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v Abstract
Even with its simple nervous system, the nematode worm Caenorhabditis elegans can display a range
of complex behaviours. Movement can be viewed as the main output of the C. elegans nervous
system, and aberrations in the worm’s locomotion can be used as an indicator for genetic function in
mutant strains of C. elegans. Automated tracking of C. elegans locomotion has been used to
determine phenotypic fingerprints for ~300 mutant C. elegans strains. Two methods of creating
phenotypic fingerprints were used. The first based on pre-determined micro-behaviours previously
described in worms, but never before analysed using automated tracking. The second used the
tracking data itself to determine micro-motifs, repeated sets of behaviours observed at least twice in
at least two mutant or wild-type strains.

Both methods of clustering successfully grouped together strains with mutations in genes known to
interact together, verifying that the technique is able to detect meaningful connections between
mutant strains. The following step was to determine whether the technique can be used to establish
connections between genes on unknown function. A pair of strains with mutations in DEG/ENaC
subunit encoding genes clustered strongly together using the micro-motif method, due to similar
defects in their behaviours upon turning. The function of these genes, asic-2 and acd-5, was
unknown. Upon further investigation it was found that the two genes are expressed in different
classes of neurons, the IL2s in the case of asic-2 and the ASls in the case of acd-5. Following
investigation into behaviours known to be modulated by these two neuron classes it was found that
the mutant strains displayed mutant phenotypes in similar behaviours, but that their mutant
phenotypes are opposing. Mutations in asic-2 cause increased lifespan and healthspan and a
reduction in dauer entry in response to exogenous, purified ascarosides. Mutations in acd-5 cause
decreased lifespan and healthspan and a reduction in dauer entry in response to crude dauer
pheromone. This suggested that the two genes were unlikely to be working in the same pathway, but
do function in similar pathways.

Calcium imaging is a technique used in C. elegans to measure responses in excitable cells, in this case
in neurons. Many calcium indicators are available for use in this technique, one in particular is
GCaMP. GCaMP has undergone many rounds of targeted mutations with the aim to increase the
molecule’s dynamic range and dissociation constant. At the time of commencing this project, new
variants of GCaMP, known as GCaMP6s, became available, and had yet to be tested in C. elegans
neurons. The effectiveness of a total of 6 new variants was tested in the gentle touch neurons of C.
elegans. It was found that the alterations made to GCaMP5G in order to make the GCaMP6 variants
did not result in improved dynamic range or dissociation constant in the PLM of C. elegans.
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Chapter 1

1.1 Introduction

1.1.1 Caenorhabditis elegans

An interesting question in biological research, and one for which sufficient answers still
evade scientists, is how gene products interact to create coordinated and complex
behaviours.

As humans our thought processes and resultant actions are so complex that an explanation
for this question seems beyond the realms of possibility. Even those processes for which no
conscious thought is necessary are complex and multifaceted, with many genes interacting
to perform some of the smallest of actions. Due to these factors human experimentation
would be time-consuming and costly, not to mention unethical. For this reason researchers
have, for many years, attempted to identify human homologies in the genetics of simpler
organisms that are more genetically tractable.

Several organisms have been found to be ideal for just this, Caenorhabditis elegans (C.
elegans) is one such organism. This soil dwelling nematode has become a favourite model
species. Initially the appeal of the worm lay in its basic anatomy. Its small size (approx 1mm)
and large brood size means it is easy to grow in large numbers in a relatively small amount of
space. The worm is transparent and can be imaged under a light microscope, allowing for
live observations.

The worm has simple nutritional needs, an agar plate seeded with bacteria is sufficient to
keep dozens of individuals fed for several days (Brenner 1974). In this feeding environment,
at 22°C, a single worm will develop, in 72 hours, from egg to adult (Maniatis et al. 1982).
During this development the worm passes through 4 typical larval stages, L1 - L4 (Fig.1.1A)
(Cassada & Russell 1975). C. elegans are easily staged by picking L4 larvae, noticeable due to
their characteristic ‘saddle’, a clear semicircle on one side of the body formed by the
invagination of the developing vulva (Fig.1.1B). One mature individual can lay approximately
300 viable eggs in a lifetime (LeDoux 2005). Since the worm is mainly hermaphroditic, with a
low incidence of male births (approximately 0.2%) (Chaffey 2003), potentially huge numbers
of identical, genetically stable worms can be grown in just two generations. Consequently, a
large population of clones can be reached very quickly. When starved, C. elegans larvae will
enter an alternate developmental pathway, forming what is known as a dauer larva. Dauers
can survive for at least 6 months in starvation and will re-enter the normal path of
development when reintroduced to food (Cassada & Russell 1975).

It was for these reasons that C. elegans was originally picked by Sydney Brenner as a
candidate for research into developmental biology and neurology (Brenner 1974). Initial
work on the worm involved the introduction of mutations into the worm’s genome using
EMS (Ethyl Methane Sulphonate). Any worms that were exhibiting an obvious locomotory or
morphological phenotypes were cultivated to produce colonies of mutants. Examples are
dumpy, long and small for morphology (Fig.1.1C) and uncoordinated for locomotion. Using a
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series of elegant genetic experiments a rudimentary genetic map of the mutated genes was
made (Brenner 1974; Coulson et al. 1986), leading to a basic understanding of C. elegans
genetics, and allowing the mutations responsible for these phenotypes to be mapped.

Following on from Brenner’s work with C. elegans, many important discoveries have been made
during experimentation with the worm, which have greatly impacted research in the wider
research community. Most notable are those for which Nobel prizes have been won.

The first of these came in 2002 for the work carried out by Brenner, Sulston and Horvitz on the
basics of organ development and programmed cell death. Sulston and co-workers discovered
that during C. elegans development many cells undergo apoptosis in a predictable, identical
pattern (Sulston and Horvitz 1976). This lead to the understanding that some cancers are caused
by a fault in the cell’s usual pathway: programmed cell death. Horvitz was able to decipher which
genes within the worm were responsible for modulating apoptosis. He found that functioning
ced-3 and ced-4 genes are required by all cells in C. elegans to properly undergo apoptosis (Ellis
& Horvitz 1986). He was also able to determine that there is a ced-3 like gene in the human
genome, indicating that humans also have a particular gene required for proper cell death to
take place (Yuan et al. 1993).

The second Nobel Prize for work with C. elegans was for the discovery of the technique RNAi
(RNA interference) by Mello and Fire. This is an easy to use and effective method for silencing
targeted genes by introducing double stranded RNA (dsRNA), either directly (e.g. by feeding) or
by transgenic expression (Mello and Fire 1998). Since dsRNA usually hails from a viral source, the
cell will recognise the RNA as pathogenic and destroy it. The mRNA from the targeted gene is
blocked from ever becoming translated, hence it is silenced. Using cell specific promoters, the
RNAI can be introduced into targeted cells, where it can silence a gene within this cell only. This
technique has since been effectively used for gene silencing in a wide variety of organisms.
Clinically, RNAi has been effectively used in treatment of Macular Degeneration (Kaiser et al.
2010) and human respiratory syncitial virus (Alvarez et al. 2009).

Third and finally, a Nobel Prize was won in 2008 by Chalfie, Shimomura and Tsien for the
discovery and development GFP (Green Fluorescence Protein) ( Chalfie et al 1994, Shimomura
1979; Heim et al. 1994). Chalfie and co-workers were responsible for developing GFP for use in
C. elegans. Promoter-GFP fusions are incredibly useful in C. elegans research as they offer a
quick and relatively reliable method of determining the expression pattern of specific genes. One
merely has to identify a promoter region for the gene of interest, fuse it to a green fluorescent
protein and express it in the worm (Chalfie et al 1994).

The GFP molecule has since been manipulated in many ways to offer a variety of colours of
fluorescent protein and has been combined with various protein functional domains to give rise
to fluorescent indicators. Indicators exist for a number of different ions; Outside of C. elegans
research fluorescent indicators are used for a wide variety of applications. Detection of low
levels of heavy metals in solutions and environmental samples can be achieved using indicators
that bind the target metal (Prestel et al. 2000). In neuronal research the most common
indicators used detect changes in sodium or calcium ion concentration. In mammalian research
sodium indicators have many uses (Rose & Konnerth 2001; Moore & Fay 1993), but they are of
limited use in research with the worm, as C. elegans does not have recognised sodium
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transients. In C. elegans the most commonly used indicators are the calcium indicators:
Cameleon, GCaMP and G-GECO, used for measuring calcium transients in excitable cells. In
recent years a wider variety of colours of fluorescent indicators has become available, the red-
shifted RCaMP and R-GECO and blue-shifted B-GECO (Akerboom et al. 2013; Zhao et al. 2011).

In recent years more elaborate techniques for researching with C. elegans have been developed.
It is possible to stimulate specific neurons with blue light, using cell specific expression of
channelrhodopsin (ChR), a functional ion channel activated by UV light (Nagel 2002). Emissions
from red-shifted calcium indicators, expressed in cells postulated to be downstream of ChR
containing cells, can then be tracked to elucidate neuron circuitry (Akerboom et al. 2013). We
can accurately measure electrical gradients across a cell membrane (Goodman et al. 2012); and,
most importantly for the work | have been conducting, we can measure the calcium transients
within specific neurons in response to a variety of stimuli (Suzuki et al. 2003; Hilliard et al. 2005;
Kimura et al. 2004).

During my study | have been exploiting a number of the techniques known to C. elegans
researchers, both old and new, to determine the function of unknown genes.

1.1.2. C. elegans anatomy

The C. elegans hermaphrodite has an un-segmented cylindrical body with a recognisable head and
tail at either end. The body is formed of an outer and inner tube held apart by internal hydrostatic
pressure. The outer tube consists of the cuticle, hypodermis, excretory system, neurons and muscles
(Fig 1.2A). The inner tube is made up of pharynx, intestine and gonad, which produces both egg and
sperm (Brenner 1988) (Fig 1.2B and 2D).

The male anatomy is similar, but the male is smaller in comparison to age-matched hermaphrodites
and can be identified by their characteristic fanned tail (Fig.1.2C). The male has no ovaries and
instead has a single j shaped arm that produces sperm only. Males and hermaphrodites can mate to
generate cross-progeny of around 50% of each sex (Ward & Carrel 1979). The C. elegans male has
385 neurons in comparison to the 302 in hermaphrodites. 91 of the male neurons are sex specific,
while hermaphrodites have only 8 sex specific neurons. The majority of male sex specific neurons are
found in the tail and many have specific roles in male mating behaviour. Sex specific neurons in the
head are involved in pheromone sensation and mate detection (Sulston and Horvitz 1997).
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Fig.1.1: The Lifecycle and Anatomy Of C. elegans. A: The life-cycle of C. elegans, eggs are released
from gravid adults, eggs hatch after ~26 hours as L1 larvae, in favourable conditions the worm
progresses through larval stage 2 and 3, then become L4 larvae. In low or poor food conditions the
worm enters the dauer pathway. B: A larger, adult individual flanked by two L4 larvae. The larvae
display the characteristic semicircular arc midway down the body (Genome research limited). C: 1,
shows an N2 adult, 2, an uncoordinated adult, 3, a long adult and 4 a dumpy adult and 5, a roller.
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bodily structure of the C. elegans male D: A detailed schematic of the C. elegans hermaphrodite
physiology (Sulston et al. 1983).
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1.1.3 C. elegans Genetics

Although C. elegans has long been a popular organism for genetic research, its appeal increased in
1998 when it became the first multi-cellular organism to have its full genome sequenced (C. elegans
Sequencing Consortium 1998). Consequently knowledge of the worm’s 100MB genome has had
somewhat of a head start over other popular model species.

The worm’s genome contains around 20,470 protein coding genes (WS277 release letter WormBase).
It is thought that there are around 1,200 gene families containing two or more paralogues in C.
elegans (Cavalcanti et al. 2003; Gu et al. 2002) accounting for 32% of their genes.

A number of genes in the worm are highly conserved with lower complexity organisms; these tend
to be encoding essential proteins or are genes that function in processes that are evolutionarily,
strongly conserved. Around 300 of the worm’s genes are essential to its survival (Kamath et al. 2003).
These essential and conserved genes tend to cluster to the centre of the autosomes, while the arms
contain fewer, sparser and less vital genes (C. elegans Sequencing Consortium 1998; Hutter et al.
2000). At least some of these clusters are thought to act as operons (Blumenthal et al. 2002).

Around 35% of C. elegans genes have human orthologs (Shaye et al. 2011), which is incredibly useful
for researchers. Particular human disease genes have already come to be much better understood by
studying their homologous gene in the worm. An example of this is in the study of the inherited skin
fragility disease Kindler syndrome, caused by a mutation in KIND1. KIND1 has a C. elegans ortholog,
unc-112. Since unc-112 is implicated in linking the actin cytoskeleton to the extracellular matrix
(ECM) in worms, it was theorised that kindler syndrome was the result of an actin-ECM defect, rather
than the more common keratin-ECM defect. Further investigation in the direction of this theory
proved it to be correct (Siegel et al. 2003). Many mammalian orthologues can rescue mutations in
their worm counterparts. For example the C. elegans mutant, nlg-1, an ortholog of the human
synaptic cell adhesion protein neuroligin, have their atypical gentle touch and osmotic responses
rescued by expression of human NLGN1 or rat Nign1 (Calahorro et al. 2012) suggesting functional
conservation of human orthologues.

The worm has 6 chromosome pairs |, 11, lll, IV, V and X, the final being the sex chromosome. A
configuration of XX will cause the individual to be hermaphrodite, and XO will create a male (Riddle
1997). When males are lacking in a population the hermaphrodites will self fertilise and create a
colony of clones, which is useful when propagating mutant recessive lines. Crossing with males
allows for the introduction of extrachromosomal arrays or integrated genes into the hermaphrodite
genome.

1.1.3.1 Introducing mutations and genetic screening

Genetic mutations can be introduced into the worms’ genome in a number of ways, for a number of
screening techniques. The method by which a gene is mutated largely depends on the experimental
requirements of the researcher, and which type of screen is to be done.

Forward genetic screening is a method used to attribute a randomly mutated gene to a specific,
observed phenotype, while a reverse genetic screen involves specifically mutating a gene, or genes of
interest, and observing the resultant phenotype. Thus, forward genetic screening allows for wide-
scale mutagenesis, while reverse screening requires a more specific, targeted method of
mutagenising.
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Chemical mutagenesis with EMS, Formaldehyde, DES ( Diethylsulfate) and DEB (Dipoxybutane) can
be used for forward genetic screens. Short wave UV, IR and 32P decay are other useful techniques
for creating genome wide mutations.

In reverse genetics both MosTIC (Robert 2012) (see 4.1.9) and CRISPR (Friedland et al. 2013) (see
3.3.3) have proved to be incredibly useful methods for targeting mutations to specific parts of the
genome.

1.1.4 C. elegans Neurobiology

An adult hermaphrodite has 302 neurons that form two distinctly different systems; the significantly
larger of the two is the somatic system which consists of 282 neurons, only the somatic neuronal
system contains support cells, of which there are 56. The other, smaller group of 20 neurons
comprises the pharyngeal system. The two are connected by just two inter-neurons, the RIP pair
(White et al. 1986). During my research with C. elegans | have concentrated only on the neurons
forming parts of the somatic system.

The worm has two clusters of ganglia and cell bodies; one is located in the head and known as the
nerve ring, the other, less populated cluster can be found in the tail. A full map of the connections
between all the neurons, labelled the connectome, has been produced (White et al. 1986; Chen et al.
2006; Varshney et al. 2011). Neurons in C. elegans can confer responses via both chemical and
electrical connections (white et al 1986). In the worm, gap junctions are formed by innexins, for
which there are 25 different genes. Innexins encoded by different genes appear to be able to form
functional channels with each other, and each forms a distinctive expression pattern (Altun et al.
2009). C. elegans chemical synapses release numerous neurotransmitters, depending on the function
of the neuron; Table 1.1 shows the neurotransmitters and the neurons from which they are released.
When acting upon muscle cells acetylcholine causes excitation, leading to contraction while GABA
acts to relax muscle.

Table 1.1 The Neurotransmitters Released by C. elegans Neurons.

Neurotransmitter | Neurons

Acetylcholine ADF, AIA, AIM, AIN, AlY,

AS1, ASJ, AVA, AVB, AVD, AVE, AVG, AWB, CEM, DA1, DB1-

2, IL2, RIB, RIF, RIH, RIR, RIV, RMD, RMF, RMH, SAA, SAB, SIA, SIB, SMB, SMD, UR
A, URB, URX, VA1, VB1-2, 11, 13, M1, M2, M4, M5, MC, AS2-10, DA2-7, DB3-

7, HSN, VA2-11, VB3-11, VCn, ALN, AS11, DA8-9, DVA, DVE, DVF, HOB, PCB, PCC,
PDA, PDB, PDC, PGA, PLN, PVN, PVP, PV, PVX, PVY, PVZ, R1A, R2A, R3A, R4A,
R6A, SPC, SPV, VA12

Dopamine ADE, CEP, PDE, Male only: R5A, R7A, R9A, SPSo

Octopamine RIC

Tyramine RIM

Serotonin (5HT) ADF, AIM, RIH, NSM, HSN, VC4-5, CP1-6, R1B, R3B, R9B

GABA AVL, DDL, RIS, RME, VD1-2, DD2-5, VD3-11, DD6, DVB, VD12-13

Glutamate ADA, ADL ,AFD, AIB, AIM, AlZ, ASE, ASG, ASH, ASK, AQR, AUA, AWC, BAG, FLP,

OLL, OLQ, RIA, RIG, RIM, URY, M3, Ml, 12, 15, ALM, AVM, DVA, LUA, PHA, PHB,
PHC, PLM, PVD, PVQ, PQR, PVR, PVV, R6A

C. elegans do not have recognised sodium action potentials, as observed in mammals, but instead
rely solely on opposing calcium and potassium currents across the cell membrane (Lockery &
Goodman 2009). It is for this reason that calcium indicators are the only form of fluorescent indicator
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