3.0 71,426/19,180 97.9(97.1) 4.5 15.6 (2.9) 8 1.9 0.24
ATMII+ 2.7 94,900/25,688 92.6 (60.2) 4.8 17.0(5.7) 5 0.8 0.22
lodinef|t1 2.6 102,511/28,856 93.2 (67.1) 6.0 13.6 (1.4) 3 0.1 0.21
Refinement statistics
Data set Resolution Protein atoms Waters Rerysta 1 Riree N R.m.s.d. from ideality##

A (% data)

Bonds Angles Dihedrals

LuCls-1 25.0-2.2 6,813 89 0.25 0.30 (5.4) O.O‘ISIZA 1.7° 23°
lodineq| 25.0-2.6 6,954 14 0.26 0.33 (5.0 0.0056 1.1° 21°
Mn# 25.0-2.6 6,837 26 0.26 0.32 (5.6) 0.005A 1.2° 21°

Overall figure of merit 0.45

*The native crystal was soaked in 2.5 mM InsP3, 1.0mM ATP and 10 mM MgCl, for 1 h. Although this was the native crystal for heavy-atom phasing, the final high-resolution structure refinement used data

from LuClz-1.
1 LuCls-1 crystal was soaked in 20 mM LuClz and 1.25mM ATP for 1 h 40 min.
1 LuCls-2 crystal was soaked in 20 mM LuClz and 1.3 mM ATP for 4 h.

§ Lanthanides crystal was soaked for 4 h in a mixture of 3.3 MM each of GdCls, TbCls, HoCls, ErCls, TmCls, and LuCls with 1.26 mM ATP and 1 mM EMTS.

[IATM crystal was soaked for 22 h in 10 mM sodium aurothiomalate.

9l lodine crystal was soaked for 75 min in 1 mM Nal; and 1 mM chloramine T. This crystal was originally prepared in an attempt to iodinate tyrosine residues as a heavy atom derivative, but no evidence of

tyrosine iodination was seen in the resulting structure.
#Mn crystal contained 1.4 mM ATP and 14 mM MnCl,.
* Data were collected at ESRF beamline ID2b.

11 Data were collected at ESRF beamline ID14-4.

FF R merge = i Zili(NKD) — ¢ (hKD)/Zg T (K.

§§Riso = ZllF denne| = IF nawe | 1/Z1F nave |-

[l The phasing power is defined as the ratio of the r.m.s. value of the heavy atom structure factor amplitudes and the r.m.s. value of the lack-of-closure error.
N9 Reryst @aNd Ryee = ZIF s — Feac[/EF 55 Riree Calculated with the percentage of the data shown in parentheses.

##R.m.s. deviations for bond angles and lengths in regard to Engh and Huber parameters.
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of the effector molecules. The PI3K+y structure shows how the RBD
interacts with the rest of the enzyme. The RBD of PI3Ky contacts
the N-lobe and to a lesser degree the C-lobe of the catalytic domain.
Residues in Ra2 and the RB3—RB4 loop interact with the catalytic
domain, mainly with the kB1-kB2 and kB4-kB5 loops and helix
ka6. The relationship of the RBD to the rest of the enzyme suggests
two possible mechanisms by which Ras binding may cause effector
activation: a recruitment mechanism, in which Ras increases PI3K
activity by translocating the enzyme to the plasma membrane; and
an allosteric mechanism, in which Ras binding to the RBD causes a
conformational change that would be propagated through the RBD/
catalytic domain interface to affect substrate or cofactor binding.

By superimposing the RBDs of RalGDS and PI3Ky, we
constructed a model of Ras interaction with PI3Ky (Fig. 5) from
which we can rationalize the differential effects of various switch I
and switch II mutants on PI3K binding compared with other
effectors. T35S and D38E mutations in Ras switch I eliminate
PI3K binding, but do not affect Raf binding". The E37G mutation
abolishes binding to PI3K and Raf but not to RalGDS. The Y40C
mutation does not affect PI3K binding, but abrogates Raf and
RalGDS binding. In the switch II region, the Y64G mutation
eliminates PI3K and neurofibromin binding but has no effect on
Raf binding'.

In our model of the PI3K—Ras interaction, residues Glu37,
Asp 38, Tyr 40 and Tyr 64 are at the PI3K—Ras interface. Lys 234 of
PI3K could form a salt bridge to Glu 37 of Ras and Lys 255 at the C-
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R4

O‘“’"’“"(%@b (e QS

ij‘:ﬂ\(': <)Y

= LydY
() & ‘,t;vza ¥

Activation
loop

Figure 4 Model of phospholipid headgroup interactions with PI3K+y. a, Orthogonal views
of the solvent-accessible surface. The activation loop is black. An inositol 1,4,5-
trisphosphate (InsP3) molecule (white ball-and-stick) is modelled in the active site with the
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terminal end of Ral could form a salt bridge with Asp 38 of Ras.
Lys 255 at the C-terminal end of Ra1 could form a salt bridge with
Asp 38 of Ras. Lys 255 in PI3KYy is probably analogous to Lys 227 in
PI3Ka, in which mutation K227E blocks PI3Ka binding to Ras'.
Tyr 40 interacts with Lys 32 in RalGDS (numbering as in ref. 17);
however, the very different orientation of the Lys 32 equivalent in
PI3Ky (Lys 234) may not allow this interaction, which may account
for the insensitivity of PI3K to the Y40C mutation. On the other
hand, Tyr 64 in switch II is in a position to form a hydrogen bond
with PI3K Asp 238, but this residue has no specific interaction with
RalGDS, which may explain the sensitivity of PI3K to the Ras Y64G
mutation.

The PI3Ky C2 domain (residues 357—522) is an eight-stranded
antiparallel B-sandwich consisting of two four-stranded B-sheets
(Fig. 6). The fold of this domain is the same as the type I C2 domain
found in PLC31'®. The N-terminal regions of all three PI3K classes
have C2 domains, whereas the class II enzymes have an additional
C2 domain at the C terminus (Fig. 1). The segments leading from
the RBD into the C2 domain and from the C2 domain to the helical
domain are not ordered.

C2 domains are often involved in Ca**-dependent or Ca*'-
independent phospholipid membrane binding using three loops
known as CBRs located at one end of the domain. The CBRs for
PI3KYy are the loops connecting 1 with 32 (CBR1), B3 with B4
(CBR2), and B5 with 36 (CBR3). The CBR3 of PI3KYy is quite long
compared with other C2 domains and is disordered in our structure.

N-terminal linker

Ptdins(4,5)P2 [ =~
headgroup‘

" Helical

Activation domain

3-0H near the y-phosphate of the bound ATP. b, The same views in ribbon representation
showing the activation loop (magenta) and InsP5 (blue). The right panel is expanded to
show features of the putative headgroup interaction.
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The C2 domain interacts primarily with the helical domain, but it
also interacts with the linker segment before the RBD and with the
C-terminal lobe of the catalytic domain. The surface of the C2
domain contacting the rest of PI3K'y is nearly identical to the surface
of the PLC81 C2 domain that contacts the catalytic domain of
PLC31.

PI3K can bind phospholipid membranes in the absence of other
protein components in a Ca**-independent manner and can carry
out processive catalysis at the membrane surface. By analogy with
enzymes such as protein kinase C and cytosolic phospholipase A2,
the C2 domain of PI3K may participate in membrane interaction.
Consistent with this, we found that the isolated C2 domain from
PI3Ky binds multilamellar phospholipid vesicles similarly to the
full-length enzyme (data not shown). In PI3K@ and PI3K3, CBR3

(residues 395—417 of PI3K3) is particularly rich in basic residues
that may be important for membrane binding.

The structure of a type II phosphatidylinositol phosphate kinase
(PIPK) has been reported. This dimeric enzyme, which phos-
phorylates phosphoinisitides at the 4-hydroxyl, consists of a single,
catalytic domain. The dimer has an extensive flat, positively charged
surface which was proposed to be the membrane-binding interface
of the enzyme. Although the N-lobe of PIPK is structurally related
to the catalytic domain of PI3Kvy, the location of PI3Ky C2 domain
with respect to the catalytic domain sterically precludes membrane
interactions using the surface of PI3K+y analogous to the putative
PIPK membrane-binding surface. Given the location of the
membrane-binding loops from the C2 domain and the cavity in
the catalytic domain that must accommodate the PtdIns(4,5)P,

Figure 5 Model of the Ras—PI3K~y interaction based on the structure of the RalGDS—Ras
complex. Inset, overall view of Ras—PI3Kry interaction. Residues in Switch | (green) and
Switch II (cyan) regions of Ras that influence effector binding are highlighted with dark

blue stripes, whereas residues in the RBD of PI3K (purple) that are likely to be involved in
Ras binding are shown as black stripes. Note the proximity of the RBD to the two lobes of
the catalytic domain.

Figure 6 Ribbon diagram of the PI3Ky C2 domain, and the interactions it makes with the rest of the enzyme. The elements of the helical and catalytic domains interacting with the C2

domain are shown. The domain in relation to the whole enzyme is shown to the left.
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Figure 7 The helical domain (for colours see Fig. 1). The A/B antiparallel helical pairs
characteristic of the HEAT motif topology consist of hA1/hB1, hA2/hB2, hA3/hB3, hA4/
hB4 and hA5/hB5. Left, interaction between the helical domain and the RBD and C2
domain (the rest of the protein is removed for clarity). This interaction involves principally
the A-helix surfaces. Right, interactions between the helical domain and the catalytic
domain.

headgroup, the membrane-binding surface of PI3Ky could consist
of the CBRs, the crevice between the N- and C-lobes of the catalytic
domain, and the tip of the activation loop (Fig. 4a, right panel
represents a view from the membrane surface).

The helical domain of PI3K (545—725) consists of five A/B pairs
of anti-parallel helices (Fig. 7). The first two pairs have one kinked
helix each, hB1/hB1’ and hB2/hB2'. This region has been variously
referred to as HR2, the PI3K accessory domain and the PIK domain,
but its function is not known. The paired arrangement of a series of
helices connected into a right-handed superhelix is reminiscent of
the PR65/A regulatory subunit of protein phosphatase 2A (PP2A)”.
PR65/A is a member of a diverse group of proteins that contain 3—
25 tandem repeats of a short sequence, called the HEAT motif. The
HEAT motif consists of paired helices A and B arranged so that the A
and B helices within a pair are antiparallel, and the A and B helices
from one motif are parallel to the A and B helices of the next motifin
the sequence. Although no HEAT sequence motif is apparent in the
helical domain of PI3K, its structure is quite similar to that of PR65/
A in terms of the arrangement of helices, the length of the A/B units,
and the angle between the A/B pairs.

The function of HEAT repeats is to form protein—protein inter-
actions. In importin-f3, interactions with the small GTPase Ran
involve the surfaces of the B helices*. In PR65/A, mutagenesis has
implicated the loops connecting the A/B pairs as the region
responsible for interaction with PP2A%. In PI3Ky, the helical
domain is central to the interdomain packing: the surface formed
by the A helices interacts with the catalytic domain; the loops
connecting A and B helices within a pair pack against the C2
domain; and the loops between helical pairs pack against the RBD
(Fig. 7). Much of the ‘B’ surface is solvent exposed and may interact
with other proteins that bind PI3Kry, such as the p101 adaptor or
Gy subunits.

The helical domain is common to both PI3K and PI4K families
and serves as a spine on which the other domains are fastened. One
of the proteins in which the HEAT sequence motif was first noted is
the target of rapamycin, TOR, a yeast homologue of human FRAP
(reviewed in ref. 22). FRAP has a C-terminal domain with clear
sequence homology to the catalytic domain of PI3Ks. The second-
ary-structure prediction for the remainder of FRAP suggests that
most of FRAP, apart from the catalytic domain, may consist of
helical repeats folded into a right-handed superhelix as in the helical
domain of PI3Kxy.

This first structure of a PI3K provides a framework within which
mutagenesis and detailed kinetic studies can be carried out to
establish the enzymatic mechanism and the mode of activation by
Ras and heterotrimeric G-protein subunits. (I
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Methods

Protein expression, purification and crystallization

The cell-free extract of baculovirus-infected S9 cells expressing the His-tagged catalytic
subunit of porcine PI3Ky (residues 1-143 deleted) was used for protein purification using
Talon resin, followed by thrombin cleavage, anion and cation exchange, and gel filtration
chromatography. Crystals were grown by mixing 1 ul of PI3K (3.5-4.0 mg ml™", in a buffer
containing 20 mM Tris-HCI pH7.2, 1% v/v ethylene glycol, 1% w/v betaine, 0.02% w/v
CHAPS and 5mM dithiothreitol) with 1 ul of a reservoir solution containing 150—

200 mM Li,SO,, 100 mM Tris-HCI pH 7.25 and 14—15% PEG 4000.

Data collection and structure determination

Crystals have C2 symmetry with unit-cell dimensions of a = 143.3 A b=67.6A,

¢ =107.0A, B = 95.9°, and contain one protein molecule in the asymmetric unit.
Diffraction data were collected at ESRF beamlines ID2 and ID14-4 at 100K after freezing
crystals in a cryoprotectant consisting of 150—200 mM Li,SO,, 100 mM Tris-HCl pH 7.25,
12% glycerol and 20% PEG 4000. Data were processed using MOSFLM* and CCP4
programs™. The structure was determined by multiple isomorphous replacement
methods. Heavy-atom positions were located using Solve” and refined with Sharp®
(Table 1). A model was built into the electron-density maps using the program O” and
refined using CNS*. The average B-factor for all atoms is 60 A2, The structure has no
residues in disallowed regions of the Ramachandran plot.

The highest resolution data obtained were for the complex containing ATP and
lutetium; refinement resulted in a model with a free R-factor of 0.30 to a resolution of
2.2A. This complex has 854 residues visible in the electron-density map. Crystals with and
without ATP had only minor differences in side-chain conformations in the active-site
residues. PI3Ks require a Mg”" or Mn®" cofactor for enzymatic activity. In complexes with
Lu’*, Mg®" or Mn®*, each of the metals binds at the same two sites.
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Sustained oscillations in living cells
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Glycolytic oscillations in yeast have been studied for many years
simply by adding a glucose pulse to a suspension of cells and
measuring the resulting transient oscillations of NADH'~". Here
we show, using a suspension of yeast cells, that living cells can be
kept in a well defined oscillating state indefinitely when starved
cells, glucose and cyanide are pumped into a cuvette with outflow
of surplus liquid. Our results show that the transitions between
stationary and oscillatory behaviour are uniquely described
mathematically by the Hopf bifurcation. This result charac-
terizes the dynamical properties close to the transition point.
Our perturbation experiments show that the cells remain strongly
coupled very close to the transition. Therefore, the transition
takes place in each of the cells and is not a desynchronization
phenomenon. With these two observations, a study of the kinetic
details of glycolysis, as it actually takes place in a living cell, is
possible using experiments designed in the framework of non-
linear dynamics. Acetaldehyde is known to synchronize the
oscillations™. Our results show that glucose is another messenger
substance, as long as the glucose transporter is not saturated.

The ubiquitous glycolytic pathway is the first step in sugar
catabolism, producing ATP, NADH and pyruvate. Under anaerobic
conditions, the NADH is reused in the subsequent fermentation of
the pyruvate. Transient glycolytic oscillations are known to occur in
suspensions of yeast cells"? see ref. 12 for measurements of most of
the relevant metabolites during oscillatory glycolysis. The observed
bulk oscillations of intracellular NADH depend on the ability of
individual cells to synchronize their oscillations. This capability was
proven by mixing two suspensions oscillating 180° out of phase: the
bulk oscillations of NADH disappear immediately after the mixing,
but reappear spontaneously after some time*".
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Synchronized bulk oscillations depend on a sufficiently high cell
density’. They are promoted by anaerobiosis, especially when
induced by cyanide’, which is a potent inhibitor of cytochrome ¢
oxidase in the respiratory chain.

Glycolytic oscillations are normally induced by a pulse of glucose,
and the resulting oscillations change gradually as the excess of
extracellular glucose is used up. An attempt was made to extend the
duration of the oscillations using an infusion system where glucose
was slowly injected into the cell suspension'. However, owing to cell
ageing, accumulation of waste products or dilution of the suspen-
sion, the observed oscillations were still transient. In both the
infusion experiment and the glucose-pulse experiment, the dura-
tion of the oscillating transient depends on the enzymatic composi-
tion of the yeast cells*”®'. In the glucose-pulse experiments, the
longest transient trains of oscillations are found when a saturated,
high-affinity glucose transporter provides the cell with an almost
constant flow of glucose throughout the transient''. In our experi-
mental setup, a continuous-flow stirred tank reactor (CSTR), we
control the glycolytic flow by means of the inflows, to give truly
sustained oscillations.

To obtain these oscillations, we prepare Saccharomyces cerevisiae
as described in ref. 8. The yeast is grown in batch culture at 30 °C to
the point of glucose depletion. The cells are then removed from the
growth medium and starved for a couple of hours, before being
resuspended in phosphate buffer and kept below 5 °C. The resulting
suspension flows into a stirred and thermostat-regulated reactor
through a peristaltic pump. Solutions of glucose and cyanide flow
into the reactor through two stepper—motor controlled piston
burettes (Fig. 1). We monitor the oscillations by measuring
NADH fluorescence.

Figure 2 shows a typical recording of stable undamped oscilla-
tions in the cell suspension. In principle the oscillations could
continue forever with constant amplitude and period. This is
possible because our setup is a truly open system. In practice, the
amount of yeast cells available from the batch growth limits the
duration of the run to 14 h in our experiments.

The environmental conditions of the cells can be changed by
altering the flow rates of the inflows. Depending on flow rate we
observe either a stationary state or continuous oscillations. The flow
rate where the stationary state becomes unstable is known as the
bifurcation point. As the flow rate is changed from this critical
value, the amplitude of the oscillations grows in proportion to the
square root of the deviation from the critical value. For a dynamic
system such behaviour is characteristic of a supercritical Hopf
bifurcation (SHB). This description is, of course, only valid suffi-
ciently close to the bifurcation point. In Fig. 3 we show how the
amplitude varies with the glucose flow rate. A similar agreement
with bifurcation theory is seen when the flow rate of cyanide is
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Figure 1 The experimental setup. F designates optical filters. See details in the Methods
section.
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