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The behavior of the nematode C. elegans has proven increasingly useful for the genetic 

dissection of neurobiological signaling pathways and for investigating the neural and molecular 

basis of nervous system function. Locomotion is among the most complex aspects of C. elegans 

behavior, and involves a number of discrete motor activities such as omega bends (deep bends 

typically on the ventral side of the body which reorient the direction of forward locomotion), 

reversals (changes in the direction of the locomotion wave that cause a switch from forward to 

backward crawling), and foraging (a rapid, side-to-side movement of the nose). Here we use 
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automated methods to automatically detect these activities, which rely in part on a new method 

for obtaining a morphological skeleton describing the body posture of coiled worms. These new 

methods have made it possible to reliably detect events that are time-consuming and laborious to 

detect by real-time observation or human video analysis. We also present an algorithm for 

tracking and distinguishing multiple C. elegans in a video sequence, including when they are in 

physical contact with one another. Our method makes it possible to identify two worms correctly 

before and after they touch each other, and to find the body poses for further feature extraction. 

The algorithm has many applications in the study of physical interactions between C. elegans. 
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Chapter 1 

Introduction 

 

1.1 C. elegans and automated analysis system 

The nematode Caenorhabditis elegans is widely used for studies of nervous system 

function and development. C. elegans is approximately 1 mμ  in length and feeds on bacteria 

(Figure 1.1). It has a simple nervous system which is well characterized at the anatomical level: 

an adult hermaphrodite contains only 302 neurons, each with a precisely determined position, cell 

lineage and synaptic connectivity. Despite its anatomical simplicity, the C. elegans nervous 

system mediates diverse and intricate patterns of behavior. The sense organs of C. elegans are 

capable of perceiving and responding to a wide range of environmental conditions, including 

heavy and light touch, temperature, volatile odorants, food and other nematodes. Because a 

particular neuron can be positively identified based on its position, it is possible to eliminate the 

function of an individual neuron or a group of neurons by using laser ablation. Moreover, because 

of their short generation time and completely sequenced genome, C. elegans is well suited to 

analysis of the molecular and cellular basis of nervous system development and function. 

However, many genes with critical roles in the nervous system have effects on behavior that are 

difficult to describe precisely, or occur over time scales too long to be compatible with real-time
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scoring by a human observer. Analyzing these genes relies on the rigorous description of animal 

behaviors. Standard methods for classifying the behavioral patterns of mutant Caenorhabditis 

elegans rely on human observation and are therefore subjective. Behavioral assays in this 

organism, particularly in more complex behaviors such as locomotion, are often highly imprecise. 

For example, over 100 genes have been described which when mutated lead to abnormal or 

uncoordinated movement [3]. These uncoordinated (‘Unc’) mutants are usually classified into a 

number of descriptive categories, including ‘kinker’, ‘coiler’, ‘slow’, ‘sluggish’ and ‘loopy’ 

animals [1, 3]. Table 1.1 contains descriptions of behaviors of these mutants. Since these 

categories are somewhat vague, and are always scored subjectively by a human observer, it is not 

uncommon for the same Unc mutant to be described differently by different researchers, or for 

two mutants with clearly distinguishable mutant phenotypes to be assigned the same 

classification. 

Table 1.1: Description of uncoordinated mutants [1, 2]. 
unc-1 Strong coilers. 
unc-3 Weak coiler tends to coil tail active. 
unc-10 Weak coiler tends to back loopy movement in reverse; fairly active slightly small and thin. 
unc-17 Severe coiler at all stages rather small and thin. 
unc-26 Severe kinker small scrawny flaccid little movement. 

unc-32 Severe coiler little movement in adult; moves well in L1 but coils in response to touch in L2 
and later stages; rather small and thin. 

unc-37 Weak coiler fairly active. 
unc-75 Weak coiler especially in reverse; moves forward well; sluggish; short. 
unc-77 Irregular loopy movement both forward and reverse; active; thin. 

 

Automated systems [4-7] consisting of a tracking microscope and image processing 

software have been developed and used to analyze the movements of C. elegans at high 

magnification. The tracking microscope is capable of following an individual animal for long 

time periods and saving a time-coded series of digital images representing its motion and body 

posture over the course of the recording. In [8], quantitative morphological and locomotion 

features were measured from the acquired image data with this system and used by the 



 

 

3

classification and regression tree algorithm (CART) to quantify the locomotion patterns and 

classify the behavioral phenotypes of C. elegans mutants. The system was used to investigate the 

similarities between different behavioral patterns based on their clustering in multidimensional 

feature space. From a complex data set consisting of 253 features measured from recordings of 

797 individuals representing 8 distinct genotypes, principal component analysis was used to 

represent each mutant type as a cloud of data points in low-dimensional feature space. The k-

means algorithm and Euclidean distance measurements were also used to explore the natural 

structure of the behavior data and to compare the similarities of mutant phenotypic patterns. The 

results provided a precise and comprehensive definition of several important C. elegans 

phenotypes. Studies previous to [8] focused primarily on simpler features such as body length, 

brightness, and speed. In this dissertation, we focus on automating the analysis of more subtle or 

challenging behaviors: coiling, reversals, omega bends, foraging and multi-worm interactions. 

mμ1≈ mμ1≈

 

Figure 1.1: A typical image of C. elegans. 

 

1.2 Coiling skeletonizing and behavior studies 

For measuring some features such as body length, body width, velocity and angle 

changing rate, a morphological skeleton needs to be obtained by applying a skeletonizing 

algorithm on a binary worm body image. Skeletonizing is a process for reducing foreground 

regions in a binary image to a skeletal remnant that largely preserves the spatial extent and 

connectivity of the original region while throwing away most of the original foreground pixels. 

We use morphological thinning that successively erodes away pixels from the boundary (while 
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preserving the end points of line segments) until no more thinning is possible, at which point 

what is left approximates the skeleton [9]. The skeleton is useful because it provides a simple and 

compact representation of a shape that preserves many of the topological and size characteristics 

of the original shape (Figure 1.2). Thus, for instance, we can get a rough idea of the length of a 

shape by computing the number of pixels on the skeleton. 

 

                        

Figure 1.2: An example of the skeleton from a simple shape. 

 

Determining the correct morphological skeleton using a standard algorithm is 

challenging when the binary worm body shape has an internal hole, which can be caused when 

the worm bends its body and touches itself. In these cases, the normal skeletonizing algorithm 

does not correctly identify the true skeleton nor the correct ends of the worm (i.e. head and tail). 

In this dissertation we describe an algorithm which generates skeletons for these body positions 

using a parameterized body model and locates the division line between overlapping portions of 

the worm body. Several specific features which can be measured from these coiled skeletons are 

particularly useful in the automated classification of C. elegans mutant types. Applications of this 

method for the analysis of specific body postures and behavioral events will be discussed. 

In behavioral studies, it is often critical to parameterize a complex behavior by 

identifying the simpler behavioral events that underlie it. For example, among the most important 
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behaviors to a nematode are those involving navigation of a sensory gradient to move toward an 

optimal condition. Nematodes accomplish this navigation primarily using a movement called an 

omega bend, in which the animal makes a single deep body bend in a shape of the capital Greek 

letter omega, usually on the ventral side of the body [10-12].  An omega bend serves to reorient 

the animal's head and allows it to continue to crawl forward, but in a different direction. Studies 

of omega bends have always relied exclusively on the time-consuming analysis of video 

recordings by human observers.  

When avoiding noxious compounds, nematodes often exhibit a second form of behavior, 

known as an escape reflex. When a worm is touched or presented with a toxic chemical stimulus, 

it will switch the direction of the locomotion wave, causing the animal to instantaneously crawl 

backward instead of forward. After a short period of backward crawling, the animal will execute 

an omega bend and crawl forward in a different direction, away from the noxious stimulus. A 

variety of genes affect the frequency of these reversals in direction. Moreover, the switch between 

forward runs and bouts of reversals has been shown to play an important role in worm touch 

avoidance behavior [13]. However, abnormalities in reversal frequency, and particularly in 

reversal distance, are very difficult to detect by manual observation, and have only been verified 

by careful assays of individual animals [14]. In previous studies, reversals have been detected 

automatically by following the path of the animal's centroid and identifying a large change in the 

direction of bearing of the centroid trace [15]. A more recent paper [6] described an algorithm 

that used skeleton points and the positions of the head and tail relative to the worm body to detect 

reversals. In this dissertation, we have developed algorithms based on skeleton analysis to detect 

omega bends and reversals, and characterize parameters relevant to these behaviors. In particular, 

the spatial polarity and temporal correlation of omega bends following reversals is investigated 

for wild-type and several of the more active coiler mutants. 
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Another C. elegans behavior that has received comparatively little attention is foraging. 

Foraging is a term used to describe rapid, side-to-side movements of the nose generated by the 

worm as it explores its environment. Several neurons, including the OLQ and IL1 sensory 

neurons and the RMG motorneurons, have been shown to be required for this behavior [16, 17]. 

Various genes conferring a foraging abnormal (“Fab”) phenotype have also been identified; for 

example, the AMPA-type glutamate receptor gene glr-1 is required for foraging [18], and the G-

protein alpha-subunit gene goa-1 as well as other genes in the Go/Gq signaling pathway affect the 

rate of foraging [19, 20]. However, the precise nature of the foraging movements in wild-type and 

mutant strains has not been characterized. In this dissertation, we present an automated method to 

detect and analyze foraging behavior of C. elegans in a video sequence. We also measure 

foraging-related parameters which have not previously been studied. The algorithm has 

applications in classifying and characterizing genetic mutations associated with this behavior. 

 

1.3 Multi-worm tracking algorithm 

Another main problem we consider is tracking and distinguishing multiple C. elegans in 

a video sequence, including when they are in physical contact with one another. Single-worm 

systems can provide a considerable amount of information about each animal that is recorded, but 

since statistically-significant characterization of any worm type requires the analysis of multiple 

animals, collecting data one animal at a time is often frustratingly slow. On the other hand, 

multiple-worm recordings do not typically provide as much information as single worm 

recordings due to their lower magnification. In addition, in existing multi-worm systems, any 

time two individuals touch, segmentation of separate animals is difficult and so their individual 

identities are lost by the system. When the animals separate, the system is unable to determine the 

correspondence between individuals before and after touching. The inability to separately 



 

 

7

segment and track individual animals when they touch seriously limits the ability of a multi-worm 

system to characterize the behavior of an individual in a population over time.  

In this dissertation, we address the problem of combining a part-based articulated model 

[21, 22] with a dynamic programming algorithm to determine the correct location of the 

individual worm bodies. Our work accurately resolves the individual body postures of two worms 

in physical contact with one another and identifies them correctly before and after they touch 

each other, and can still maintain track of the worms their bodies have non-crawling displacement. 

Furthermore, we solve the problem that the skeleton-based reversal detection algorithm in [23] 

fails when two worms touch each other because of the difficulty of obtaining morphological 

skeletons.  

 

1.4 Strains and culture methods 

In all the experiments described in this dissertation, routine culturing of C. elegans was 

performed as described in [3]. All worms analyzed in these experiments were young adults; 

fourth-stage larvae were picked the evening before the experiment and tracked the following 

morning. Experimental animals were allowed to acclimate for 5 minutes before their behavior 

was analyzed. Plates for tracking experiments were prepared fresh the day of the experiment; a 

single drop of a saturated LB (Luria broth) culture of E. coli strain OP50 was spotted onto a fresh 

NGM (nematode growth medium) agar plate and allowed to dry for 30 minutes before use. The 

alleles and predicted products of the genes used were as follows: syd-1(ju82); unc-1(e1598); unc-

3(e151); unc-10(e102); unc-17(e245); unc-26(m2); unc-32(e189); unc-37(e262); unc-75(e950); 

unc-77(e625) for behavioral studies and npr-1(ky13) for multiple-worm tracking experiments. 

Unlike the laboratory standard N2 strain which is a solitary feeder, tending to disperse on 

encountering bacterial food, npr-1(ky13) mutants are social feeders, strongly aggregating together, 

thus providing an opportunity to study touching behavior. 
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1.5 Acquisition of image data 

C. elegans locomotion was tracked with a Zeiss Stemi 2000-C microscope mounted with 

a Cohu High Performance CCD video camera essentially as described in [7]. The microscope was 

outfitted for brightfield illumination from a 12V 20W halogen bulb reflected from a flat mirror 

positioned at an angle of approximately 45 degrees.  A computer-controlled tracker was used to 

maintain the worms in the optical field of the microscope during observation (Figure 1.3). The 

experiments conducted in this dissertation used videos made with the following methods: 

1. For the experiments in Chapters 2 and 3, an image frame of the animal was captured 

every 0.125 second (8Hz) for at least five minutes (8×60×5 = 2400 images per video). Next, we 

binarized the image using an adaptive threshold and found the connected component with the 

largest area. The original image was then trimmed to the smallest axis-aligned rectangle that 

contained this component, and saved as eight-bit grayscale data. The dimensions of each image, 

and the coordinates of the upper left corner of the rectangle box containing the worm body in the 

tracker field were also recorded simultaneously. The microscope was fixed to its largest 

magnification (50 X) during observation. The number of pixels per millimeter was fixed at 312.5 

pixel/mm for all worms. 

 

2. For the experiments in Chapter 4, in order to detect foraging events which happen within 

very short time periods, image frames of the animal were captured at a higher frequency of 30Hz 

for at least one minute (30×60 = 1800 images per video). The rest of the image acquisition 

method is the same as it is for the experiments in Chapters 2 and 3. 

 

3. For the experiments on two worms touching in Chapter 5, an image frame was 

captured every 0.125 second (8Hz) and then saved as AVI video files. We used the smaller 

magnification of 2.5X to ensure that both of the worms are in the optical field of the microscope 
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during observation. For each video, the recording is initiated when the two worms are separated. 

The recording continues until they touch and then move apart. The length of every video is 

different, ranging from 30 sec to 178 sec, because the time length for each pair of worms to 

aggregate and separate is different. 

 

Tracking
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Video Digitizing Board

Video
Recorder

Video SignalAnalog Video
Camera

Microscope

Stage Controller
Stage Motion Commands

PC

Tracking
Software

Video Digitizing Board

Video
Recorder

Video SignalAnalog Video
Camera

Microscope

Stage Controller
Stage Motion Commands

PC
 

Figure 1.3: Tracking and imaging system. The CCD video camera is fitted to the microscope and outputs 
analog video images to the digitizing board on the PC. The tracking software computes the 
centroid of the worm and sends commands to the stage controller to re-center the field of view 
on the worm. 

 

1.6 Image pre-processing 

To facilitate analysis, the grayscale images were subjected to preliminary image 

processing to generate a simplified representation of the body [7]. First a local thresholding was 

applied on the grayscale images by using a 5 by 5 moving window (Figure 1.4a). The center pixel 

inside the moving window was assigned to 1 if the mean value of the window was less than 70% 

of the background pixel value or the standard deviation was larger than 30% of the mean value. 

Otherwise, the center pixel was assigned to 0 as background (Figure 1.4b). Next, a morphological 

closing operator (binary dilation followed by erosion) was used (Figure 1.4c). A corresponding 

reference binary image was also generated by filling holes inside a worm body based on image 

content information. The difference between these two binary images provided a good indication 

of which image areas are worm body and which are background. In order to remove unwanted 
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isolated objects, the connected components were labeled by scanning the image in x and y 

directions sequentially, and the largest component was selected to be the worm body in the image.  

Following binarization, a morphological skeleton is obtained by applying a skeletonizing 

algorithm [24]. Redundant pixels on the skeleton are eliminated by thinning. To avoid branches 

on the ends of skeletons, the skeleton is first shrunk from all its end points simultaneously until 

only two end points are left. These two end points represent the longest end-to-end path on the 

skeleton. A clean skeleton can then be obtained by growing out these two remaining end points 

along the unpruned skeleton by repeating a dilation operation (Figure 1.4d). 

 

 

 

 

 

 

 

 

 

 

                              

(a)                                                                                  (b) 
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(c) (d) 

Figure 1.4: (a) Gray level image acquired from a video sequence. (b) Corresponding binary image after 
thresholding. (c) Binary image after hole filling and closing operator. (d) Skeleton after 
skeletonizing and pruning algorithm. 
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Chapter 2 

Skeletonization and classification of coiler 

mutants 

 

A major motivation for establishing C. elegans as an experimental molecular genetic 

system was to understand how genes control behavior and locomotion. A thorough understanding 

of the ways in which genes control these aspects of biology relies on the accuracy of phenotypic 

analysis. Therefore, an enhanced capability to analyze all the complexities of nematode 

movement will help our understanding of how genes control behavior. In this chapter, we use 

image feature extraction techniques to quantitatively define and classify the behavioral patterns of 

C. elegans nervous system mutants. An automatic tracking and image processing system is used 

to measure morphological and behavioral features from videos of C. elegans. Measurement of 

some features such as body length and angle change rate, whether by a human observer or a 

computer, requires a precise analysis of the animal's body posture.  

In most cases, we can determine the correct posture using a standard morphological 

skeleton algorithm [7, 24]. However, sometimes the binary worm body shape has an internal hole, 

which can be caused when the body bends into an omega shape (Figure 2.1a) or a spiral (Figure  
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2.1b). In such cases, the morphological skeleton which is correct from an image processing point 

of view is not necessarily a useful summary of the worm body shape from a biological point of 

view. For example, Figure 2.1d shows the binarization of the worm body from Figure 2.1c, and 

Figure 2.1e shows the morphological skeleton, correct from an image processing point of view, 

generated from the binary shape of Figure 2.1d. Figure 2.1f on the other hand, shows the desired 

skeleton from a biological perspective. In previous studies, frames such as Figure 2.1c could be 

recognized as failing the skeletonization (for example, because the Figure 2.1e skeleton is too 

short) and so the frame was discarded [4, 8].  

                      

(a)                                        (b)                                       (c) 

                 

                                          (d)                                         (e)                                       (f) 
 
Figure 2.1: (a) Typical omega bend. (b) Coil or spiral. (c) Grayscale image. (d) Binary image. (e) Skeleton 

from an image processing point of view. (f) Desired skeleton from a biological point of view. 
 

In this project, we develop an algorithm to solve this problem in order to study coiler 

mutants, which take on these body postures frequently. In particular, we use a parameterized 

body model (Figure 2.2a) and locate the division line between overlapping portions of the worm 

body. The length L and width W are the average length and width of the worm body obtained 

from images without internal holes. Briefly, we use W in the model to find the touching parts of 

the worm body, because touching parts will have width greater than W (Figure 2.2b). Then we 
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cut the touching part from its exterior boundary to interior boundary to recover the original 

posture. The skeletonizing algorithm is then applied to obtain the morphological skeleton. Using 

this method, we can extract features from the obtained skeletons and robustly define the body 

postures of wild-type animals as well as of mutants that coil frequently. Furthermore, we can use 

these features to demonstrate the successful classification and compare the similarities of a data 

set consisting of wild type and coiler mutants. 

L
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w
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                                                        (a)                                                                                     (b) 
 

Figure 2.2: (a) The worm body matching model. (b) We find the overlapping part of the worm body using 
the model, by starting from a protruding end and then moving along the body length, looking 
for a place where the blob width exceeds W. 

 

 

In this chapter, we first explain how the morphological and locomotion features are 

extracted. We then give a detailed description of our coiling skeletonizing algorithm. Finally we 

present results assessing the robustness of our skeletonizing algorithms by classification and 

characterization of coiler mutants. 
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2.1 Image feature extraction 

2.1.1 Head and tail recognition 

After a clean skeleton is obtained in each frame without coiling as described in section 

1.6, we use the approach in [7] to extract the head and tail information of entire video sequences. 

Basically, we use three clues to address this problem: 

1) Even though the distance that the worm body travels between two adjacent image 

frames could be large, the head and tail positions relative to the body centroid tend to 

change little. 

2) Because of the distribution of fat deposits, the worm’s head area is usually brighter 

than the tail area. 

3) The worm’s head usually moves more frequently than the tail, which is related to 

foraging behavior. 

First we divide the end points of all uninterrupted video segments into two groups according to 

the following criterion: Let )(1 tpt  and )(2 tpt  denote the end points in frame t that were assigned 

to groups 1 and 2 respectively; )1( +tptA  and )1( +tptB  denote the two end points in frame t+1 

that have not yet been assigned to either group. We compute the distances ))(),1(( tpttptdist nm +  

where { }BAm ,⊂  and { }2,1⊂n . The end point )1( +tptM will be assigned to group N if 

))(),1((minarg),( ),( tpttptdistNM nmnm +=  and ))(),1((maxarg),( ),( tpttptdistNM nmnm +≠ . If 

the rule is not satisfied, then the current frame is considered to be “undecided” and the grouping 

process needs to restart from the next frame to avoid errors propagating. Next for each frame, we 

use the two end points as references to generate a cutoff line to isolate the two end sections from 

the rest of the body. The median brightness of the two end sections for each frame and the mean 

values (over time) of these median values of group 1 and 2 are computed. If the difference 

between mean values of groups 1 and 2 is greater than 20% of the larger mean value, the group 
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with the higher brightness is considered to be the head. For some mutant types, the brightness 

differences between head and tail are smaller because of digestive abnormalities. In this case, we 

compare the local movement distance for the two end points and the group with larger total 

movement distance is labeled as the head. 

 

2.1.1 Feature extraction 

Feature extraction is applied to obtain 64 basic features. These include body length, 

width, fatness, brightness, and angle change rate. These 64 features (listed in Table 2.1) are 

calculated for each of the 2400 frames in each video by using software coded in C or MATLAB. 

The maximum, minimum, and mean values over time for most of these features were then 

computed to form 188 features in total for each video. Some features (e.g., the average brightness 

over the worm body) can be computed in every single frame. Certain features such as movement 

distance and speed could not be obtained from one single frame. In this case, we took 4, 8 and 40 

frames (0.5, 1 and 5 seconds) in a sliding window and computed features within windows. The 

maximum, minimum and mean values were also calculated from these sets of numbers. 
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Table 2.1: All feature variables used in CART analysis 

CART variable name Description 

AREAMIN, AREAMAX,  
AREAAVG Min, max, average worm body area 

HGHTMIN, HGHTMAX,  
HGHTAVG 

Min, max, average height of MER (minimum 
enclosing rectangle) area 

WDTHMIN, WDTHMAX, 
WDTHAVG Min, max, average width of MER area 

LNGTHMIN, LNGTHMAX,  
LNGTHAVG Min, max, average worm body length 

WHRATMIN, WHRATMAX,  
WHRATAVG Min, max, average width/height ratio 

MERFLMIN, MERFLMAX,  
MERFLAVG 

Min, max, average ratio of worm area to MER 
area 

MAJORMIN, MAJORMAX,  
MAJORAVG  

Min, max, average length of best-fit ellipse's 
major axis 

MINORMIN, MINORMAX,  
MINORAVG 

Min, max, average length of best-fit ellipse's 
minor axis 

ECCTYMIN, ECCTYMAX,  
ECCTYAVG  

Min, max, average eccentricity of best-fit 
ellipse 

MVHLFMIN, MVHLFMAX,  
MVHLFAVG 

Min, max, average distance moved in 0.5 
second 

MV1MIN, MV1MAX,  
MV1AVG  Min, max, average distance moved in 1 second 

MV5MIN, MV5MAX,  
MV5AVG  Min, max, average distance moved in 5 second 

HDTHKMIN, HDTHKMAX,  
HDTHKAVG  Min, max, average head thickness 

TLTHKMIN, TLTHKMAX,  
TLTHKAVG  Min, max, average tail thickness 

CNTHKMIN, CNTHKMAX,  
CNTHKAVG  Min, max, average center thickness 

HDTLRMIN, HDTLRMAX,  
HDTLRAVG  Min, max, average head's thickness/length ratio

TLTLRMIN, TLTLRMAX,  
TLTLRAVG  Min, max, average tail's thickness/length ratio 

CNTLRMIN, CNTLRMAX,  
CNTLRAVG  

Min, max, average center's thickness/length 
ratio 

HTTHRMIN, HTTHRMAX,  
HTTHRAVG Min, max, average head/tail thickness ratio 

HCTHRMIN, HCTHRMAX,  
HCTHRAVG  Min, max, average head/center thickness ratio 

TCTHRMIN, TCTHRMAX,  
TCTHRAVG  Min, max, average tail/center thickness ratio 

AMPMIN, AMPMAX,  
AMPAVG Min, max, average amplitude of skeleton wave 
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Table 2.1 continued 

CART variable name Description 

AMPRMIN, AMPRMAX,  
AMPRAVG 

Min, max, average amplitude ratio of skeleton 
wave 

ANCHRMIN, ANCHRMAX,  
ANCHRAVG 

Min, max, average angle changing rate of 
skeleton wave 

ANCHSMIN, ANCHSMAX,  
ANCHSAVG 

Min, max, average angle changing rate (S.D.) 
of skeleton wave 

LNMFRMIN, LNMFRMAX,  
LNMFRAVG 

Min, max, average ratio of worm length to 
MER fill 

LNECRMIN, LNECRMAX,  
LNECRAVG 

Min, max, average ratio of length to 
eccentricity of best-fit eliipse 

FATMIN, FATMAX,  
FATAVG 

Min, max, average fatness of worm (ratio 
worm area to length) 

LNWDRMIN, LNWDRMAX,  
LNWDRAVG Min, max, average ratio of length to width 

CNTMVMIN, CNTMVMAX,  
CNTMVAVG Min, max, average moving distance of centroid

HDBRIMIN, HDBRIMAX,  
HDBRIAVG  Min, max, average brightness of head 

TLBRIMIN, TLBRIMAX,  
TLBRIAVG Min, max, average brightness of tail 

CNTBRMIN, CNTBRMAX,  
CNTBRAVG Min, max, average brightness of center 

AVEBRMIN, AVEBRMAX,  
AVEBRAVG Min, max, average average brightness 

HTBRRMIN, HTBRRMAX,  
HTBRRAVG  Min, max, average head/tail brightness ratio 

HDWDMIN, HDWDMAX,  
HDWDAVG Min, max, average width of head 

TLWDMIN, TLWDMAX,  
TLWDAVG Min, max, average width of tail 

CNTWDMIN, CNTWDMAX,  
CNTWDAVG Min, max, average width of center 

AVEWDMIN, AVEWDMAX,  
AVEWDAVG Min, max, average average width 

HTWRMIN, HTWRMAX,  
HTWRAVG Min, max, average head/tail width ratio 

HDANGMIN, HDANGMAX,  
HDANGAVG Min, max, average head's angle changing rate 

TLANGMIN, TLANGMAX,  
TLANGAVG Min, max, average tail's angle changing rate 

CNTANMIN, CNTANMAX,  
CNTANAVG Min, max, average center's angle changing rate

AVEANMIN, AVEANMAX,  
AVEANAVG Min, max, average average angle changing rate

 



 

 

19

Table 2.1 continued 

CART variable name Description 

HAREAMIN, HAREAMAX,  
HAREAAVG Min, max, average area of head 

TAREAMIN, TAREAMAX,  
TAREAAVG Min, max, average area of tail 

CAREAMIN, CAREAMAX,  
CAREAAVG Min, max, average area of center 

HDAMPMIN, HDAMPMAX,  
HDAMPAVG Min, max, average amplitude of head 

TLAMPMIN, TLAMPMAX,  
TLAMPAVG Min, max, average amplitude of tail 

CTAMPMIN, CTAMPMAX,  
CTAMPAVG Min, max, average amplitude of center 

AVAMPMIN, AVAMPMAX,  
AVAMPAVG Min, max, average average amplitude 

HDCTDMIN, HDCTDMAX,  
HDCTDAVG Min, max, average distance of head to center 

TLCTDMIN, TLCTDMAX,  
TLCTDAVG Min, max, average distance of tail to center 

HTANGMIN, HTANGMAX,  
HTANGAVG 

Min, max, average angle between head-center 
and tail-center 

HCANGMIN, HCANGMAX,  
HCANGAVG 

Min, max, average anlge between head-center 
and horizontal line 

TCANGMIN, TCANGMAX,  
TCANGAVG 

Min, max, average anlge between tail-center 
and horizontal line 

RADIUMIN, RADIUMAX,  
RADIUAVG Min, max, average looping radius 

RADSDMIN, RADSDMAX,  
RADSDAVG Min, max, average looping radius (S.D.) 

OVLENMIN, OVLENMAX,  
OVLENAVG Min, max, average looping length 

OVLNRMIN, OVLNRMAX,  
OVLNRAVG 

Min, max, average looping radius/body length 
ratio 

TIGHRMIN, TIGHRMAX,  
TIGHRAVG 

Min, max, average tightness (hole area/body 
area) 

LPLTMIN, LPLTMAX,  
LPLTAVG 

Min, max, average time length of looping 
lasting 

LOOPNUM, Number of loops 

BEND Bending direction of the worm body 
(dorsal/ventral) 
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Some values are easily affected by noise or errors during image processing or capture. 

Throughout this chapter, we used the 90th and 10th percentile values as our maximum and 

minimum values for each feature in order to avoid extreme values caused by noise or errors 

during image capture and processing. Some of these features are described in detail: 

1) Worm length and area: The worm length is the number of pixels on the skeleton. The 

head, tail and center area are obtained by counting the pixels in these areas. 

2) Width/thickness/fatness: The widths of the head, tail and center are defined to be the 

average widths of the head, tail and center sections. Worm thickness is defined in [4, 

7] to be the ratio width/length and this is measured at the head, tail and center 

positions of the skeleton, where the head and tail positions are defined to be 7 pixels 

away from the head and tail end points on the skeleton. We define the fatness to be 

the ratio of worm area to length. 

3) Angle change rate: The angle change rate is defined in [4, 7] as the ratio of the 

average angle difference between every pair of consecutive segments connected by 

skeleton points which are 5 pixels apart along the skeleton. The angle change rate 

measures how sharply a worm body bends.  

4) Brightness: The brightness can be measured by the median pixel value of the head, 

tail, center and whole worm body areas.  

 

2.2 Coiling skeletonizing 

In this section, we describe details of our coiling skeletonizing algorithm to obtain the 

morphological skeleton in order to study coiler mutants. Images with holes can be classified into 

three groups: A) images with the worm body touching only in the horizontal (xy-plane) direction 

and having a protruding head/tail (Figure 2.1b), B) images with the worm body touching only in 

the horizontal direction but not having any protruding head/tail (Figure 2.1c), and C) images with 
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the worm body overlapping vertically that is, in the z-direction, going out of the plane of the agar 

plate. For images in group C, because the worm covers part of its body with another part, its body 

area is smaller than its usual size. For every binarized image, we compare the size of the worm 

body area to a threshold. Among the mutants studied in this paper, unc-17, unc-26 and unc-32, 

which have smaller body areas (5500 pixels) than the other strains, were strong coilers/kinkers. 

Only these strains have the possibility of coiling so tightly that the skeletonization should be 

directly abandoned (images in group C). So we chose 5000 pixels as the threshold in our 

experiment, but this threshold could be chosen as 90% of the average worm body area if either a 

different magnification were used, or if strong coilers with different body sizes were studied. If 

the body area is smaller than the threshold, we decide the image is in group C and abandon it 

because the correct body posture will not be available when a worm has vertical overlapping. 

For images in groups A and B, after the binarization of the original grayscale image, we 

obtain the exterior boundary and the interior boundary of the worm body by first eroding it with a 

3×3 square structuring element and then performing the set difference between the binary image 

and its erosion. Figures 2.3a and 2.4a show the grayscale original images of two examples that 

will ultimately be classified as belonging to class A. Figures 2.3b and 2.4b depict the 

corresponding exterior and interior boundaries. Figure 2.5a shows the grayscale original image of 

an example that will be classified as class B. Figure 2.5b shows the exterior and interior 

boundaries. In each case, these two boundaries are sampled at an interval of 5 pixels (the 

sampling interval should be adjusted according to the magnification used for data acquisition) to 

get N+1 sampled points pi (i = 0, 1, 2, 3…N, where N+1 is the total number of sampled points). 

To decide if this image has a protruding head/tail, the inner angle θ between each pair of 

segments pi - pi-2 and pi - pi+2 in the exterior boundary will be measured to find a point O which 

has the furthest distance from the interior boundary among all points with θ  < 90°.  If no such 

point exists, then this image is classified as group B. Otherwise, this image belongs to group A. In 
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Figures 2.3c and 2.4c, the point O is found and the images are classified as class A. In Figure 2.5c, 

there is no point where the interior angle is less than 90°, so the image is class B (no protruding 

head/tail). 
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Figure 2.3: An example of coiling skeletonizing for group A (example 1). (a) The original grayscale image. 

(b) The exterior and interior boundaries. (c) Sampled boundary and two sets X and Y. (d) 
Finding the starting point and generating the division line. (e) The cut image. (f) The 
morphological skeleton (solid line) obtained from the cut image. 
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Figure 2.4: An example of coiling skeletonizing for group A (example 2). (a) The original grayscale image. 

(b) The exterior and interior boundaries. (c) Sampled boundary and two sets X and Y. (d) 
Finding the starting point and generating the division line. (e) The cut image. (f) The 
morphological skeleton (solid line) obtained from the cut image. 
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If this image is in group A, all sampled points are divided into two sets: set X contains 

N/2 points clockwise next to point O and set Y contains N/2 points counterclockwise next to point 

O. For each point xi in X, we search every point yj in Y to find the one closest to xi. We calculate 

the distance Wij between xi and yj as well as the outer angle θi (the angle between each pair of 

segments xi - xi-2 and xi - xi+2). First we check for all points if θi < 100°, if the answer is yes, then xi 

is considered a possible starting point of the worm body-touching. If the answer is no for all 

points, we compare Wij to the average width W of the worm body. If Wij >W, then xi will still be 

considered a possible starting point. The search continues until the first possible starting point of 

the body-touching is found. We repeat the same process for the set Y. We have found that at most 

one set will have a possible starting point with θ smaller than 100° (Figure 2.3d). Sometimes 

neither set X nor Y has an outer angle θ smaller than 100°. In this case, both sets X and Y will have 

a possible starting point where Wij >W. We find a point p in the interior boundary which is the 

closest to the two possible starting points found, then we compare dx and dy which are the shortest 

distances from the point p to sets X and Y. Whichever side has the shorter distance will be 

considered the head/tail part (because the head and tail are less thick) and the possible starting 

point in that side will be considered the real starting point of the worm body-touching (Figure 

2.4d). 

Assume xm is found to be the real starting point and yn is its closest sampled point in the 

other set, we can keep locating division points which are Wmn (the distance between xm  and yn) 

pixels away from the next points yk (k > n) until the interior boundary is reached.  These division 

points are connected to form a division line and then a skeletonizing algorithm is applied on this 

cut image (Figures 2.3e, 2.4e) to get the correct skeleton (Figures 2.3f, 2.4f). 
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Figure 2.5: An example of coiling skeletonizing for group B. (a) The original grayscale image. (b) The 

exterior and interior boundaries. (c) Sampled boundary. There is no point where the angle is 
less than 90°.(d) Finding the overlapping part. (e) Comparing the variance of the pixel values in 
the two areas. (f) Locate division points from the starting point to the interior boundary. (g) The 
cut image with the division line. (h) The morphological skeleton (solid line) obtained from the 
cut image. 
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If the image is in group B, we calculate the distance d between the interior boundary and 

every sampled point on the exterior boundary. If d > W, we put this point into a set Z. The set Z 

covers the overlapping part of the worm body (Figure 2.5d). The two end-points of this set are the 

two possible starting points of the overlapping. We measure the variance of the pixel values in 

two rectangular blocks around these two points and compare them (Figure 2.5e). Each block has 

10-pixel width with one of the longer edges formed by one end-point and the fifth point from the 

end-point. The size of the rectangular blocks should be adjusted according to the magnification 

used. The side with larger variance is considered the starting point because the place where the 

head or tail tapers to a point usually has very different pixel values compared to the body part it is 

touching. The histograms of the two rectangular blocks are shown in Figure 2.6. In Figure 2.5f, 

we can see that a number of points are located gradually from the starting point with increasing 

distance (0, 2, 4, 6……W) from points in the set Z until the interior boundary is reached and 

connected together to generate a division line (Figure 2.5g). Then we apply a standard 

skeletonizing algorithm on this cut image to obtain the correct skeleton of the worm body (Figure 

2.5h). The block diagram of the whole coiling skeletonizing process is shown in Figure 2.7. 

Because C. elegans can contract and extend its body, small variations in body length can 

be accepted as correct skeletons. With empirical observation, 20% of L (the average length of the 

worm body calculated from images without internal holes) was felt to be an upper limit for this 

variation in body length. Therefore every skeleton obtained with this algorithm was also 

compared to L. If the difference between them is greater than 20% of L, which is nearly the 

difference between the maximal and the minimal worm body length in frames without body 

touching, then this skeleton is assumed to be incorrect and is not used for further feature 

extraction. 
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Figure 2.6: The histograms of block1 and block2 in Figure 2.5e. 
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Figure 2.7: The block diagram of the coiling skeletonizing algorithm. 
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2.3 Classification 

The Classification and Regression Trees (CART) algorithm is used to analyze features 

and classify mutant types [25]. It is a tree structured statistical analysis and data mining tool. It 

uses a method known as binary recursive partitioning [26]. The term “binary” implies that each 

group, represented by a node in a decision tree, can only be split into two groups. Thus, each node 

can be split into two child nodes, in which case the original node is called a parent node. The term 

“recursive” refers to the fact that the binary partitioning process can be applied over and over 

again. Thus, each parent node can give rise to two child nodes and, in turn, each of these child 

nodes may themselves be split, forming additional children. The term “partitioning” refers to the 

fact that the dataset is split into sections or partitioned. CART analysis consists of four basic steps 

[25]. The first step consists of tree building, during which a tree is built using recursive splitting 

of nodes. Each resulting node is assigned a predicted class. The rule is to assign the largest 

percentage of cases for each terminal node, which is called plurality. The assignment of a 

predicted class to each node occurs whether or not that node is subsequently split into child nodes. 

The second step consists of stopping the tree building process. At this point a “maximal” tree has 

been produced, which probably greatly overfits the information contained within the learning 

dataset. The third step consists of tree “pruning”, which results in the creation of a sequence of 

simpler and simpler trees, through the cutting off of increasingly important nodes. The fourth step 

consists of optimal tree selection, during which the tree which fits the information in the learning 

dataset, but does not overfit the information, is selected from among the sequence of pruned trees. 

The goal of CART is to successively divide the training set in a way that the data associated with 

the terminal nodes of the tree do not have a mix of classes; rather each node should be as pure as 

possible. In this dissertation, by using extracted features, we were able to distinguish different 

coiler mutants using this binary decision tree algorithm.  
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2.4 Results 

2.4.1 Verification of the skeleton algorithm by human observers 

The coiling skeletonizing algorithm was tested on 55 5-minute videos (8Hz) from 11 

mutant types. Of the 132000 image frames in these videos, more than 26000 of them involved 

body touching or overlapping. For all of these, cut images and skeletons were generated by the 

algorithm for a human observer to verify. The positions of the start and end points of body 

touching in every cut image were examined. The skeletons were also compared to the grayscale 

images to decide if the obtained body posture was correct. Experimental results are shown in 

Table 2.2. The rate of obtaining a biologically correct skeleton is over 93%. 

 

 

Table 2.2: Verification results for the coiling skeletonizing algorithm. Data were collected from 55 5-
minute videos (8Hz) from 11 mutant types. The first column shows the mutant type. The second column 
shows the number of correct skeletons obtained with our algorithm. The number of wrong skeletons not 
due to vertical body overlapping is listed in column 3. The number of wrong skeletons due to vertical body 
overlapping is listed in column 4. The average correct rate is over 93%. 

Strain name Correct 
skeletons 

Wrong 
skeletons 

Wrong skeletons 
due to vertical 

body overlapping 

Frames rejected by the 
comparison to the 

threshold (5000 pixels)

syd-1(ju82) 649 (94.5%) 16 (2.3%) 22 (3.2%) 0 
unc-1(e1598) 5178 (99.2%) 41 (0.8%) 0 0 
unc-3(e151) 1705 (93.0%) 125 (6.8%) 3 (0.2%) 0 

unc-10(e102) 1690 (90.8%) 20 (1.1%) 152 (8.2%) 0 
unc-17(e245) 3245 (82.7%) 156 (4.0%) 525 (13.3%) 3895 
unc-26(m2) 3358 (91.4%) 79 (2.2%) 235 (6.4%) 3326 

unc-32(e189) 5321 (97.4%) 40 (0.7%) 104 (1.9%) 0 
unc-37(e262) 2310 (91.6%) 35 (1.4%) 176 (7.0%) 0 
unc-75(e950) 946 (93.6%) 37 (3.7%) 28 (2.7%) 160 
unc-77(e625) 1647 (96.1%) 20 (1.2%) 47 (2.7%) 0 

Wild type (N2) 189 (99.5%) 1 (0.5%) 0 0 
Total 26238 (93.4%) 570 (2.0%) 1292 (4.6%) 7381 

 

 

 



 

 

30

2.4.2 Assessment of skeleton algorithm by classification of coiler mutants 

To evaluate the effectiveness of our system in characterizing the postures of coiled 

animals, we tested the ability of the automated binary classifier CART to correctly identify 

different mutant strains that frequently adopt coiled postures. We compared our data from 10 

different uncoordinated mutants with wild-type worms. The test group included five mutants 

categorized by [1] as "weak coilers" (unc-3, unc-10, unc-37, unc-75, and unc-77) as well as two 

"strong coilers" (unc-17 and unc-32), one "forward uncoordinated" mutant (unc-1), one "strong 

kinker" (unc-26) and one mutant with superficially normal locomotion (syd-1). The data set 

contained 40 5-min videos at 8Hz of each mutant type. Shown in Figure 2.8, a classification tree 

with 11 terminal nodes (depicted as ellipses) was generated by CART using 10-fold cross 

validation to determine the tree size. Only 9 different features, appearing in diamond-shaped 

boxes in Figure 2.8, were chosen by CART and used as splitting nodes in this classification tree. 

The names and descriptions of these 9 features were as follows: ANCHSMAX - Max value of 

angle change rate; AVEBRMIN - Min value of worm average brightness; CNTMVAVG - Ave 

value of centroid movement distance; HAREAMIN - Min value of head area; HDTLRMAX - 

Max value of head thickness-length ratio; HTTHRMAX - Max value of head-tail thickness ratio; 

LNGTHMIN - Min value of worm body length; TAREAMIN - Min value of worm tail area; 

TLCTDAVG - Ave value of tail-centroid distance. This subset of features selected from among 

the 188 features to be used as the basis for splitting, as well as the thresholds used for splitting, 

were chosen automatically by the CART algorithm based on the data, with the cross-validation 

used to guard against overfitting. At each step, a splitting test separates a parent node into exactly 

two child nodes based on a criterion related to a single feature. For example, suppose we have a 

worm of unknown type with TLCTDAVG = 113.82, LNGTHAVG = 193.43 and ANCHSMAX 

= 11.72. Starting at the top, the first question is: 

Is TLCTDAVG ≤  116.09? 
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In this case, the answer is yes and the case goes to the left. This classification tree will do the 

same for LNGTHAVG and then ANCHSMAX and the worm winds up in the ellipse on the left 

and is classified as unc-75. The classification result shows the significance of the previously 

generated skeletons. Several of the features such as angle change rate, body length as well as 

head-tail recognition rely on measurements of the skeleton.  

The cross validated classification probabilities for the system with the new algorithm 

compared to the standard morphological skeleton algorithm are given in Tables 2.3A and B 

respectively. The mutant names of all video data are in the first column and the first row lists the 

groups to which each video was classified. The success rates are listed along the diagonal while 

the off-diagonal entries represent the misclassification rates. We see that the CART tree using the 

data from the new skeletonizing algorithm has significant improvement for several mutants.  For 

example, the correct classification rate for syd-1 improves by 12.5%, unc-10 by 20%, unc-37 by 

10%, and unc-77 by 12.5%.  There are a few minor changes as well:  unc-3 gets worse by 5%, 

and unc-17 and unc-32 each improve by 2.5%.  Overall, the new skeletonizing algorithm allows 

us to do better classification for the video data.  Given that the old system already showed better 

success at correctly classifying difficult-to-distinguish mutant types than a human expert [7], we 

consider this to be a good result.   
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Table 2.3: The cross validated classification probability tables from two systems. In each table, the first 
column lists the actual mutant types for the video data. The first row lists the results of the classification 
procedure. The success rates are listed along the main diagonal while the off-diagonal entries represent the 
misclassification rates. 
 
A.  Results with new skeletonizing algorithm: 

 syd-1 unc-1 unc-3 unc-10 unc-17 unc-26 unc-32 unc-37 unc-75 unc-77 Wild type 
(N2) 

syd-1 80.0% 0 0 2.5% 0 0 0 2.5% 0 0 15.0% 

unc-1 5.0% 85.0% 0 0 0 2.5% 2.5% 0 0 0 5.0% 

unc-3 5.0% 7.5% 67.5% 0 0 0 10.0% 7.5% 2.5% 0 0 

unc-10 0 2.5% 0 92.5% 0 0 0 0 0 2.5% 2.5% 

unc-17 0 0 0 0 77.5% 10.0% 5.0% 0 0 5.0% 2.5% 

unc-26 0 0 0 0 22.5% 72.5% 0 0 5.0% 0 0 

unc-32 0 12.5% 0 0 7.5% 2.5% 57.5% 10.0% 5.0% 5.0% 0 

unc-37 5.0% 0 7.5% 0 0 2.5% 10.0% 67.5% 0 2.5% 5.0% 

unc-75 0 2.5% 0 0 7.5% 0 2.5% 0 87.5% 0 0 

unc-77 0 7.5% 5.0% 12.5% 10.0% 0 0 2.5% 0 62.5% 0 

Wild type  
(N2) 25.0% 5.0% 0 0 0 0 0 0 0 2.5% 67.5% 

 
 
 
 
B.  Results with previous system [7]: 

 syd-1 unc-1 unc-3 unc-10 unc-17 unc-26 unc-32 unc-37 unc-75 unc-77 Wild type 
(N2) 

syd-1 67.5% 0 0 5.0% 0 0 2.5% 2.5% 0 0 22.5% 

unc-1 5.0% 85.0% 0 0 0 2.5% 2.5% 0 0 0 5.0% 

unc-3 5.0% 7.5% 72.5% 0 0 0 7.5% 0 2.5% 2.5% 2.5% 

unc-10 0 0 5.0% 72.5% 0 0 15.0% 0 0 5.0% 2.5% 

unc-17 2.5% 0 0 0 75.0% 12.5% 5.0% 2.5% 0 2.5% 0 

unc-26 0 0 0 0 20.0% 72.5% 2.5% 0 5.0% 0 0 

unc-32 0 10.0% 0 12.5% 5.0% 2.5% 55.0% 7.5% 5.0% 2.5% 0 

unc-37 0 0 10.0% 5.0% 0 2.5% 12.5% 57.5% 0 7.5% 5.0% 

unc-75 0 2.5% 0 0 7.5% 0 2.5% 0 87.5% 0 0 

unc-77 0 7.5% 5.0% 10.0% 10.0% 0 0 17.5% 0 50.0% 0 

Wild type 
(N2) 22.5% 5.0% 0 2.5% 0 0 0 0 0 2.5% 67.5% 
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Figure 2.8: The classification tree reliably identifies the type of a given worm using only 9 features. The 
tree was constructed using the CART algorithm as described. 

 

 

2.4.3 Characterization of coiler mutants 

In order to study the similarities among different mutant types, we analyzed the 

clustering of these 440 worms. In particular, we sought to determine how the feature data 

clustered in multidimensional space and to then correlate the clustering pattern of the feature data 

with the known biology of the mutant types. For each worm, 188 features describing aspects of 

the animal’s movement, body texture, or body posture were measured and designated as a single 

data point with multiple dimensions. Because we measure those features in different units, all 

features were normalized to avoid one feature dominating others. We used the Sigmoidal method 
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[27] for this normalization. It is defined as x
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fmeanfx −
=  and f is the 

original input feature. 

Principal Component Analysis (PCA) [28] was then used to project our 188-dimensional 

data set to two dimensions (Figure 2.9). Data points belonging to the same mutant type occupy 

one local area of feature space. We found that the clouds for unc-17, unc-26 and unc-32, which 

have been described in the literature as having strong kinker (unc-26) and strong coiler (unc-17 

and unc-32) phenotypes [1] were located together on the left of the feature space, far from the 

cloud of wild type. The clouds of unc-3, unc-10, unc-37, unc-75 and unc-77, which were 

described as weak coilers, all locate near the middle of the space (and are all shown with ‘x’ 

markers in Figure 2.9). The centroid of each data cloud is depicted by a square mark. The 

Euclidean distances between cluster centroids are given in Table 2.4. In the weak coiler group, 

centroids of mutants with similar sizes are closer to each other (unc-3, unc-10 and unc-37 are 

bigger worms; unc-75 and unc-77 are smaller). The cloud for syd-1, which behaves superficially 

like wild-type, was the closest among all mutant types to the centroid of wild type. 
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Figure 2.9: Distribution of behavior data points in feature space. 

 

 

Table 2.4: Euclidean distances between cloud centroids 

 unc1 unc3 unc10 unc17 unc26 unc32 unc37 unc75 unc77 Wild 
(n2) 

syd1 4.33 3.63 4.21 8.71 10.20 6.24 3.73 7.53 6.24 1.89 
unc1  2.19 2.29 5.02 6.66 1.94 0.82 4.52 3.52 4.65 
unc3   0.58 5.13 6.57 3.40 1.43 3.90 2.62 3.05 
unc10    4.58 5.99 3.15 1.65 3.32 2.03 3.54 
unc17     1.67 3.48 5.20 1.79 2.80 8.08 
unc26      5.14 6.79 2.77 4.03 9.39 
unc32       2.53 3.63 3.16 6.32 
unc37        4.41 3.27 3.86 
unc75         1.30 6.63 
unc77          5.36 
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Table 2.5: Classification using cloud centroids 
 syd1 unc1 unc3 unc10 unc17 unc26 unc32 unc37 unc75 unc77 Wild 

(n2) 
syd1 77.5% 0 2.5% 2.5% 0 0 0 0 0 0 17.5%
unc1 2.5% 40.0% 0 2.5% 0 0 15.0% 30.0% 0 10.0% 0 
unc3 2.5% 5.0% 22.5% 25.0% 0 0 2.5% 22.5% 0 10.0% 10.0%

unc10 0 2.5% 32.5% 42.5% 0 0 2.5% 5.0% 0 12.5% 2.5% 
unc17 0 0 0 0 57.5% 22.5% 7.5% 2.5% 7.5% 2.5% 0 
unc26 0 0 0 0 15.0% 80.0% 0 0 5.0% 0 0 
unc32 0 15.0% 2.5% 0 5.0% 0 65.0% 0 2.5% 10.0% 0 
unc37 15.0% 25.0% 15.0% 5.0% 0 2.5% 12.5% 20.0% 0 2.5% 2.5% 
unc75 0 0 0 0 15.0% 5.0% 0 0 62.5% 17.5% 0 
unc77 0 0 5.0% 17.5% 0 2.5% 2.5% 0 27.5% 45.0% 0 

Wild(n2) 35.0% 0 2.5% 5.0% 0 0 0 0 0 2.5% 55.0%
 

These centroids can also be used to classify these coilers (that is, a worm is classified 

based on which cluster centroid it is closest to). But some mutants are very close to each other 

and many data points are incorrectly classified. In Table 2.5, we see that the success rate is lower 

than 30% for unc-3 and unc-37 (marked in red). To study further similarities between these close 

worms, we use k-means clustering to investigate the natural structure of the data, and the Gap 

Statistic algorithm to determine the optimal number of clusters [8, 29]. For this analysis, each 

data point was treated individually without regard to mutant type. The k-means algorithm is an 

elementary but very popular clustering method. Suppose we have k clusters with centers 

{ }kccC ,...1=  and their corresponding non-overlapping divisions of feature space are defined as 

{ }kDDD ,...1= . Let 
2.  denote “squared Euclidean distance” and our data set is xi: i = 1, 

2,….440. Lloyd (1957) developed an algorithm for k-means clustering which will always 

converge. It starts with an initial set of k representative points. All points in our data set are 

assigned to whichever of the k points is closest based on squared Euclidean distance. Next, each 

of the k representative points will be relocated to be the centroid of the data points which were 

assigned to it. We choose { }kccC ,...1=  so that ∑ ∑
= ∈

−=
k

j Dx
ji

C
ji

cxC
1

2
minarg . Then we have a 

new set of k representative points and repeat the same process from the assignment step. The 

algorithm iterates between steps of data point assignment and cluster centroid calculation until 
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convergence is reached. The algorithm will not necessarily find the global optimal cluster 

centroids because the final convergence relies on the initial choice of k representative points.  

Another key issue in k-means clustering is to find the optimal number of clusters in the 

data set. In this dissertation, we used the Gap Statistic [29] to determine the optimal cluster 

number for our behavioral data. Briefly, the Gap Statistic standardizes the graph of log(Wk) by 

comparing it to its expectation under an appropriate null reference distribution of the data, where 

Wk  is the total within-cluster sum of squares around the cluster centers and k is the number of 

clusters. 

We generate 440 samples from a reference distribution which is uniform along each 

feature dimension. We do this B times (we use B = 10 in this dissertation), then we compute the 

Gap statistic as follows: 

∑
=

−=
10

1

* )log()log(
10
1)(

i
kik WWkGap  

where *
ikW  is the within-cluster sum of squares of the ith reference dataset and k = 1, 2, 3, ……K, 

where K is the predetermined maximum number of clusters. Eleven strains were investigated in 

this experiment, so we use K = 11 as our maximum number. The Gap plot is shown in Figure 

2.10. Because k = 7 is the first k that satisfies )1()( +≥ kGapkGap , 7 is identified as the 

optimal number of clusters. 

In the new cluster plot (Figure 2.11 and Table 2.6) with 7 centers, we can see that syd-1 

mostly comprises a group by itself (group 1) as do unc-32 and wild type (groups 5 and 7). The 

unc-1 and unc-37 are grouped into group 2, unc-3 and unc-10 into group 3, unc-17 and unc-26 

into group 4 and unc-75 and unc-77 into group 6. Strains belonging to the same group tend to 

have similar behavioral patterns. Table 2.6 shows us the new classification result using these 7 

centers. 



 

 

38

0 2 4 6 8 10 12 14
-0.05

0

0.05

0.1

0.15

0.2

number of clusters k

G
ap

 

Figure 2.10: Gap plot obtained by the Gap Statistic algorithm. We identified the optimal number of clusters 
as the first point k where Gap(k) ≧ Gap(k+1). 
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Figure 2.11: Cluster plot with 7 centers marked as square. 

 

Table 2.6: Classification using new cloud centroids 
 Group1 Group2 Group3 Group4 Group5 Group6 Group7 

syd1 82.50% 0 2.50% 0 0 0 15.00% 
unc1 2.50% 62.50% 7.50% 0 20.00% 7.50% 0 
unc3 2.50% 27.50% 42.50% 0 2.50% 7.50% 17.50% 

unc10 0 5.00% 85.00% 0 0 5.00% 5.00% 
unc17 0 0 2.50% 65.00% 17.50% 15.00% 0 
unc26 0 0 0 95.00% 0 5.00% 0 
unc32 0 15.00% 2.50% 5.00% 65.00% 12.50% 0 
unc37 10.00% 50.00% 20.00% 2.50% 12.50% 2.50% 2.50% 
unc75 0 0 2.50% 15.00% 0 82.50% 0 
unc77 0 0 32.50% 2.50% 2.50% 62.50% 0 

Wild(n2) 40.00% 0 0 0 0 2.50% 57.50% 
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2.5 Conclusion 

The contributions of this chapter are as follows. This is the first automated study of C. 

elegans coiler mutants. Our new algorithm extracts biologically meaningful skeletons from coiled 

body postures having internal holes. This represents an important advance in the automated 

analysis of nematode behavior, particularly with respect to the study of certain classes of 

locomotion-abnormal mutants. Whereas wild-type nematodes, and animals with locomotion 

patterns close to wild-type, coil infrequently, for coiler mutants a significant proportion of frames 

in a given video sequence will contain internal-hole images.  

Moreover, we have demonstrated that locomotion features extracted from obtained 

skeletons can be used to classify coilers with highly similar phenotypes. Among the coilers we 

studied, unc-3, unc-10, unc-37, unc-75 and unc-77 are all described as weak coilers; unc-1, unc-

17, unc-26 and unc-32 are described as strong coilers or kinkers. Yet each of these types could be 

distinguished from others in its described class by a classifier using the features extracted by our 

system.  For example, from our classification tree (Figure 2.8), we can see that unc-75 is the 

shortest within weak coilers, and has smaller values of length-related features (body length and 

tail-centroid distance). unc-10 is the largest weak coiler and it has longer length and larger body 

area. For strong coilers, unc-32 is the longest and unc-1 showed particularly low centroid 

movement. unc-26, which has larger head width-length ratio, tends to have a fatter head when 

compared to unc-17 (where fatness is defined as the ratio of worm area to length). syd-1 does not 

coil very often and moves very smoothly, similar to wild type in previous human observation. We 

found that it also has length very similar to wild type. The most significant difference between 

syd-1 and wild-type is that syd-1 has larger tail area than wild-type.  

This study also provides insight into the quantitative basis for the previously described 

categories of uncoordinated mutants. To investigate the relative similarities between the different 

mutant behavior patterns, we analyzed their clustering in multidimensional feature space. Using 
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the Gap Statistic, we determined that the optimal number of clusters for these coilers is 7. This 

indicated that even among a single descriptive class of Unc mutants (e.g. weak coilers), several 

distinct phenotypic patterns could be observed. Among the weak coilers, three natural clusters 

were identified, consisting of unc-3/unc-10, unc-75/unc-77 and unc-1/unc-37. Interestingly, in at 

least some cases, animals with different descriptive categorization exhibit highly similar 

phenotypes when evaluated by quantitative criteria. For example unc-1 was not previously 

described as a weak coiler, but rather as “forward uncoordinated”, yet both natural clustering and 

Euclidean centroid distance indicated a very similar phenotype to the weak coiler unc-37. 

Likewise, unc-17, a “strong coiler” and unc-26, a “strong kinker” comprised a single natural 

cluster and were mutually closest to one another in Euclidean centroid distance. These results 

illustrate the limitations of subjective definitions of mutant types with respect to both precision 

and accurancy.  

Part of this chapter is a reprint of the material as it appears in Kuang-Man Huang, 

Pamela Cosman, and William Schafer, "Machine Vision Based Detection of Omega Bends and 

Reversals in C. elegans," Journal of Neuroscience Methods, Vol. 158, Issue 2, pp. 323-336, 

December 2006. I was the primary researcher and the co-authors Dr. Pamela Cosman and Dr. 

William Schafer directed and supervised the research which forms the basis for this chapter. This 

work was supported by a research grant from the National Institutes of Health (R01  DA018341). 
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Chapter 3 

Detection and analysis of omega bends 

and reversals 

 

In this chapter, we describe a novel algorithm to automatically detect omega bends and 

reversals. It relies in part on the new method described in chapter 2 for obtaining a morphological 

skeleton from a coiled worm. Omega bends occur when the worm takes on the shape of a capital 

omega; the worm curves its head around to touch the middle part of its body, then sharply bends 

away from its body (Figure 2.2a). This posture commonly occurs when the worm makes a large 

turn with a reorientation of its movement direction greater than 135° [11]. Turns of this sort have 

been shown to be critical for navigation (or taxis) behaviors used to seek food and other 

chemoattractants and to avoid toxins and other chemorepellents [12]. Different kinds of omega 

bends also exist for certain worm mutants such as syd-1(ju82), unc-10(e102) and unc-37(e262). 

For syd-1(ju82) and unc-10(e102), instead of resembling the Greek letter Ω, the worm’s head 

sometimes touches the middle of the body, then crosses underneath it and goes in another 

direction. Identifying omega bends is more difficult for unc-37(e262) because the movement of 

this mutant type is jerky or even interrupted by other movements. Studies of omega bends have 
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always required training of human observers because the movement is difficult to detect. The 

studies are also time-consuming and require observation by humans. In this chapter, we describe 

the details of our automated skeleton-based algorithm. This new algorithm has made it possible to 

reliably detect events and characterize relevant parameters. 

We also propose a skeleton-based algorithm to detect reversals. C. elegans usually 

moves in a sinusoidal wave. When a worm is touched or presented with a toxic chemical stimulus, 

it will switch the direction of the wave, causing the animal to instantaneously crawl backward 

instead of forward. This backward movement is defined as a reversal and is characterized by the 

distance and frequency of the worm moving back into the recent previous path. Several methods 

to detect reversal movement using the animal’s centroid were developed in previous studies. In 

[4], the trajectory of the centroid was sampled at intervals of constant distance. The turning angle 

at every vertex was computed; if the angle was greater than 120°, then the position was 

considered to be a reversal (Figure 3.1a). In [7], a moving window was used to record the 

previous 20 centroid locations. A reversal was detected when the new centroid was closer to any 

of the 19 previous centroid locations than to the most recent past (Figure 3.1b). However, 

sometimes the worm head’s bending movement can affect the centroid’s position. Using 

centroids alone may cause some non-reversal movements to be classified as reversals. [6] used 

relative distances between the positions of head/tail in adjacent frames and skewer fits to detect 

reversals. A skewer fit is the line segment connecting the head and the tail. Instead of using the 

distance between the head and the tail as in [6], we found it to be more robust to use two points 

near the two ends as our reference points to decide if the worm was moving forward or backward. 

In [6], the angle changing of skewer fits was also used to eliminate certain false positives, but is 

discarded in our algorithm.  

 

 



 

 

44

 

 

(a) 

1880 1900 1920 1940 1960 19801860

-320

-330

-340

-350

-360

-370

-380

-390

-400
1880 1900 1920 1940 1960 19801880 1900 1920 1940 1960 19801860

-320

-330

-340

-350

-360

-370

-380

-390

-400
1860

-320

-330

-340

-350

-360

-370

-380

-390

-400
1860

-320

-330

-340

-350

-360

-370

-380

-390

-400

 

(b) 

Figure 3.1: Reversal detection based on centroid: (a) directional change detection method, (b) centroid 
location tracking method. 
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Together, these new algorithms make it possible to reliably detect events that are time-

consuming and laborious to detect by real-time observation or human video analysis. They make 

it possible to identify mutants with subtle behavioral abnormalities, such as those in which omega 

bends are dorsoventrally unbiased or uncorrelated with reversals. These methods should therefore 

facilitate quantitative analysis of a wide range of locomotion-related behaviors in this important 

neurobiological model organism. In chapters 1 and 2, we described the skeleton algorithm, 

including image acquisition, pre-processing, and its use in feature extraction and classification. In 

this chapter, first we present skeleton-based algorithms to detect omega bends and reversals. Then 

we compare omega bend and reversal behavior of mutant and wild type animals and investigate 

the temporal correlation between these body movements. 

 

3.1 Omega bend detection 

A typical omega bend starts with the worm making a big turn by approaching its body 

with its head, then its head will pass its tail and go to a new direction. As defined in [30], the 

reorientation has to be greater than 135° or the worm has to touch its body in order for the 

movement to be considered an omega bend. For coiler mutant types, sometimes an omega bend is 

interrupted by other movements before it is finished. Our goal is to construct an algorithm which 

can automatically detect complete omega bend events that meet the definition as given in [30]. In 

our algorithm, we divide an omega bend into three parts: 

        1) Start of an omega bend: 

For each frame, we compare the distance dhm (the distance between the worm head and 

the middle skeleton point which is defined as the 15th skeleton point) and the distance dtm 

(the distance between the worm tail and the middle skeleton point) and calculate the 

angle θ between these two segments. We use L to denote the worm’s body length. If dhm  
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< dtm – 0.05L and θ < 45°, then this frame will be considered a starting frame of an omega 

bend (Figure 3.2a). 

        2) Middle of an omega bend: 

Because the reorientation of an omega bend has to be greater than 135°, the angle θ 

(same definition as in Start of an omega bend) has to be smaller than 45° in all frames of 

an omega bend (Figure 3.2b). Sometimes a worm touches itself during an omega bend. In 

all frames with touching, the bending angle θ is obviously smaller than 45° (close to 0), 

so these frames also satisfy the criterion of the middle of an omega bend. 

        3) End of an omega bend: 

When a worm comes out of an omega bend, its head moves away from its body to a new 

direction. At this moment, its tail should be closer to its middle skeleton point then its 

head. So dtm < dhm – 0.05L in the end of the omega bend (Figure 3.2c). 

If the first frame, the last frame and all frames in the middle of a sequence satisfy these criteria of 

start, end and middle of an omega bend, we declare an omega bend. 
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Figure 3.2: (a) Start frame of an omega bend. Segment dtm must be greater than dhm plus 5% of body length 
and θ must be less than 45°. (b) A frame during an omega bend. θ must be less than 45°. (c) End 
frame of an omega bend. Segment dhm must be greater than dtm plus 5% of body length. 
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3.2 Reversal detection 

After a morphological skeleton is obtained, 30 evenly spaced skeleton points are 

extracted. The two end points on the skeleton represent the head and tail positions. Two reference 

points (Rh, Rt) are located at 20% of the body length from the head and tail end points (the sixth 

skeleton point) (Figure 3.3a). These mark where the tail segment and head segment begin. 

          Any frame without body looping (that is, without an internal hole) will be considered a 

reversal frame if the following criteria are satisfied: 

1) The distance between the head position four frames earlier (t = n - 4) and the current 

reference point Rh (t = n) has to be greater than the distance between the current head 

position (t = n) and the current reference point Rh (t = n). When this criterion is satisfied, 

it means that the worm’s head is moving toward its previous body position. 

2) The distance between the current tail position (t = n) and the previous reference point Rt 

(t = n - 4) has to be greater than the distance between the previous tail position (t = n - 4) 

and the previous reference point Rt (t = n - 4) by at least 2.0% of the body length (Figure 

3.3b). 

When the second criterion is satisfied, it means that the worm’s tail is moving away from its 

previous body position. It will exclude those frames in which the worm only waves its tail instead 

of reversing. The “2.0% of the body length” in the second criterion makes the reversal length 

showing on the computer long enough (≥ 1mm) to be verified by human observation. The reason 

we chose to compare the frames at n and n – 4 (instead of n – 1) is to make our result less 

sensitive to other movements besides reversals such as tiny tail waving or head foraging 

movements.  

After the reversal frames are found, we combine them to locate every reversal sequence 

happening during the video. The reversal distance and length are obtained by calculating the 
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moving distance of the centroid and the time interval between the start frame and the end frame 

of a reversal sequence. 
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Figure 3.3: (a) Skeleton with 30 sampled skeleton points. Two reference points are defined as the sixth 
skeleton points from two end points (head position and tail position). (b) Reversal detection 
method. The frame at  t = n is compared to the earlier frame at t = n – 4. 
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3.3 Results 

3.3.1 Verification of omega bend detection by human observers 

Our algorithm for the detection of omega bends was tested on 100 5-minute videos (8Hz) 

in which 303 omega bends were detected by a human observer. The experimental results showed 

that our algorithm correctly detected over 93% of these 303 omega bends. Also, over 95% of 

detected events are actually omega bends, so the false positive rate is low even while the true 

positive rate is high (Table 3.1). 

Table 3.1: Verification results for the omega bend detection algorithm. Data were collected from 100 5-
minute videos (8Hz) from 5 mutant types. The first column shows the mutant type. The second column 
shows both the number of correctly detected omega bends with our algorithm and the associated ratio of 
correct detections to total detections. The number of wrong detections is listed in column 3. The number of 
missed omega bends is listed in column 4. 

Strain name # of detected 
omega bends # of wrong detections # of omega bends 

missed 
Wild type (N2) 57 (100%) 0 7 

syd-1(ju82) 43 (100%) 0 0 
unc-10(e102) 41 (97.6%) 1  3 
unc-37(e262) 83 (91.2%) 8  0 
unc-75(e950) 60 (92.3%) 5  9 

Total 284 (95.3%) 14  19 
 

3.3.2 Verification of reversal detection algorithm by human observers 

Our reversal detection algorithm was tested on the same data set of 100 5-minute videos 

(8Hz) in which 1621 reversal events were detected by a human observer. The experimental 

results showed that our algorithm can correctly detect reversals at a high rate (96.9%) that 

compared favorably with that of the previously-described [6] skeleton-based algorithm (86.3%). 

This higher correct detection rate was furthermore accompanied by a lower rate of false alarms 

(only 10 wrong detections compared to 14 for the previous algorithm). We applied the reversal 

detection algorithm described in [6] to our data set of 100 5-minute videos with 1621 reversal 

events so the results are directly comparable (Table 3.2). 
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Table 3.2: Verification results for the reversal detection algorithm. Data were collected from 100 5-minute 
videos (8Hz) from 5 mutant types. The first column shows the mutant type. The first column shows the 
mutant type. The second column shows both the number of correctly detected reversals with our algorithm 
and the associated positive predictive value (PPV). The PPV is the ratio of correct detections to total 
detections. The number of wrong detections is listed in column 3. The number of missed reversals is listed 
in column 4. 

Our algorithm Algorithm from [6] 
Strain name # of 

reversals 
detected  

# of wrong 
detections 

# of 
reversals 
missed 

# of 
reversals 
detected 

# of wrong 
detections 

# of 
reversals 
missed 

Wild type 
(N2) 494 (100%)  0 0 473 (100%) 0 21 

syd-1(ju82) 342 (99.4%)  2  12 334 (99.4%) 2  20 
unc-10(e102) 262 (99.6%)  1  3 252 (97.7%) 6 13 
unc-37(e262) 105 (96.3%)  4  13 87 (94.6%) 5  31 
unc-75(e950) 368 (99.2%) 3  22 303 (99.7%) 1  87 

Total 1571 (99.4%)  10 50 1399 (99.0%) 14 172 
 

3.3.3 Time correlation of omega bends and reversals 

In another experiment, we used our system to compare omega bend and reversal 

behavior of mutant and wild type animals. In particular, we investigated the temporal correlation 

between these body movements, since omega bends have recently been observed to frequently 

follow reversals [30]. We focused on those mutants in our data set, syd-1, unc-10, unc-37, unc-75 

and unc-77, which are described as “fairly active” in the literature. Our reversal and omega bend 

detection algorithms were used on all video data of these 5 mutants and wild type. For each 

omega bend event in each video, we searched for the closest reversal happening within 5 seconds 

before the omega bend event. If no reversal occurred within 5 seconds, the omega bend event was 

considered to have not followed a reversal. We also calculated the average time interval between 

pairs of reversals and omega bends in each mutant type, as well as whether the omega bend 

involved contraction of the dorsal or ventral body muscles. The results are shown in Table 3.3. 
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Table 3.3: Relationship between omega bends and reversals. Average time intervals between pairs of 
reversals and omega bends are listed in brackets. 

 Wild type 
(N2) 

syd-1 
(ju82) 

unc-10 
(e102) 

unc-37 
(e262) 

unc-75 
(e950) 

unc-77 
(e625) 

# of videos 
watched 56 81 40 68 40 40 

# of omega bends 
following reversal 

(total) 

75 
(0.43sec) 

111 
(1.01sec)

74 
(1.26sec)

45 
(1.83sec)

37 
(2.88sec) 

71 
(0.75sec)

# of omega bends 
following reversal 

(ventral) 

75 
(0.43sec) 

98 
(0.86sec)

58 
(1.10sec)

22 
(1.90sec)

16 
(3.05sec) 

47 
(0.67sec)

# of omega bends 
following reversal 

(dorsal) 
0 13 

(2.16sec)
16 

(1.84sec)
23 

(1.76sec)
21 

(2.74sec) 
24 

(0.92sec)
# of omega bends NOT 

following reversal 
(total) 

3 9 20 147 58 48 

# of omega bends NOT 
following reversal 

(ventral) 
2 5 11 103 16 28 

# of omega bends NOT 
following reversal 

(dorsal) 
1 4 9 44 42 20 

 

We observed that in wild-type as well as syd-1 mutant animals, omega bends showed a 

distinct ventral bias. In fact, for omega bends that immediately followed a reversal, nearly all 

involved a bend on the ventral side of the body. unc-10 and unc-77 mutants also have a 

statistically significant ventral bias (p-value 0.0000057 and 0.0045 for unc-10 and unc-77 

respectively using a Chi-Square test) [31]. However, the ventral bias is less strong for these 

mutants than for wild type (p-value 0≈ ). However, for unc-37 and unc-75 mutants, dorsal bends 

were as common as ventral bends, indicating that the ventral bias was lost in these animals. 

Furthermore, these mutants also showed a much higher frequency of omega bends that were 

uncorrelated with reversals, and the average time interval between omega bends and reversals 

was significantly increased.  Thus, the unc-37 and unc-75 mutants appeared to have abnormalities 

in both the ventral bias of omega bends as well as their temporal correlation with reversals.  Since 

we looked at single alleles of these mutants, it is not possible to conclude definitively that the 
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ventral bias phenotype is due to the unc-37/unc-75 mutation rather than another mutation in the 

genetic background.  However, these results demonstrate that it is possible to detect such 

phenotypes (which would be extremely tedious and time-consuming for a human observer) using 

the automated system. 

We also studied the variations in angle change rate before and after all reversals detected 

by our algorithm. The angle change rate R and its standard deviation can be obtained from the 

thirty skeleton points of the worm [4]. In Chapter 2, it was defined as the ratio of the average 

angle difference between every pair of consecutive segments along the skeleton to the worm 

length. Omega bends are tightly related to high angle change rate, because the worm body is very 

curved while undergoing an omega bend. We examined the angle change rate from frames within 

10 seconds before and 20 seconds after every reversal event. The results are shown in Figure 3.4. 

Blue curves represent mean angle change rate averaged over randomly chosen non-reversal 

moments and red curves show angle change rate before and after reversal moments. For wild type 

(Figure 3.4a), which has a strong reversal-omega bend relationship, the angle change rate 

increases significantly after reversals. This increasing of angle change rate due to omega bends is 

also much higher than when the worm is moving forward. Among the five coilers, only syd-1 and 

unc-10 have behavior similar to wild type (Figure 3.4b and c). In Figure 3.4d, e, and f, we can see 

that even though the angle change rate after reversals is still higher than before reversals, it is not 

overwhelming compared to moments when the worm is moving forward, as it is for wild type, 

syd-1 and unc-10. We also notice that in Figure 3.4f, the red curve (angle change rate before and 

after reversal moments) is more similar to syd-1 and unc-10, which matches the result in Table 

3.3 that more than 60% of omega bends follow reversals for unc-77. However, its blue curve in 

Figure 3.4f (angle change rate averaged over randomly chosen non-reversal moments) is closer to 

the blue curve in Figure 3.4e. This is also shown in the cluster plot where unc-75 and unc-77 have 

similar behavior patterns (the cloud of unc-77 is close to the cloud of unc-75). 
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3.4 Conclusion 

In this chapter, we developed and tested an algorithm for automatic detection of omega 

bends and reversals (correctly detected 93% of the omega bend events and correctly found 96.9% 

of reversal events). The relationships between omega bends and reversals for 6 strains (wild type, 

syd-1, unc-10, unc-37, unc-75 and unc-77) were also examined and compared to each other. 

Using our automated omega bend and reversal detection algorithms, we found that the ventral 

bias of omega bends normally observed in wild-type was largely absent in some mutants such as 

unc-37 and unc-75. Likewise, the temporal correlation between omega bends and reversals was 

defective for these two strains. Wild type, syd-1, unc-10 and unc-77, whose centroids of their 

clouds are close to each other in the cluster plot in Chapter 2, have very similar omega bend and 

reversal behaviors. The ventral bias is very strong particularly in wild type and syd-1, and most 

detected omega bends were tightly coupled temporally to reversals for these 4 strains. Unc-77, 

although it has omega bends and reversal behavior similar to the other three strains (wild type, 

syd-1 and unc-10) is very close to unc-75 in the cluster plot. Complex behavioral features such 

these have been shown in [30] to reveal important aspects of sensory perception and motor 

control in the C. elegans nervous system; however, manual scoring of these features is tedious 

and labor-intensive. The development of automated methods for the study of complex behavioral 

patterns and the identification of mutants with abnormalities in them promises significantly to 

enhance the understanding of behavioral mechanisms in this important neurobiological model. 

Part of this chapter is a reprint of the material as it appears in Kuang-Man Huang, 

Pamela Cosman, and William Schafer, "Machine Vision Based Detection of Omega Bends and 

Reversals in C. elegans," Journal of Neuroscience Methods, Vol. 158, Issue 2, pp. 323-336, 

December 2006. I was the primary researcher and the co-authors Dr. Pamela Cosman and Dr. 

William Schafer directed and supervised the research which forms the basis for this chapter. This 

work was supported by a research grant from the National Institutes of Health (R01  DA018341). 
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Figure 3.4: The angle change rate before and after reversals, compared with angle change rate for non-

reversal moments: (a) wild type (n2) (b) syd-1(ju82) (c) unc-10(e102) (d) unc-37(e262) (e) unc-
75(e950) (f) unc-77(e625). 
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Chapter 4 

Detection and analysis of foraging 

behavior 

 

Despite its anatomically simple nervous system, C. elegans is capable of surprisingly 

diverse patterns of behaviors. While some of these, such as feeding, egg-laying, and defecation, 

are mechanically simple [32, 33], other behaviors involve complex motor programs involving 

intricate coordination of muscle groups. These include locomotor behaviors such as backward 

and forward crawling, swimming, and copulation [34]. Recently, there has been increasing 

interest in quantitatively characterizing and modeling these more complex motor programs [35, 

36]; however, significant questions remain regarding the nature of these behaviors and how they 

are generated by the nervous system. Among these behaviors, one that has received 

comparatively little attention is foraging. Foraging is a rapid, side-to-side movement of the nose 

generated by C. elegans as it explores its environment. In [37], a foraging movement is defined as 

a complete cycle of movements by the tip of the nose from the ventral side through the dorsal 
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extreme or vice versa during time intervals when the animal was moving forward. In previous 

studies, foraging events were scored by human observers which is tedious and labor-intensive. 

In this chapter we provide the first quantitative description of foraging movements in C. 

elegans. Using video data collected using an automated tracking system, we have been able to 

reliably detect foraging events and measure the depth and frequency of the nose bends. We also 

measure foraging-related parameters which have not previously been studied and use Fourier 

analysis of these data to identify characteristic frequencies that can be used to parameterize 

foraging patterns. These analyses provide more precise methods for defining the effects of 

specific genes and neurons on C. elegans behavior. This chapter is organized as follows. We first 

give a detailed description of the foraging detection algorithm, including image acquisition and 

pre-processing. We then evaluate the algorithm by testing it on a variety of videos of mutant 

worms, and verifying the results with manual observations. We also describe how to extract 

foraging-related parameters, and finally we combine these parameters with Fourier analysis to 

analyze foraging behavior. 

 

4.1 Locating the worm nose 

To facilitate analysis, the grayscale images were subjected to preliminary image 

processing to generate a simplified representation of the body [7]. First any images which were 

snapped when the stage was moving (the current coordinate of the stage was different from the 

previous coordinate) will be discarded because these images were usually blurry. Then for each 

good image frame, an adaptive local thresholding algorithm followed by a morphological closing 

operator (binary dilation followed by erosion) was used. As described in [7], a corresponding 

reference binary image was also generated by filling holes inside the worm body based on image 

content information. The difference between these two binary images provided a good indication 
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of which image areas are worm body and which are background. Following binarization, a 

morphological skeleton was obtained [7, 24].   

Head
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Head
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Figure 4.1: Skeleton with 25 sampled skeleton points. 

 

Figure 4.2: The exterior contour of the worm body. 

 

After a morphological skeleton is obtained, 25 evenly spaced skeleton points are 

extracted. The two end points on the skeleton represent the head and tail positions (Figure 4.1). 

Using the approach in [7], the head is recognized for entire video sequences using the brightness 

(the head is usually brighter than the tail) and the distance moved between the current frame and 

the previous frame (the head usually moves more than the tail) for the two end points. However, 

the head position on the skeleton as calculated in [7] is not precisely the same as the nose position 

recognized in the original grayscale image. To detect foraging events which are related to subtle 

nose movement, we need to locate the nose position more precisely. First we obtain the exterior 

boundary of the worm body by eroding it with a 3×3 square structuring element and then 
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performing the set difference between the binary image and its erosion (Figure 4.2). A cutoff line 

is then placed which passes through the first skeleton point p1 and is perpendicular to the skeleton 

tangent line at p1. The cutoff line cuts the exterior contour into two parts (Figure 4.3a). The 

smaller part which contains the head point is the nose section of the contour and will be isolated 

from the rest of the body (Figure 4.3b). We compute the distances between the point p1 and each 

pixel on the nose section of the contour. The 10 points having the longest distances from the point 

p1 are selected and used to compute the spatial average point pn, which we define to be the 

position of the nose (Figure 4.3c).  

Nose sectionNose section

 

(a)                                                  (b)                                               (c) 

 

Figure 4.3: (a) Placing a cutoff line at the first skeleton point p1 perpendicular to the tangent line at p1. (b) 
Isolating the nose section from the rest of the body. (c) Computing the spatial average of the 10 
points furthest from p1. 
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Figure 4.4: Computing the nose bending angle b in every frame. (a) Nose bends to the right of the midline. 
(b) Nose points straight ahead. (c) Nose bends to the left of the midline. 
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4.2 Foraging event detection  

In [37], a foraging movement is defined as a complete cycle of movements by the tip of 

the nose from the ventral side through the dorsal extreme or vice versa during time intervals when 

the animal was moving forward (Figure 4.4). Based on the definition of foraging in [37], any 

detected foraging events during reversals or omega bends will not be counted as foraging events. 

We used the method described in Chapter 3 to detect reversals and omega bends automatically.  

To investigate this kind of side to side nose movement in a video, we measure the angle 

b between the segments (pn,p1) and (p1,p2) where p1, p2 are the first and second skeleton points 

from the head and pn is the nose position (Figure 4.4). Figure 4.5 shows plots of nose bending 

angle b(n) over time from a video. Here n is the frame index. The overall curve is in a rough 

sinusoidal shape because the worm generally moves in a sinusoidal wave. We can also notice that 

there are some dips and peaks (extrema) marked on the curve in Figure 4.5a. Each set of three 

consecutive extrema (consisting either of two local maxima and the local minimum between them, 

or else of two local minima and the local maximum between them) represents a side-to-side 

motion of the nose and is therefore considered to be a candidate foraging event. From the 

beginning of each video, we search for and examine each set of three consecutive extrema. We 

denote the first, second, and third local extreme values (in a time-wise order) to be its start point 

SP, middle point MP, and end point EP respectively. A set of three consecutive extrema is 

considered to be a foraging event if that segment of the video does not contain any bad frames 

(frames discarded due to stage movement) and if either of the following two criteria is satisfied:  

 

1) sign[SP] = sign[EP] = -sign[MP]: when this criterion is satisfied, it means that the worm’s 

nose is waving across the middle line (b = 0) to reach the other side then waving back to 

accomplish a complete foraging movement. An example of a foraging event of this kind is 

shown by white dots (SP1, MP1 and EP1) in Figure 4.5a. 
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2) sign[SP] = sign[EP] = sign[MP] and abs[SP-MP] > αabs[SP]: when this criterion is satisfied, 

it means that even though the worm’s nose does not cross the middle line, the moving angle 

of the nose is still larger than some fraction α of its starting bending angle which, depending 

on α, is noticeable enough to be considered to be a foraging event. An example of a foraging 

event of this kind (e.g. α = 0.5) is shown by black dots (SP2, MP2 and EP2) in Figure 4.5a. 

The angle difference between SP2 and MP2 is 15.9° which is larger than 0.5 x SP2 =11.45°. 

Figure 4.5b shows an event that does not satisfy either of the above two criteria (whenα = 

0.5). 
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Figure 4.5: (a) An example of nose bending angle over time from a video. A detected foraging event of  

definition 1 is shown in white dots and the other event of definition 2 (α = 0.5) is shown in 
black dots. (b) An example of a non-foraging event. 
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Once a set of three consecutive extrema is decided to be a foraging event, the search for 

additional foraging events will start from the end point EP of the previous event to avoid having 

foraging events overlapping. 

 

4.3 Results 

In this section, first we present verification results assessing the robustness of our 

foraging detection algorithm and decide the best value of α for our algorithm. Then we analyze 

foraging behavior in the following steps: 1) We start by investigating the previously obtained 

nose bending signals by estimating their power spectra. 2) Some parameters such as waving 

amplitude and frequency (which will be described in detail later) are extracted from detected 

foraging events. 3) Then we combine the obtained parameters with power spectrum analysis and 

use t-tests to study the similarities of foraging behavior between wild type and each of the four 

mutant types. The experiments were implemented in Matlab on a 2.33 GHz Pentium-IV desktop 

computer. 

 

4.3.1 Verification of the foraging detection algorithm by human observers 

Our algorithm for the detection of foraging events was tested on 25 (5 videos for each 

strain) 1-minute videos (30Hz). First, a trained human observer examined all the videos to locate 

all the foraging events. By applying the above algorithm with α varying from 0 to 1, the 

performance result is shown as a receiver operating characteristic (ROC) curve [38] in Figure 4.6 

and Table 4.1. There is a sharp bend in the ROC curve when α = 0.5, (at which point the True 

Positive fraction is over 90% while the False Positive fraction is less than 10%), indicatingα = 

0.5 is the best for this algorithm. For α = 0.5, the foraging event detection results for individual 

strains are given in Table 4.2. 
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Table 4.1: The True Positive, True Negative, False Positive, and False Negative values for the ROC curve. 
The highlighted row is the final α used in the foraging detection. 
Rate of non-foraging 
events detected as 

foraging 
(False Positive) 

Rate of foraging 
events detected as 

foraging  
(True Positive) 

Rate of foraging 
events detected as 

non-foraging 
(False Negative) 

Rate of non-foraging 
events detected as 

non-foraging  
(True Negative) 

α 

1.0000 0.9637 0.0363 0 0 
0.7116 0.9609 0.0391 0.2884 0.1 
0.4890 0.9554 0.0446 0.5110 0.2 
0.3176 0.9491 0.0509 0.6824 0.3 
0.1819 0.9442 0.0558 0.8181 0.4 
0.0597 0.9351 0.0649 0.9403 0.5 
0.0435 0.7901 0.2099 0.9565 0.6 
0.0287 0.6820 0.3180 0.9713 0.7 
0.0205 0.5941 0.4059 0.9795 0.8 
0.0153 0.4986 0.5014 0.9847 0.9 
0.0119 0.4010 0.5990 0.9881 1.0 
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Figure 4.6: A plot of the receiver operating characteristic (ROC) curve with α varying from 0 to 1. 
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Table 4.2: Verification results of each strain for the foraging detection algorithm (α = 0.5). The first row 
shows the mutant type. The second row shows the number of frames where the worms were moving 
forward. The number of detected events is listed in row 3. The number of foraging events not detected is 
listed in row 4. The number of detected events which are real foraging events is listed in row 5. 

Mutant type dgk1(nu62) glr1(n2361) goa1(n1143) trpa1(ok999) wild type 
Total frames 5513 8105 5387 6709 6273 

Detected 
foraging 243 354 302 268 299 
Foraging 

Not detected 8.8%(21) 7.9%(27) 3.7%(11) 4.0%(10) 7.9%(24) 
Real 

Foraging % 90.2%(219) 89.0%(315) 94.0%(284) 90.3%(242) 94.0%(281)
 

4.3.2 Fourier analysis of foraging events  

In another experiment, we used spectral analysis to investigate the foraging behavior of 

each strain. In particular, we estimated the power spectrum for each strain from 150 videos (30 

videos for each strain) by averaging multiple periodograms (Welch-Bartlett method, [39]). The 

periodogram is an estimator of the power spectrum, introduced by Schuster [40]. To calculate the 

periodogram for each strain, first we subdivided each bending angle signal bp(n) (1 ≤  p ≤  30 

videos for each strain) into small segments in a sliding window and overlapping fashion. The 

window used in this experiment is a Hamming window of duration L = 30 with values w(m) = 

0.54 - 0.46cos(2πm / 29), for 0 ≤  m ≤  29. We set D = 20 (D < L) to be an offset distance to 

make the segments overlap and create more segments, and let Kp be the number of segments in 

the pth video, which changed with different videos (for example, a video glr-1_001 with 1745 

frames was divided into 871745
≈

D
 segments). Then the qth segment of the pth video consists of 

the following L values: 

)()()( mwmqDbmb ppq +=         10,10 −≤≤−≤≤ pKqLm  

The estimated power spectrum (periodogram) )( ωj
pq eB

∧

 of the qth segment of the pth video can 

be calculated using the discrete Fourier transform as follows:  
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We also obtained a different averaged spectrum only from segments where foraging 

events happened. In this case, after foraging events were detected, a Hamming window was 

placed at each foraging event (the center of the window points to the center of the foraging event) 

and the periodogram of each event was computed. For each strain, the foraging spectrum is 

averaged from all N periodograms where N is the number of detected foraging events for the 

strain. The results of this Fourier analysis are in Figures 4.7 and 4.8. Figure 4.7 includes spectra 

of complete videos and Figure 4.8 shows spectra from foraging events only. In Figure 4.7, we can 

see that there is a main frequency for each strain which corresponds to the frequency of the 

approximately sinusoidal worm body wave. These main components also exist in Figure 4.8. But 

we can also find subtle bumps on the outer sides of the main component which are caused by the 

foraging. To observe these bumps more clearly, we take the ratio of the spectra in Figure 4.8 to 

those in Figure 4.7. The results are shown in solid curves in Figure 4.9. We also computed the 

ratio of the spectrum generated from randomly chosen segments to the spectrum generated from 

the overall video and the results are shown in long-dashed curves in Figure 4.9. We can see that 

the curves from randomly chosen segments are close to 1 and do not have prominent peaks. 
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Figure 4.7: The estimated overall power spectra for all strains: (a) dgk-1, (b) glr-1, (c) goa-1, (d) trpa-1 and 

(e) wild type. 



 

 

68

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70

80

Frequency (1/s)

dgk1(nu62)

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70

80

Frequency (1/s)

glr1(n2361)

 
(a)                                                                                  (b) 

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70

Frequency (1/s)

goa1(n1143)

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

Frequency (1/s)

trpa1(ok999)

 
(c)                                                                                 (d) 

-15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

Frequency (1/s)

Wild type

 
                                    (e) 
Figure 4.8: The estimated power spectra from detected foraging events for all strains: (a) dgk-1, (b) glr-1, 

(c) goa-1, (d) trpa-1 and (e) wild type. 
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                                    (e) 
Figure 4.9: The ratio of Figure 4.8 to Figure 4.7 for all mutant types (solid line) and the ratio of the 

spectrum generated from randomly chosen segments to the spectrum generated from the overall 
video (long-dashed line). 
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4.3.3 Statistical analysis of foraging events  

After foraging events were detected for each strain, we extracted several basic features 

from all detected events from bending curves (as shown in Figure 4.5). These include: waving 

amplitude, initial waving direction, time interval between adjacent foraging events, and the 

frequency of nose waving during an individual foraging event. These features are described in 

detail as follows: 

1) Wave amplitude: it is defined to be the depth of nose bending (in degrees) during a 

foraging event. Once a foraging event is found, we compute {abs[SP-MP]+abs[EP-

MP]}/2 to be its amplitude. 

2) Initial waving direction: is the side from which the worm starts a foraging event (SP > 

0 is defined to be left and SP < 0 is defined to be right). 

3) Time interval between adjacent foraging events: for adjacent events, this parameter is 

defined to be the time interval between the end point EP of the first event and the 

start point SP of the second event. 

4) Frequency of individual foraging event: this parameter represents the inverse of the 

period of an individual foraging event, which can be expressed as 1/T where T is the 

time length between the start point SP and the end point EP of the event. 

The mean values and standard deviation values of each feature were computed for each 

strain and the results are listed in Table 4.3. The first row shows the mutant type. The second row 

shows the number of foraging events detected by the algorithm. The third and fourth rows show 

the number of foraging events which start respectively from the left and right side of the body. 

The mean values and standard deviation values of features are listed in rows 5 and 6 (waving 

amplitude), rows 7 and 8 (time interval between adjacent events) and rows 9 and 10 (the 

frequency of nose waving during foraging events). 
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We compared the results in Table 4.3 to the previously obtained power spectrum ratios 

for each strain. Among these 5 mutant types, goa-1 has the largest average amplitude and its 

curve in Figure 4.9 generally has higher values than the other mutant types. The average foraging 

frequencies in Table 4.3 computed from all detected events for dgk-1 and goa-l are also very 

close to their peak values in Figures 4.9a and 4.9c. glr-1, trpa-1 and wild type have two nearly 

equal maximal peak values in Figures 4.9b, 4.9d and 4.9e, but their average foraging frequencies 

still locate within the main lobes of the spectra in Figure 4.9. Their standard deviation values of 

foraging frequency are also larger than those for dgk-1 and goa-1. 

 
Table 4.3: Foraging related features extracted from all events detected by the algorithm. The first row 
shows the mutant type. The second row shows the total number of foraging events for each strain detected 
by the algorithm. The third and fourth rows show the number of foraging events which start respectively 
from the left and right side of the body. The mean values and standard deviation values of features are 
listed in rows 5 and 6 (waving amplitude), rows 7 and 8 (time interval between adjacent events) and rows 9 
and 10 (the frequency of nose waving during foraging events). 

Mutant type dgk-1(nu62) glr-1(n2361) goa-1(n1143) trpa-1(ok999) wild type 
Total 

foragings 1669 1604 1820 1480 1789 
Left 813 841 911 735 927 

Right 856 763 909 745 862 
Amplitude 

AVE 15.13 14.91 19.26 15.71 14.15 
Amplitude 

STD 9.30 8.27 11.14 9.00 8.34 
Interval 

AVE 0.199 0.386 0.171 0.249 0.216 
Interval 

STD 0.245 0.465 0.206 0.325 0.293 
Frequency 

AVE 4.51 4.31 4.00 4.19 4.57 
Frequency 

STD 1.58 1.64 1.57 1.66 1.61 
 

In order to study the similarities of foraging behavior between mutants, we generate 

scatter plots of each parameter (amplitude, interval and frequency as in Table 4.3) for wild type 

and each of the four mutants. The mean values of three parameters of each video are computed. 

The scatter plot of each parameter is generated by using each video as a data point (Figure 4.10). 

From these plots, we make three observations: 1) for mutant types dgk-1 and goa-1, which are 
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hyperactive for locomotion and foraging, their time intervals between adjacent events are almost 

all within a range from 0.1 to 0.3 seconds. Mutant types glr-1 and trpa-1 which forage more 

slowly have much wider distribution with many data points having larger values than other 

mutant types. 2) goa-1 has generally higher values in the plot of amplitude, while most of the data 

points of other mutant types are within a range of 10~20 degrees. 3) dgk-1, glr-1 and wild type 

have similar ranges of distribution for frequency of individual foraging event (4~5 1/second) and 

goa-1 has lower distribution in the plot which matches the result in Table 4.3. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

se
co

nd

Interval

trpa1(ok999) wild typedgk1(nu62) goa1(n1143)glr1(n2361)
5

10

15

20

25

30

D
eg

re
es

Amplitude

dgk1(nu62) glr1(n2361) goa1(n1143) trpa1(ok999) wild type

3

3.5

4

4.5

5

5.5

1/
s

Frequency

goa1(n1143)glr1(n2361) wild typetrpa1(ok999)dgk1(nu62)

 
 
Figure 4.10: The scatter plot of three parameters for all strains: (a) time interval between adjacent events, (b) 

amplitude and (c) frequency of individual foraging event. The solid lines show the overall 
mean values. 



 

 

73

We also computed the foraging rate, which is defined in [37] to be the number of 

foraging events within 10 seconds, for each strain and the results are in listed in Table 4.4. The 

first row lists the mutant type and the second row lists the total number of frames in which the 

worms were moving forward in the 30 videos of that strain. The third row lists the number of 

detected events declared by the algorithm to be foraging events. The fourth row shows the 

number of foraging events in 10 second (300 frames). In Table 4.4, we can see that mutant types 

dgk-1 and goa-1 which are hyperactive for locomotion and foraging have higher foraging rate in 

10 seconds whereas glr-1 and trpa-1 forage more slowly than wild type. Furthermore, wild type 

and dgk-1 have very close foraging rate in 10 seconds. 

For each strain, we also want to determine whether the foraging behavior is a periodic 

and continuous oscillation or a process in which foraging movements occur sporadically. Our 

hypothesis is that the foraging behavior of each strain is an almost periodic process with a certain 

time T between adjacent foraging events. If this is true, we expect all time intervals between 

adjacent events for each strain to be close to each other and at least locate within a certain range 

(in this experiment, we use the Interval AVE in Table 4.3 1.0± second to be our range). We use a 

Chi-Square test [31] to compare the expected and observed results from all videos of each strain 

and the results are listed in Table 4.4. We can see that all p-values are less than 0.05 ( 0≈ ) which 

means the difference between the expected and observed result is significant and the foraging 

behavior is more or less a sporadic process rather than periodic. 
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Table 4.4: The average number of foraging events within 10 seconds. The first row lists the mutant type 
and the second row lists the total number of frames in which the worms were moving forward. The third 
row lists the number of foraging events detected by the algorithm. The fourth row shows the average 
number of foraging events in 10 seconds. The bottom row shows the Chi-Square and p-values of sporadic 
test for each strain. 

Mutant type dgk-1(nu62) glr-1(n2361) goa-1(n1143) trpa-1(ok999) wild type 

Total frames 34136 43728 32379 35010 36835 

Detect 
foraging 1669 1604 1820 1480 1789 

# of foraging in 
10 seconds 14.67 11.00 16.86 12.68 14.57 

Chi-Square 
(p-value) 

1067 
( 0≈ ) 

1016 
( 0≈ ) 

1203 
( 0≈ ) 

928 
( 0≈ ) 

1190 
( 0≈ ) 

 

4.4 Conclusion 

We have described a new algorithm for the automated detection and quantitative analysis 

of foraging in C. elegans. This algorithm makes it possible to use videos of crawling nematodes 

collected from an automated tracking system to detect foraging events with a reliability 

comparable to what is achieved by a human observer. The ability to automatically count the 

number of foraging events in a unit time facilitates the rapid quantification of the foraging rate, a 

key behavioral parameter in a number of previous C. elegans studies [19, 20, 37]. In the past, this 

rate has been calculated by observer analysis of video recordings, a laborious and time-

consuming process.  

In addition to making it possible to count foraging events, our algorithm also makes it 

possible to measure parameters of foraging behavior that have not previously been measured 

quantitatively. For example, we measured foraging amplitude. Previous studies noted anecdotally 

that abnormalities in specific neurons and genes can affect the depth of foraging bends. For 

example, it was reported that ablation of two classes of mechanosensory neurons, OLQ and IL1, 

leads to deeper foraging bends [18], as do mutations in the trpa-1 gene which encodes a 

mechanosensory channel that functions in these neurons [37]. However, neither of these studies 
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was able to present quantitative data to verify or measure the differences between normal worms 

and lesioned or mutant animals. In the current study, we quantified the foraging amplitude 

phenotypes of trpa-1 mutants as well as several other foraging-abnormal mutants. For example, 

the average amplitude of trpa-1 was found to be 15.71 compared to 14.15 for wild type, and this 

difference was statistically significant at the 5% significance level (p = 0.0011). This parameter 

should prove useful for future analysis of C. elegans behavioral mutants affecting the neurons 

controlling foraging bends. 

We also derived two other novel foraging-related parameters in this study. One is 

foraging frequency. We verified the derived frequencies by using Fourier analysis and the power 

spectrum of the foraging traces of individual worms. The second parameter is the time interval 

between adjacent foraging events. Combined with the significance test (t-test) [41], we showed 

that dgk-1 has the closest relationship to wild type among the four mutants. It has two categories 

(interval and frequency) with p-values greater than 0.05 which is considered to be insignificant 

while other mutants have none (Table 4.5). We also used a Chi-Square test to examine whether 

the observed data are periodic. This result suggests that during periods of active foraging, the 

foraging behavior is more or less sporadic rather than a process in which foraging movements 

occur periodically and continuously. 

 

Table 4.5: The results of the significance test (p-value < 0.05 is considered to be significant). The second to 
fourth rows show the p-values for comparisons of amplitude, time interval and frequency respectively. 

 
dgk-1(nu62) 

against 
wild type 

glr-1(n2361) 
against 

wild type 

goa-1(n1143) 
against 

wild type 

trpa-1(ok999) 
against 

wild type 
p-value 

(amplitude) 0.0087 0.0187 0.0000 0.0011 

p-value 
(interval) 0.1129 0.0000 0.0018 0.0234 

p-value 
(frequency) 0.1556 0.0018 0.0000 0.0003 
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This chapter is a reprint of the material as it appears in Kuang-Man Huang, Pamela Cosman, and 

William Schafer, " Automated Detection and Analysis of Foraging Behavior in C. elegans " 

Journal of Neuroscience Methods, accepted January 31st 2008. I was the primary researcher and 

the co-authors Dr. Pamela Cosman and Dr. William Schafer directed and supervised the research 

which forms the basis for this chapter. This work was supported by a research grants from NIDA 

(DA18341 and DA12891). 
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Chapter 5 

Multi-worm tracking 

 

Several automated tracking and analysis systems have been previously developed for C. 

elegans. These tracking systems can be divided into two categories. The first class of systems 

track single worms at a high magnification and use a motorized stage to keep the worm in the 

middle of the camera field of view [4-7]. These systems can quantify the detailed posture of the 

individual worms and perform phenotype classification. Systems in the second category track 

multiple worms at a low magnification [42, 43]. They are able to capture the worm’s gross 

motion characteristics, such as velocity.  

Some behaviors of significant interest to researchers, such as mating and social feeding 

[43, 44], by their very nature involve physical interaction between animals. For any automated 

system to be useful in characterizing these behaviors, it is essential that the position and body 

posture of a worm can be followed during and after physical contact with another animal. In this 

chapter we describe a new method for tracking multiple C. elegans that makes it possible to 

accurately resolve the individual body postures of two worms in physical contact with one 

another by using a modeling algorithm. 
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Model matching algorithms can be roughly divided into two categories [45, 46]. The first 

class is “contour based” which represents objects in terms of their boundaries. One popular 

approach is called active contours or “snakes”, which deform elastically to fit the contour of the 

target structure [47]. Another method uses combinations of trigonometric functions with variable 

coefficients to represent objects [48, 49].  

The second class consists of “appearance-based” approaches. In this case a model is used 

to simulate the complete appearance (shape, color, texture, etc.) of the target object in the image. 

Bajcsy and Kovacic describe a volume model that deforms elastically to cover the object region 

[50]. In [51], a model composed of a collection of parts is used to represent objects in terms of a 

constellation of local features. All parts in this model are constrained with respect to a central 

coordinate system. There have been other part-based modeling algorithms. Fischler and 

Elschlager introduce an articulated model with all parts arranged in a deformable configuration 

which is represented by spring-like connections between pairs of parts [52]. This articulated 

model has recently been used for tracking an individual person in videos [53, 54]. In [21], this 

method is further improved with an efficient algorithm for finding the best match of a person and 

a car in images. A number of methods to track a three-dimensional human figure using articulated 

models also have been proposed. [55] uses a 3D articulated model combined with a modified 

particle filter to recover full articulated human body motion. [56] tracks a 3D human body with 

2D contours using information from multiple cameras with different viewpoints. [57] presents an 

algorithm which projects 3D motion of a figure onto an image plane instead of using multiple 

cameras.  

Multiple object tracking has been an intensive area of research due to its many 

applications [58-60]. However, traditional methods fail when the objects are in close proximity or 

present occlusions. A snake, for example, can be used to track individual deformable moving 

binary objects. But when two binary objects touch each other, the boundary between them is not 
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represented in the image data, and so a snake algorithm would likely fail without usable image 

information at the boundary. Tracking multiple objects separately in videos is achievable by using 

appearance-based models. Some methods track and separate people with occlusions by using cues 

such as appearance (color and texture of clothing, etc.) from frame to frame [61-64]. Some 

approaches are able to track multiple rigid objects in simple interactions. In [65], Khan uses 

particle filtering combined with a pairwise penalty function that only depends on the number of 

pixels which overlap between the appearance templates associated with the two targets to track 

multiple ants. In [66], Qu uses the “magnetic potential” and “inertia potential” to solve the “error 

merge” and “false object labeling” problems after severe occlusion of targets.  

Although there have been numerous algorithms for multiple-object tracking, additional 

issues arise when tracking C. elegans worms. The worm tracking problem differs from previous 

tracking experiments in several respects: 1) The worms are not rigid bodies; they are highly 

deformable, 2) the actual worm body is transparent, and 3) the worm moves almost entirely in a 

2-D plane. The fact that the worm body is transparent means that color information is completely 

unavailable and even grayscale can be unreliable. Therefore we cannot use the color or texture to 

easily distinguish the animals from the background of transparent bacteria layers. To solve this 

technical problem, the illumination of the microscope is chosen to make the worm body look dark 

and the background look bright in grayscale images. This means the grayscale images are very 

nearly binary, and in fact we convert them to binary as a pre-processing step. While the binary 

nature of the images makes it relatively easy to compute body posture features for single-worm 

videos, it is a difficult problem to track and distinguish touching deformable binary blobs when 

there is more than one object in the scene. The fact that the worm moves almost entirely in a 2-D 

plane also makes this tracking problem somewhat different from many prior studies. Although 

portions of a worm’s body can cross over/under its own body or the body of another worm, the 

worm’s body is sufficiently flat that such crossings do not involve appreciable curvature up and 
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out of the plane of the agar plate. Thus the projection of the worm’s body onto the plane of the 

plate has a roughly constant length.  

These three significant differences make the worm-tracking problem quite unique 

compared to other multiple object tracking problems, such as those involving people and cars. 

Prior research on tracking multiple C. elegans is limited to [67] and [68], of which the latter is a 

preliminary version of the research presented in this chapter. In [67], a deformable worm model 

and several motion patterns are used to define an overall locomotory space of C. elegans and to 

describe its general dynamic movements. Using a combination of “predicted energy barrier” and 

multiple-hypothesis tracking, multiple touching worms can be identified and separated with a 

high success rate. The algorithm presented in [67] focuses on the crawling mechanism, which 

means sudden position-shift of the worm bodies caused by the swimming mechanism of the 

worm or even the movement of the stage may lead to loss of a track. Our work differs from [67] 

in that the algorithm presented here can accommodate both crawling and swimming mechanisms 

or other causes of sudden shifts such as stage movement. Our work differs in that we also 

introduce various pixel-based, feature-based, and human observation based methods for 

evaluating the accuracy of the body matching algorithm, and we evaluate some features (angle 

change rate, reversals) extracted from the matched body positions. 

In this chapter we present a method for tracking and distinguishing multiple C. elegans 

in a video sequence, including when they are in physical contact with one another. The worms are 

modeled with an articulated model composed of rectangular blocks, arranged in a deformable 

configuration represented by a spring-like connection between adjacent parts. Dynamic 

programming is applied to reduce the computational complexity of the matching process. Our 

method makes it possible to identify two worms correctly before and after they touch each other, 

and to find the body poses for further feature extraction. All joint points in our model can be also 

considered to be the pseudo skeleton points of the worm body. It solves the problem that a 
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previously presented morphological skeleton-based reversal detection algorithm fails when two 

worms touch each other.  

In the next section, we first review the basic concepts of dynamic programming which 

have been previously used in many applications. We then give a detailed description of our 

articulated model and multi-worm tracking algorithm. Finally we present experimental results and 

evaluate how well the algorithm performs on three different goals: to find the best body poses for 

both worms, to identify two worms correctly before and after they touch each other, and to detect 

reversals even when morphological skeletons are not available due to the two worms touching. 

  

5.1 Dynamic programming 

Dynamic programming, introduced by Richard Bellman in the 1940s, was first used to 

describe the process of solving problems where one needs to find the best decisions one after 

another. It is a method to solve problems with properties of optimal substructure [69]. Optimal 

substructure means that we can use optimal solutions of subproblems to find the optimal solutions 

of the overall problem. Basically, we can solve a problem with optimal substructure using a three-

step process: 

1. Break the problem into smaller subproblems.  

2. Solve these problems optimally using this three-step process recursively.  

3. Use these optimal solutions to construct an optimal solution for the original problem. 

The following is an example of a particular type of shortest path problem [69]. Suppose we wish 

to get from A to J in the road network of Figure 5.1: 
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Figure 5.1: The road network. 

All the numbers represent distances between pairs of nodes. To solve this problem, first we break 

it in several stages. Stage 1 contains node A, stage 2 contains nodes B, C, and D, stage 3 contains 

node E, F, and G, stage 4 contains H and I, and stage 5 contains J. The states in each stage 

correspond to the node names. For example, stage 3 contains states E, F, and G. 

Let’s do our calculation step by step: 

1) Stage 4: Because there is only one path from either of H and I to J, we do not really have to 

make any decision in this stage. 

2) Stage 3: In this stage we have 3 nodes E, F and G. From F we can either go to H or I. If we 

choose H, the total distance from F to the destination J will be dist(F,H) + dist(H,J) = 

9. On the other hand, if we choose I, the total distance from F to J becomes dist(F,I) + 

dist(I,J) = 7. Therefore we know that the shortest path from F to J is F→I→J. The rest 

of the calculation for this stage is in Table 5.1. 
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Table 5.1: Calculation for stage 3 
Total distance to J  via H via I 

The shortest 
distance 

Decision 
go to 

E 4 8 4 H 
F 9 7 7 I 
G 6 7 6 H 

 

3) Stage 2: We continue working back through the stages one by one, each time completely 

computing a stage before continuing to the preceding one. The results are: 

Table 5.2: Calculation for stage 2 
Total distance to J  via E via F via G

The shortest 
distance 

Decision 
go to 

B 11 11 12 11 E or F 
C 7 9 10 7 E 
D 8 8 11 8 E or F 

 

4) Stage 1: In this stage, we can see that the final decision goes to C or D. 
 

Table 5.3: Calculation for stage 1 
Total distance to J  via B via C via D

The shortest 
distance 

Decision 
go to 

A 13 11 10 10 D 
 

If we trace back from stage 1, our final decision is A→D→E→H→J or A→D→F→I→J. 

To summarize, there are a number of characteristics to this problem and to other 

dynamic programming problems. These are:  

1. The problem can be divided into stages with a decision required at each stage. In the 

example, they were defined by the structure of the graph. The decision was where to go 

next. 

2. Each stage has a number of states associated with it. In the example, the states were the 

node reached. 
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3. The decision at one stage transforms one state into a state in the next stage. The decision 

of where to go next defined where you arrived in the next stage. 

4. Given the current state, the optimal decision for each of the remaining states does not 

depend on the previous states or decisions. In the example, it was not necessary to know 

how you got to a node. 

5. There exists a recursive relationship that identifies the optimal decision for stage j, given 

that stage j+1 has already been solved.  

6. The final stage must be solvable by itself.  

The key point in dynamic programming is to determine stages and states so that all of the above 

hold. The recursive relationship makes finding the values relatively easy.  

 

5.2 Worm model 

Because the C. elegans worm body is more or less cylindrical, in this paper, we model its 

projection as being composed of N rectangular parts with length L  and width W  in the ratio 2:1. 

To generate a more accurate and robust worm body model, parameters N, L  and W  are learned 

from the image data. They can differ for different input videos. For a given video, let l  and w  be 

the average length and width of the worm body calculated from all non-touching frames. These 

values are calculated automatically using the method described in [7]. Typical values of l  and 

w were approximately 95 and 6 pixels respectively. Then we set wW 9.0=  and WL 2=  and 

)(
L
lroundN = . In this experiment, W  ranged from 4 to 8 pixels ( L  ranged from 8 to 16 pixels) 

and N  ranged from 6 to 9 parts. The position of each part in the image can be defined by the 

triple (x, y, θ), which specifies the coordinate of the center and the orientation of the part (Figure 

5.2a). Adjacent parts are connected by two joint points (Figure 5.2b), which may coincide (Figure 
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5.2c) but also might be chosen to not be coincident. When (x, y, θ) is determined for each of the N 

rectangular parts composing the worm body model, we refer to this as a worm body pose. 

θn
(xn,yn)

w
L

θn
(xn,yn) θn
(xn,yn)

w
L

   

pn

pm

(xmn,ymn)

(xnm,ynm)

Joint points

pn

pm

(xmn,ymn)

(xnm,ynm)

Joint points

pn

pm

pn

pm

    

(a)                                                    (b)                                                  (c) 
 

 Figure 5.2: (a) One rectangular part and its parameters, L  and W  are the length and width of the rectangle 
and (x, y, θ) specifies the coordinates of the center and the orientation of the part, (b) two parts 
of the worm model and their joint points, (c) two parts of the worm model with the joint points 
coinciding. 

 

We seek to find the best match of the worm model to the actual binary worm image data. 

The concept of best match incorporates both how well the rectangular parts fit the image pixel 

data, and also how well the rectangular parts fit worm body anatomy. By “worm body anatomy” 

we mean how well the parts fit with each other into a smooth worm body (for example, adjacent 

parts should not have large gaps between their joint points) [21, 22, 52], as will be discussed in 

the next paragraphs. 

We begin by considering how well a rectangular part fits the image pixel data and 

deterministically examining the set of K most plausible pixel positions from the object (K can 

vary based on different image resolutions used in different experiments). These are the positions 

which have the lowest match cost to place our rectangular part. The match cost m(I,pi) of a part pi 

with 12 different possible orientation angles (15°, 30°, 45°,…., 180°) at every possible integer 

pixel position (x,y) can be computed by convolving the binary worm image I with a convolution 

kernel composed of a “match” rectangle with different orientation angles (with the same size as 
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our rectangular part) embedded in a larger “no match” rectangle (Figure 5.3) [21, 22]. The entries 

of this convolution kernel are defined by the following equation: 
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In this convolution kernel, points close to the y axis (x = 0) have larger weights. Despite the fact 

that we set wW 9.0= , in some images, it is possible that the original worm body width is slightly 

smaller than the width W of the rectangular part. By using this kernel, pixel positions close to the 

middle of the body will have relatively smaller match cost than positions close to the edge of the 

body, which means the likelihood for a part to be placed along the middle line is larger than other 

possible positions. 
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Figure 5.3: Convolution kernel used to calculate match cost. 

 

For each image frame, as will be discussed, we generate a list of M plausible body poses, 

from which we would like to choose the best ones for each of the two worms. These M poses are 

the ones which have the lowest values of the match cost plus the deformation cost. The 

deformation cost measures how each worm body pose agrees with worm body anatomy. The 

pairwise deformation cost is defined as the following: 

                              nmmnnmymnnmxnm WyyWxxWppd θθθ −×+−×+−×= ,,,,),(              (1) 

where .  denotes absolute value, and xm,n, xn,m, ym,n and yn,m are the xy coordinates of joint points 

between adjacent parts pm and pn (Figure 5.2a). The angle θm is the orientation angle in degrees of 

the part pm. Wx, Wy and Wθ are weights for the cost associated with a horizontal (x-direction) 

offset between joint points of adjacent parts, a vertical (y-direction) offset between joint points of 

adjacent parts, and a difference in the orientation angle between the two parts. The deformation 

cost attains its minimum value of 0 when two parts have the same orientation angle and the joint 

points between them coincide. In the next two sections, we show how to generate a list of M 

plausible body poses, which is decided by how well the model matches the object in the image 
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and how well it lowers the deformation cost. To make finding the best match computationally 

efficient, we use a dynamic programming algorithm. 

 

5.3 Multi-worm tracking algorithm 

In this dissertation, we use dynamic programming to solve sequential decision problems 

with a compositional cost structure in which the decisions at one stage become the conditions 

governing the succeeding stages [70, 71]. We try to minimize the energy defined by both the 

match quality of the model and the restrictions between pairs of parts [52, 72]. The model 

contains N rectangular parts. We suppose the general cost function of each part pi can be 

expressed by the following equation: 

                                    )1(1),(),1()(
−−++−= ipiEipImipipdipiE       for i  =  1 to N-1       (2) 

where pi is defined by (xi, yi, θi) as previously described, d(pi-1,pi) defined in equation (1) 

measures how much the adjacent parts pi-1 and pi contribute to the deformation cost, and m(I,pi) 

measures how well the part pi matches the image I with its current position. 

 

5.3.1 Worm Body Poses Sampling 

To generate a list of body poses, we begin by taking the 
3
K

 (x0, y0, θ0) triples with the 

lowest match cost from the previously generated list of K positions, to place our first part p0, 

which is one of the two end parts (it could be either the head or the tail). The reason why the 

lowest match cost for placement of one single part will correspond almost surely to one of the 

two ends is because background pixels on 3 sides of the central “match” region will be correctly 

included in the “no match” region of the kernel in Figure 5.3, whereas for a typical part in the 

middle of the worm, background pixels only on 2 sides of the central “match” region will 

appropriately correspond with the “no match” region of the kernel. Using only the one-third best 
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positions of all K positions only for part p0 slightly reduces complexity without significantly 

increasing the chance of generating bad worm body poses. After the part p0, all K positions will 

be possible candidates to place parts from p1 to pN-1. 

The energy E0(p0) of each part p0 is just the match cost at the position because p0 is the 

first part of the model. If E0(p0) of each p0 is known and we define )(1 ipip −  to be the best 

position for the part pi-1 as a function of the position of the next part pi, then the best position of 

the part p0 in the input image I is: 

))0(0)1,()1,0((

0

minarg)1(0 pEpImppd
p

pp ++=                           (3) 

That is, the best position of the part p0 can be decided given the position of its next part p1. The 

minimum energy E1
*(p1) of the given part p1 (minimized over all possible values of p0) becomes: 

))0(0)1,()1,0((
0

min)1(*
1 pEpImppd

p
pE ++=                                (4) 

Based on the same concept, the best location of the part pi-1 (1 < i < N) as a function of the 

position of the next part pi is: 

))1(*
1),(),1((

1

minarg)(1 −−
++

−
−

=− ipiEipImipipd

ipipip                    (5) 

and then Ei
*(pi) will be: 

))1(*
1),(),1((

1
min)(*

−−
++

−
−

= ipiEipImipipd
ipipiE                         (6) 

We continue this forward process until the other end of the model pN-1 is reached. Finally for the 

part pN-1, the best configuration is the one that has the minimum cost EN-1. 

))1(*
1(

1

minarg1 −−
−

=− NpNE

Np
optNp  
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and the optimum positions of all parts can now be traced in the backward step from the part pN-1 to 

p0 by using equations (3), (4), (5) and (6). In our experiment, we chose the M configurations with 

minimum cost to be the plausible poses for each frame.  

 

5.3.2 Multi-worm Match 

In all of our multi-worm videos, the two worms start out separated. Each video can 

therefore be divided automatically into subsections which are of two types: A) where the two 

worms are clearly separated (the distance between the centroids of the two worms is longer than 

the length of the worm body) and B) where the worms are close to or touch each other. 

 

Type A: For any subsection of the video in which the two worms are clearly separated, 

after M possible worm poses are composed in each frame, we apply a dynamic programming 

algorithm again over the time domain to find the best temporal sequence of poses that move 

smoothly for the first worm within that first separated section of the video. This time we try to 

minimize the cost function L that combines the match cost of the whole worm body pose totalm , 

which is equal to EN-1 in equation (2), and the Euclidean distance totald  between the current and 

the previous worm body poses: 

totalmtotald mWdWL ×+×=                                              (7) 

In this paper, Wd and Wm are also set by limited experimentation and chosen to be in the ratio 5e-2 : 

1. We let Wd be smaller than Wm, which gives those body poses with low match cost higher 

priority to be chosen, and allows the worm body to move from frame to frame without increasing 

the cost too much. The Euclidean distance between two body poses is calculated as the following: 

),( 1
1
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where i
np  is the nth part of the body pose in the ith image frame. Then we remove the first worm 

from the images in the sequence and repeat the dynamic programming algorithm to find the best 

sequence for the second worm. 

 

                

Touching Area

Non-touching Areas

Touching Area

Non-touching Areas

 

(a)                                                      (b) 

                                                                

                                                      (c)                                                      (d) 
 

Figure 5.4: (a) Two worms in the original grayscale image, (b) two worms in the binary image, (c) the 
binary image after eroding, (d) image b minus image c shows the two worms partially separated. 

 

Type B: For the close/touching portion of the video, we begin by using the fact that the 

area where two worms touch each other is thicker than other areas to divide touching worms 

(Figure 5.4a, 5.4b). For any close/touching frame, in order to remove non-touching worm body 

parts, we first erode the touching worm body object 
2

W  times (where W is the width of a 

rectangular part in the body model) with a 3 by 3 structuring element (Figure 5.4c), then we 

subtract the eroded image from the original binary image to get a new image. The two worms 

may be only partially separated in the new image (Figure 5.4d). But this method will increase the 

chance of finding good worm body poses by heightening the match cost for those body poses 

overlapping with the non-filled area. If the two worms are only close to each other without 
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touching or crossing each other, the new image will be just equal to the original binary image 

because there will be no object in the eroded image. 

The dynamic programming approach can make the process of finding the best sequence 

more computationally efficient, and therefore we use it for the portion of the video where the 

worms do not touch, which is the majority of the video and also the portion of the video where 

the body-fitting is easier. However, for touching/close frames, it is a more difficult problem to 

simulate the two worm body poses correctly.  When worms touch, the binary foreground blob can 

be much larger than a typical single worm body, and therefore choosing good body poses in a 

frame requires not only (as in Section 5.3.1) the match cost between image blob pixels and model 

pixels, and the deformation cost of deforming the model, but also must rely on the overlapping 

cost of the two worm bodies (a cost which doesn't enter into the case where the two worms are far 

apart), as well as the distance between the current possible pose and the previous poses (a cost 

which only entered into the dynamic programming in the second step, as we try to find the 

sequence of poses). 

For this reason, we modify our approach.  For each touching/close frame, one of the two 

worms will be chosen as the primary worm. As discussed in section 5.3.1, we have a set of M 

plausible body poses for the frame, obtained using the dynamic programming approach to 

minimize the match cost and deformation cost. From this set, first the best H body poses are 

chosen to be candidates for the primary worm based on both the match cost of the whole body 

pose and the distance between the pose in the current frame and the pose in the previous frame. 

For each of these H candidates, we find the best body pose for the secondary worm from those M 

poses to fill the remainder of the object based on the overlapping cost. The overlapping cost is 

defined to be the sum of two terms: 1) the number of object pixels covered by both the primary 

worm body and the secondary worm body, 2) the number of object pixels not covered by any 

worm body. Then we choose the best single set of body poses for the two worms, which is the set 
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that achieves minimum value of the overlapping cost plus the Euclidean distance between the 

current pose and the previous pose for both worms from those H sets. To avoid the whole result 

being dominated by only one worm, the assignment of the primary worm and the secondary 

worm alternates from one frame to the next. 

As a final step for all frames in both the separated portion and the close/touching portion 

of the video, we apply a two dimensional Gaussian filter to smooth the final results of every 

frame. Figure 5.5a shows the integer valued convolution mask which approximates a Gaussian 

with σ of 1.4 in this experiment and Figure 5.5b and 5.5c show the worm bodies before and after 

Gaussian smoothing. The block diagram of the whole multi-worm match process is shown in 

Figure 5.6. 

For the reversal detection discussed later, after the best match configurations of both 

worms are decided, we can manually assign one of the two end parts to be the head/tail part by 

using the original images as references. The manual assignment does not need to be done on each 

frame. It is done only once per video. 

 

                                   

(a)                                               (b)                                             (c) 
 
 

Figure 5.5: (a) 2-D discrete approximation to Gaussian function with σ = 1.4, (b) the worm body before 
smoothing, (c) the worm body after smoothing. 
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Figure 5.6: Block diagram of the multi-worm match algorithm. 
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5.4 Results 

5.4.1 Experimental results 

The experiments were performed using Matlab on a 2.33 GHz Pentium-IV desktop 

computer. The algorithm was run on 29 different videos which contained 10579 frames in total 

and each sequence varies from 131 to 498 frames. K, M, and H were set to be 3000, 1000, and 10 

respectively, where K is the number of sampled pixel positions, M is the number of sampled 

worm body poses for each image, and H is the number of the candidate body poses for each 

worm in each frame as previously described. The weights Wx, Wy, and Wθ in equation (1) were 

chosen in the ratio 4:4:3 based on limited subjective evaluation over a set of values. Binary 

images are obtained from the original images by using the thresholding algorithm from [7]. Some 

pictorial results are shown in Figure 5.7. Images a, b and c are frames 13, 111, 134 extracted from 

the first video, images d, e and f are frames 86, 143, 206 from the second video, and images g, h, 

and i are frames 16, 63, 91 from the third video (with two worms crossing each other). In each 

image, the left side shows the original grayscale image and the right side shows the matching 

result. The two worms are represented in red and green colors. These examples illustrate the 

ability to identify two worms correctly before and after they touch each other. Their body poses 

are simulated and clearly distinguished during the time the two animals are touching. 
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(a)                                                                                        (g) 

                      
(b)                                                                                        (h) 

                              
 (c)                                                                                        (i) 

  
                                              (d)  

 
  (e)  

 
                                             (f) 

 
Figure 5.7: Nine images from three videos show the best matching configuration. Images a, b and c are 

frames 13, 111, 134 extracted from the first video, images d, e and f are frames 86, 143, 206 
from the second video, and images g, h and I are frames 16, 63, 91 from the third video (with 
two worms crossing each other). In each image pair, the left side shows the original grayscale 
image and the right side shows the matching result. The two worms are represented in red and 
green colors. 
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5.4.2 Verification results  

Next, we evaluate how well the algorithm performs on the three major goals: A) to find 

the best body poses for both worms for further extraction of motion related features, B) to identify 

two worms correctly before and after they touch each other in every video and C) to detect 

reversals even when morphological skeletons are not available due to the two worms touching.  

 

A) Good estimated pose and Motion-related features  

In [67], tracking accuracy is evaluated using the “editing extent,” which is defined as the 

distance between the automatically and manually detected head locations, normalized by the 

worm length for those worms that are considered incorrectly segmented by the human observer. 

In order to emphasize that our algorithm can simulate the highly deformable nature of the worm 

body, we use pixel-based, feature-based and human observer based methods to evaluate the 

match quality of our algorithm. We begin the evaluation of the algorithm by comparing how well 

it does against a manual fit of the body model frame by frame. The algorithm was tested on 1913 

images (including 793 non-touching frames and 1120 touching frames) randomly chosen from 11 

videos with a different pair of worms in each video. Given an original image and the number of 

parts N in it, we first chose N+1 joint points (including two end points) manually in every frame 

by clicking with the mouse on the image (Figure 5.8a). Then these points are used to compute x, y 

and θ of each part and to build worm body poses (Figure 5.8b). This is followed by Gaussian 

smoothing. 
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(a)                                                (b) 
 

Figure 5.8: (a) 8 joint points chosen manually for the 7 parts in this frame, (b) body pose built from 
manually selected joint points. 

 

We compare the results from our algorithm to these manually built body poses and 

evaluate the accuracy by computing the correct percentages defined by the following equation: 

correct percentage = 
A

AM

N
N

 

where NAM is defined as the number of object pixels covered by both the automatically generated 

model and the manually generated model, and NA is defined as the number of pixels covered by 

the automatically generated model. A higher value for this percentage indicated that the body 

poses decided by the algorithm agree more with the manually generated body poses (Figure 5.9). 

 

Figure 5.9: An example of the comparison between the automatically generated model and the manually 
generated model. The black area is covered by both models; the gray area is the difference 
between these two models. 

 

For frames without touching, because the two worms are separated and each worm can 

be easily extracted to calculate its area, we also compare our matching results against both worm 

bodies in the original images. We compute two different scores:  
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i) predicted positive value = 
M

MO

N
N

   and    ii) true positive rate = 
O

MO

N
N

 

where NMO is the number of pixels covered by both the model (either manually or automatically 

generated) and the worm body in the original image, NM is the number of pixels covered by the 

model, and NO is the number of pixels covered by the worm body in the original binary image. 

Predicted positive value is an indication of the probability that a given pixel which our model 

says is part of the worm body actually is part of the worm body. True positive rate tells us the 

percentage of the actual worm body covered by our model. The predicted positive value will 

decrease and the true positive rate will increase if we use models with larger sizes (for example, if 

we choose wW =  instead of wW 9.0= ). 

All results are listed in Table 5.4. We notice that the correct percentages between 

automatically generated model and manually generated model all range from 72% to 83% except 

in two videos (015 and 020). In these two videos, the result is better for touching frames than 

non-touching frames. That is because the background is not very clear due to the un-evenness in 

the bacteria layer or crawl track left by the worm in these videos, which may cause the size of the 

binary worm body in some images to be abnormally larger than its usual size and predicted 

positive values to be very low. Predicted positive values are also over 85% and true positive rates 

are higher than 70% for almost all frames. In order to reduce the possibility of two worms 

overlapping in our results for touching frames, the width W of the model is always chosen to be 

90% of the actual body width. For this reason, the model tends to be covered by the whole worm 

body which will cause the predicted positive value to be generally larger than the true positive 

rate. The results of the comparison between manually generated models and original images are 

also listed in the last two rows in this table, which clearly shows that our automatic matching 

algorithm outperforms human observers. 
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Table 5.4: Comparison results between automatically and manually generated models. The correct 
percentages between automatically generated model and manually generated model for the two worms are 
listed in rows 1 and 2. Predicted positive values and true positive rates for the two worms are listed in rows 
3 and 4 (automatically generated model) and rows 5 and 6 (manually generated model). 

File name 005 006 007 008 011 012 015 016 017 018 020

Non-
touching 

82.7 
77.5 
(78) 

77.8
76.8
(25) 

81.1
81.3
(45) 

74.7
80.1
(5) 

77.8
80.7
(104)

79.6
81.1
(38) 

74.1
69.2
(113)

75.3 
79.2 
(46) 

79.8 
81.1 
(139) 

72.1 
74.9 
(144)

82.4
67.7
(56) 

Automati
cally 

generated 
model 
against 

manually 
generated 

model 
(%) 

touching 
80.2 
73.8 
(122) 

73.3
75.3
(176)

76.6
78.4
(155)

76.0
77.2
(144)

78.2
78.7
(55) 

76.0
79.2
(94) 

76.6
78.4
(64) 

77.8 
80.7 
(51) 

79.4 
78.6 
(61) 

80.2 
81.9 
(55) 

79.4
77.7
(143)

Automatically 
generated model 

(predicted positive %)  

89.5 
86.2 

92.4
89.3

87.9
88.5

91.2
91.5

92.0
87.5

90.5
86.5

94.7
80.5

85.0 
90.9 

90.9 
90.2 

84.2 
85.4 

92.1
86.4

Automatically 
generated model  
(true positive %) 

83.3 
77.9 

82.8
78.3

89.8
88.2

75.3
82.4

68.3
83.5

76.9
83.0

70.6
74.5

77.7 
80.4 

82.3 
81.7 

83.3 
80.1 

83.1
73.7

Manually  
generated model  

(predicted positive %) 

87.1 
86.2 

86.2
88.8

80.9
85.2

82.4
85.9

92.4
85.0

88.4
84.9

88.2
83.8

86.6 
89.3 

84.9 
87.3 

80.7 
89.1 

87.5
87.1

Manually  
generated model (true 

positive %) 

81.8 
76.6 

75.5
76.7

83.9
85.1

68.8
77.2

67.6
80.0

73.9
80.4

68.0
72.0

78.5 
75.9 

76.8 
78.3 

78.6 
76.9 

80.1
71.3

 

In order to verify that our algorithm can simulate the highly deformable nature of the 

worm body, the angle change rate is computed from both the manually generated model and the 

model generated by our algorithm. The results are shown in Table 5.5. The angle change rate is 

defined in [4, 7] as the ratio of the average angle difference between every pair of consecutive 

segments connected by skeleton points. The angle change rate is an important feature 

characterizing body postures of mutants, and was shown in [4], for example, to be significant in 

distinguishing between goa-1(n1134) mutants and wild-type. In this paper, we use the joint points 

of the parts to be our skeleton points to calculate angle change rate. From Table 5.5, we see that 

the difference percentages of average angle change rate between our algorithm and manually 
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generated models are lower than 10% for non-touching (separated) frames and 20% for touching 

(close) frames in most of the videos. 

 

Table 5.5: Angle change rate verification results. Numbers in each cell are angle change rates for the two 
worms. 

File name 005 006 007 008 011 012 015 016 017 018 020

Separated 32.6 
33.0 

33.7
30.6

37.9
31.0

37.0
39.0

29.8
30.9

29.2
35.1

31.7
34.9

33.1 
29.3 

32.3 
32.4 

36.1
34.3

36.6
41.3Automatically 

generated 
model  

(degrees) 
Close 30.0 

31.4 
33.7
30.3

36.2
31.8

32.4
33.6

27.6
33.6

30.6
32.1

25.0
34.3

30.0 
24.8 

30.2 
29.3 

28.8
32.3

38.0
35.4

Separated 33.5 
36.2 

34.5
32.7

40.7
32.5

34.6
40.5

33.3
29.8

30.7
34.3

31.9
38.9

33.5 
24.7 

34.0 
34.6 

37.5
34.2

36.1
43.4Manually 

generated 
model 

(degrees) 
Close 30.4 

30.6 
33.6
29.4

41.0
32.3

34.2
34.4

28.6
30.8

31.0
34.3

29.9
31.2

30.9 
24.5 

32.5 
33.3 

29.4
31.7

42.2
38.6

Separated 2.6 
8.6 

2.2 
6.5 

6.9 
4.6 

6.8 
3.7 

10.4
3.8 

4.9 
2.5 

0.7 
10.4

1.0 
18.5 

5.0 
6.3 

3.8 
0.2 

1.2 
4.8 

Difference 
Percentage 

(%) 
Close 10.4 

18.2 
2.6 

11.4
0.6 
0.6 

1.2 
17.8

16.4
3.4 

0.9 
0.2 

6.9 
24.7

8.3 
0.9 

4.4 
3.8 

27.6
7.9 

14.4
12.3
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B) Correct identification 

Both worms in all videos are also tracked by a human observer to see if our method can 

correctly identify worms separately after they touch. From Table 5.6, we see that our program can 

identify both worms correctly in 26 of 29 videos.  

 

C) Reversals  

C. elegans usually moves in a sinusoidal wave. When a worm is touched or presented 

with a toxic chemical stimulus, it will switch the direction of the wave, causing the animal to 

instantaneously crawl backward instead of forward. This backward movement is defined as a 

reversal. In [23], we used two skeleton points near the two ends as our reference points to decide 

if the worm was moving forward or backward. However, this reversal detection algorithm 

requires the skeleton points from each worm body which can not be obtained using the method in 

Chapter 3 when two worms touch each other. By using our modeling algorithm, after all 

parameters of all parts are obtained with our algorithm, all joint points can be considered to be 

pseudo skeleton points. We can use the two joint points nearest the two ends to be our reference 

points to detect reversals. Table 5.6 shows that there were 86 reversals correctly detected by our 

automatic algorithm. Of these, 57 occurred during the close/touching portion of the video. In 

addition, the automatic algorithm incorrectly declared 7 events to be reversals (6 of them were in 

the close/touching portion of the video). Only 3 actual reversals were missed (of which 1 was in 

the close/touching portion of the video). So our algorithm has a high rate of correct detections 

while maintaining a low rate of false alarms and false dismissals. 
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Table 5.6: Identification results and reversal verification results 

Number of tested videos 29 

Number of correct identifications 26 

Number of wrong identifications 3 

Touching Overall Number of reversals correctly 
detected with results from our 
algorithm and the method in [22] 

57 
(98.3%)

86 
(96.6%)  

Number of wrong detections 6 
(9.5%) 

7 
(7.5%) 

Number of reversals missed 1 
(1.7%) 

3 
(3.4%) 

 

5.5 Conclusion 

This chapter presents a method that combines articulated models and dynamic 

programming for simulating the body poses of C. elegans in multi-worm videos. The models are 

composed of a number of rectangular parts arranged in a deformable configuration. For each 

video, we begin by using a dynamic programming algorithm to generate many worm body poses 

in every frame. For those portions of the video where the two worms are clearly separated, a 

dynamic programming algorithm is used again to find the best sequences over time for both 

worms. For those portions of the video where the two worms are close or touching each other, we 

find the best match configuration for the two worms based on the Euclidean distances between 

pairs of body poses in adjacent image frames. There are several contributions in this chapter. First, 

the presented method allows us to identify two worms correctly before and after they touch each 

other in 90% of our videos. Second, we can use these models to accurately resolve the individual 

body postures of two worms in physical contact with one another. We note that this tracking 

algorithm for two worms is fully automated and requires no human annotation at any point 

(including no need for human annotation of the first frame). When this algorithm was combined 
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with a previously described algorithm for detection of reversals, human annotation was required 

to identify head and tail once per video, which was needed to identify reversals. However the 

tracking algorithm itself involves no human intervention, so it is suitable for analyzing large 

numbers of videos where human annotation would be tedious. We also showed that reversal 

behaviors of multiple worms can be accurately detected by using our model even when their 

bodies are in physical contact with one another.  

This algorithm will provide many applications towards characterizing physical 

interactions between animals. Previous research on automated analysis of C. elegans videos has 

shown that large numbers of biologically relevant features can be automatically extracted. These 

features include, for example, body length and width, average speed, curvature, depth of body 

bends, and frequency and duration of reversals. These features and others have been shown to be 

important in classifying and characterizing many different mutant strains [7]. Using the algorithm 

described in this capter, the body poses of two worms can be identified, so the various features 

extracted in prior research for single-worm videos can now be extended to videos with two 

worms. In this chapter, we examined two of these features (angle change rate and reversals) in 

these two-worm videos. In addition, new features characterizing the interactions themselves (e.g., 

average duration of bodily contact) can be extracted across different mutant strains and different 

environmental conditions. 
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Chapter 6 

Summary 

This dissertation started with presenting skeletonization for coiler mutants by using a 

parameterized body model and locating the division line between overlapping portions of the 

worm body. Using this method, we extracted features from the obtained skeletons and used these 

features to classify and characterize wild type and coiler mutants. Then the omega bend and 

reversal detection algorithms were described in detail as we investigated the temporal correlation 

between these two behaviors. We also presented an automated method to detect and analyze 

foraging behavior of C. elegans in a video sequence using periodograms. After establishing some 

applications of the single worm tracking system, this dissertation addressed the tracking and 

distinguishing of multiple C. elegans in a video sequence. Our contributions in these aspects are 

summarized next. 

 

Contributions 

Chapter 2 is the first automated study of C. elegans coiler mutants. In this chapter, we 

proposed a new algorithm to extract biologically meaningful skeletons from coiled body postures 

having internal holes. This represents an important advance in the study of certain classes of 

locomotion-abnormal mutants. Experiments showed that locomotion features extracted from 
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obtained skeletons can be used to classify coilers with highly similar phenotypes. We also 

investigated the relative similarities between the different mutant behavior patterns. Using the 

Gap Statistic, we determined that the optimal number of clusters for these coilers is 7. This 

indicated that even among a single descriptive class of Unc mutants, several distinct phenotypic 

patterns could be observed, which illustrated the limitations of subjective definitions of mutant 

types with respect to both precision and accurancy. 

In chapter 3, we developed and tested an algorithm for automatic detection of omega 

bends and reversals. This algorithm correctly detected 93% of omega bend events and correctly 

found 96.9% of reversal events. The relationships between omega bends and reversals for 6 

strains (wild type, syd-1, unc-10, unc-37, unc-75 and unc-77) were also examined and compared 

to each other. We found that the ventral bias of omega bends normally observed in wild-type was 

largely absent in some mutants such as unc-37 and unc-75. Wild type, syd-1, unc-10 and unc-77 

have very similar omega bend and reversal behaviors. Most detected omega bends were tightly 

coupled temporally to reversals for these 4 strains. The ventral bias is very strong particularly in 

wild type and syd-1.  

The main contributions of chapter 4 can be summarized as follows: 1) we developed and 

tested a new algorithm for automatic detection of foraging events. 2) We provided quantitative 

analysis of foraging behavior, which has not previously been achieved, for several mutant types. 

3) We verified the existence and quantified the amount of differences in the depth of nose 

bending between normal worms and lesioned or mutant animals, which was reported only 

anecdotally in previous studies. In previous studies, foraging events were scored by human 

observers which is tedious and labor-intensive. The development of automated methods for the 

study of foraging behaviors makes it possible to reliably detect foraging events and quantitatively 

parameterize foraging patterns. The algorithms we developed therefore should have significant 

utility in future studies of foraging behavior. 
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Chapter 5 presented a method that combines articulated models and dynamic 

programming for simulating the body poses of C. elegans in multi-worm videos. The models are 

composed of a number of rectangular parts arranged in a deformable configuration. Dynamic 

programming is applied to reduce the computational complexity of the matching process. There 

are two main contributions in this chapter. First, the presented method allows us to identify two 

worms correctly before and after they touch each other in 90% of our videos. Second, we can use 

these models to accurately resolve the individual body postures of two worms in physical contact 

with one another. All joint points in our model can be also considered to be the pseudo skeleton 

points of the worm body. It solved the problem that a previously presented morphological 

skeleton-based reversal detection algorithm fails when two worms touch each other. 
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