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ABSTRACT OF THE THESIS

Analysis of Caenorhabditis elegans behavior using an automated behavioral
phenotype quantification system

by
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Master of Science in Biology

University of California, San Diego, 2005

Professor William R. Schafer, Chair

This thesis presents work done to improve and test an automated behavioral

phenotype quantification system for use in the study of Caenorhabditis elegans.  First,

we present an algorithm developed for automatic egg-laying detection.  Egg-laying is

a behavior often studied in C. elegans, and when studying C. elegans egg-laying

behavior using image analysis, it is important to be able to distinguish true egg-laying

events from false positives.  The ability to determine which parameters change before,

during, and following an egg-laying event is also important, and is described in this

thesis.  The automated behavioral phenotype quantification system was then used to

examine a C. elegans mutant involved in nicotinic acetylcholine receptor regulation.

This mutant was previously characterized as having wild type behavior, but use of the

automated behavioral phenotype quantification system allowed the determination that

the mutant has a phenotype with subtle differences from wild type behavior.  Through

these studies, a greater insight into C. elegans behavior has been achieved.
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CHAPTER I                                INTRODUCTION

The ability to obtain objective observations of behavior has long been a

problem of interest in biology.  With the advent of complete genome sequencing of

model organisms such as the nematode Caenorhabditis elegans, it is now possible to

determine the precise mutation carried by an animal and to correlate the mutation with

a behavioral defect.  Although the small size of C. elegans presents a difficulty when

examining subtle phenotypes, advances in machine vision have now made it possible

to utilize computers to classify behavioral patterns with far greater sensitivity than the

human eye.

C. elegans is a relatively simple organism that nonetheless contains a great

deal of versatility.  It is capable of responding to diverse external stimuli, such as the

presence of food, pharmacological treatments, the presence of other animals,

temperature, ionic gradients, and touch stimuli.  It is an attractive model organism for

several reasons: 1) it has a short life cycle of approximately three days, 2) it is easily

cultivated in the laboratory, 3) the majority of animals are self-fertilizing

hermaphrodites, although males do occur, 4) it has a simple, if small, body structure

without any appendages, and 5) its genome has been completely sequenced.

While C. elegans is an attractive model organism in many respects, its small

size often makes direct behavioral observations problematic.  Behavioral observations

of C. elegans may be difficult, strenuous, or even impossible to quantitate when the

parameter of interest, such as the angle of body bending, is changed by only a few

micrometers.  There is also the factor of human error.  One observer may score a
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phenotype in a different manner than another.  However, with the assistance of

computers, it is now possible to make direct, quantitative, and consistent observations

of C. elegans with a minimum of effort.

Features that have been used in phenotypic characterizations of C. elegans

include size, distance traveled, characteristics of body bending, reversal distance, and

egg-laying behavioral patterns.  Egg-laying in particular is an important feature of

worm behavior as it may be used to study neuronal signal transduction.  In the past,

egg-laying in C. elegans was examined using video recordings and lengthy human

analysis (Hardaker et al. 2001).  Automated detection of egg-laying events allows for

more precision in determining small yet significant changes in behavior as well as

having the added benefit of being far less time-consuming.

Automated behavioral phenotype quantification allows researchers to

quantitate behavioral observations and to examine changes in behavior which may be

unobservable to the unaided eye.  In worms with a previously characterized

phenotype, such as uncoordinated, automated behavioral phenotype quantification

allows the determination of which parameters contribute to the degree of

uncoordination, which differs between worms of different genotypes.  Combined with

genetic analysis, this information may give certain insights into the link between a

particular gene and its overall function in the organism.  Automated behavioral

phenotype quantification may also aid in determining differences among mutant

worms that were previously characterized as pseudo-wild type.

Nicotinic acetylcholine receptors (nAchR’s) are found in the muscles of C.

elegans, and have been implicated in a wide variety of behaviors, ranging from
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feeding (pharyngeal pumping) to locomotion (body muscle contraction) to mating

(male spicule protraction).  The role of one particular nAchR, the levamisole receptor,

has been of great interest due to its involvement in egg-laying and locomotion

behaviors.  The levamisole receptor is a nicotinic receptor found in both the body and

vulval muscles, named for its response to the antihelminthic drug levamisole.  There

are several levamisole-resistant C. elegans mutants that exhibit varying degrees of

resistance to levamisole and other cholinergic agonists such as nicotine, as well as

displaying locomotion behaviors ranging from severely uncoordinated to wild type.

The gene lev-9 was previously characterized as a weak levamisole resistance

gene with unknown molecular identity (Lewis et al. 1980b).  lev-9 mutants have been

described in the literature as being pseudo-wild type in behavior (Lewis et al. 1980a).

In order to test whether the automated behavioral phenotype quantification system

could discover any differences among these lev-9 mutants, mutant worms from each of

the three known alleles of lev-9 were tracked, as well as worms with mutations in

genes related to lev-9 and in genes implicated in muscular disorders.  Although

behavioral differences among the three alleles of lev-9 may be undistinguishable to the

unaided observer, data analysis from automated behavioral phenotype quantification

provides a method for distinguishing the differences among the three alleles of lev-9 as

well as their differences from wild-type worms.

This thesis documents work aimed at developing an automated tracking and

image analysis system for use in behavioral studies of C. elegans.  Briefly, we present

a method that automatically detects egg-laying behavior.  An automated behavioral

phenotype quantification and image analysis system was then used to examine worms
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previously characterized as pseudo-wild type in behavior.  Using this method, subtle

yet distinct differences in locomotion behavior were observable between wild type and

lev-9 mutants.
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CHAPTER II: C. ELEGANS EGG-LAYING DETECTION

AND BEHAVIOR STUDY USING IMAGE ANALYSIS

ABSTRACT

Egg-laying is an important phase of the life cycle of the nematode

Caenorhabditis elegans (C. elegans). Previous studies examined egg-laying events

manually. This paper presents a method for automatic detection of egg-laying onset

using deformable template matching and other morphological image analysis

techniques. Some behavioral changes surrounding egg-laying events are also studied.

The results demonstrate that the computer vision tools and algorithm developed here can

be effectively used to study C. elegans egg-laying behaviors. The algorithm developed

is an essential part of a machine vision system for C. elegans tracking and behavioral

analysis.
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INTRODUCTION

The nematode C. elegans is widely used for genetic studies of development,

cell biology, and gene regulation.  In particular, because of its facile genetics, well-

described nervous system, and complete genome sequence, it is particularly well

suited to analysis of the molecular and cellular basis of nervous system function and

development.  The ability to functionally map the influence of particular genes to

specific behavioral phenotypes makes it possible to use genetic analysis to

functionally dissect the molecular mechanisms underlying poorly understood aspects

of nervous system function such as addiction, learning and sensory perception.

However, many genes with critical roles in neuronal function have effects on behavior

that are difficult to describe precisely, or occur over time scales too long to be

compatible with real-time scoring by a human observer.  Therefore, to fully realize the

potential of C. elegans for the genetic analysis of nervous system function, it is

necessary to develop sophisticated methods for the rapid and consistent quantitation of

mutant phenotypes, especially those related to behavior.

One of the most important behaviors for the analysis of neuronal signal

transduction mechanisms is egg-laying.  Egg-laying in C. elegans occurs when

embryos are expelled from the uterus through the contraction of 16 vulval and uterine

muscles (White et al., 1986).  In the presence of abundant food, wild-type animals lay

eggs in a specific temporal pattern:  egg-laying events tend to be clustered in short

bursts, or active phases, which are separated by longer inactive phases during which

eggs are retained.  This egg-laying pattern can be accurately modeled as a three-
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parameter probabilistic process, in which animals fluctuate between discrete inactive,

active, and egg-laying states (Waggoner et al., 1998). Egg-laying has also been shown

to be coordinated with locomotion:  specifically, animals undergo a transient increase

in global speed immediately before each egg-laying event (Hardaker et al., 2001).

Many neurotransmitters and neuronal signal transduction pathways have been shown

to have specific effects on egg-laying behavior; thus it has become an important

behavioral assay for the analysis of many neurobiological problems in C. elegans.

Computer vision tools (Baek et al., 2002, Geng et al., 2003, Geng et al., 2004)

have been used successfully in recording, tracking, defining, and classifying C.

elegans morphology and locomotion behaviors.  Because egg-laying is infrequent, it is

well suited for analysis by automated imaging methods.  In previous egg-laying

studies (Hardaker et al., 2001, Waggoner et al., 2000, Zhou et al., 1998), individual

worm movements were videotaped and the centroid location and time information

were saved at 1s intervals during recording. The entire videos were later played back

and each video frame was examined by expert observers to look for egg and egg onset

frames. In this paper, we present an algorithm that can identify eggs and egg onsets

automatically. In addition, by combining this information with the features

(locomotion, morphology, behavior, shape) extracted using our previously developed

computer vision methods, we are able to uncover relationships between egg-laying

events and other characteristics.
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2. IMAGE ACQUISITION AND SEGMENTATION

2.1 Acquisition of the Video Images

Routine culturing of C. elegans was performed as described (Brenner 1974).

All worms analyzed in these experiments were young adults; fourth-stage larvae were

picked the evening before the experiment and tracked the following morning after

cultivation at 22°. All animals used in this study were from the wild-type Bristol (N2)

strain.

C. elegans locomotion was tracked with a stereomicroscope mounted with a

CCD video camera (Baek et al., 2002, Geng et al., 2003, Geng et al., 2004). The video

camera used only a single eyepiece, so did not have stereo data; the system is

equivalent to a conventional bright field microscope. A computer-controlled tracker

was used to maintain the worms in the center of the optical field of the microscope

during observation.  To record the locomotion of an animal, an image frame of the

animal was snapped every 0.5 second for at least five minutes (20 minutes or more in

the longer recordings).  Among those image pixels with values less than or equal to

the average value minus three times the standard deviation, the largest connected

component was found.  The image was then trimmed to the smallest axis-aligned

rectangle that contained this component, and saved as eight-bit grayscale data.  The

dimensions of each image and the coordinates of the upper left corner of the bounding

box surrounding the image were also saved simultaneously as the references for the

location of an animal in the tracker field at the corresponding time point when the

images are snapped.  The microscope was fixed to its largest magnification (50 X)
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during operation.  Depending on the type and the posture of a worm, the number of

pixels per trimmed image frame varied. The number of pixels per millimeter was fixed

at 312.5 pixel/mm for all worms.

2.2. Segmentation and tracking of the Worm Body

The segmentation process is presented in (Geng et al. 2004). Briefly, an

adaptive local thresholding algorithm with a 5x5 moving window was used followed

by a morphological closing operator (binary dilations followed by erosions).  A

corresponding reference binary image was also generated by filling the holes inside a

worm body based on image content information. The difference between these two

binary images provided a good indication of which image areas are worm body and

which are background.

Following binarization, a morphological skeleton was obtained by applying a

skeletonizing algorithm. Redundant pixels on the skeleton were eliminated by

thinning. To avoid branches on the ends of skeletons, the skeleton was first shrunk

from all its end points simultaneously until only two end points were left. These two

end points represent the longest end-to-end path on the skeleton. A clean skeleton can

then be obtained by growing out these two remaining end points along the unpruned

skeleton by repeating a dilation operation.

The tracking algorithm is presented in (Geng et al. 2004), and included

automatic recognition of the head and tail for the worm inside each frame.



15

3. MODEL-BASED ATTACHED EGG DETECTION

3.1. Image Analysis

To find the possible egg locations and limit the search area for deformable

template matching, we developed a series of morphological image analysis algorithms

to limit our search area to around 2% of a typical region that a worm body covers. The

search is greatly expedited and match accuracy is improved by effectively eliminating

potential false alarms. The flowchart of attached egg detection is shown in Fig. 1-1.

For each input video frame, the worm body is first segmented from the background

and the skeleton (medial axis) is obtained by algorithms described in (Geng et al.,

2004).  The laying of an egg changes the shape of the binarized worm body (Fig. 1-2),

which can be captured by examining the width profile in the middle part of the worm

body in the following way.  For each pixel in the skeleton pixel list, a straight line

traversing the worm body that passes through that skeleton pixel is calculated. 71

additional lines are also calculated at 5-degree intervals to cover a 360 degree radius.

The worm body width at that skeleton pixel is the shortest of the 72 lines, which has

the shortest distance traversing the binary image through the skeleton pixel. In the case

where the abnormal width is caused by an attached egg, one of the two end point

locations on the shortest-distance line is enclosed by that egg. By abnormal width, we

mean a difference greater than 7.5 pixels/24 µm between median and peak width in

the middle part of the body, indicating a potential egg event. Fig. 1-2A shows the

frame immediately prior to an egg-laying event. Fig. 1-2B shows the egg-laying

frame. The corresponding width profiles are shown in Fig. 1-2C and 1-2D
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respectively. The solid curves show the width measured along the worm skeletons.

The horizontal dotted lines in Fig. 1-2C and 1-2D show the median width for the

middle part of the worm body. A second horizontal line in Fig. 1-2D shows the

threshold (7.5 pixels above the median width value) that defines abnormal width. The

width profile curves are normalized to 300 pixels for comparison. Since egg laying is a

rare event, over 90% of the frames are quickly passed through and not subject to

further analysis.

Since the abnormal width measure can not tell us which side the egg is on

(which end point the egg encloses), we extract the boundary from both sides of the

worm body and consider the side that has higher k-curvature values to be the egg side.

This way, the search area is constrained to only one side of the worm body and half of

the search area is effectively eliminated. The process starts with isolating the body

area containing the abnormal width by cutting off the worm body area that is 25

pixels/80 µm before and after using the minimal-distance straight lines passing

through the skeleton pixels. This cutoff area is 51 pixels/160 µm in medial axis and

has four boundaries. Two of the boundaries are the straight cutoff lines, and the other

two are the two sides of the worm body (Fig. 1-3B). A boundary following algorithm

similar to (Sonka et al., 1999) is then used to extract the two boundaries along the

sides of the worm body (Fig. 1-3C). The k-curvature ])7,3[( =k  [Jain 1995] of these

two boundaries is calculated, and the boundary that has higher (for all 5 k-curvature

measurements) values is designated as the egg side. If neither boundary has all 5
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measurements higher, both sides are checked for eggs. The k-curvature is defined as
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and )(),,( 1,1 ++ iiii yxyx … are the locations of consecutive points that are k pixels apart

along the worm side boundaries.

Once the location of the maximal peak is decided, the search region Ω can be

obtained by region growing out of the egg side end point to enclose the egg center. A

directional dilation algorithm such as (Borgefors 1986) can be used for this purpose.

Here we once again take advantage of the worm skeleton. The directional dilation is

achieved by applying two constraints in the dilation process: (1) dilation starts from

the end point and should remain inside the binary worm body; (2) dilation remains

outside skeleton area (dilated 4 times from skeleton) (Fig. 1-3D). The dilation process

stops when more than 200 pixels are inside the region. The directional dilation forces

the search area to be inside the worm body close to the side boundaries rather than

close to the skeleton. The final search region Ω (Fig. 1-3E) typically contains between

200 and 250 pixels for each frame. In the case that both sides are checked, a total of

400 pixels is checked. Fig. 1-3 illustrates the process.
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3.2. Deformable template matching

Deformable template matching models have been applied to a variety of image

recognition and analysis applications with success (McInerney et al. 1996, Jain et al.

1996,1998, Escolano et al., 1997, Fisker et al. 2000). They enjoy not only the

flexibility of a parameterized model, but also can be explained in a Bayesian

framework. Even though the attached eggs could be partially obscured by shadows

and/or by the worm body, or partially laid, they share many common characteristics.

They tend to have oval shapes, and are generally brighter in the middle and darker

around the boundary. The eggs are more or less similar in size. These characteristics

make them ideal for the elliptic deformable templates.

In an ideal case, the shape of the attached eggs can be modeled by an elliptic

model such as the one shown in Fig. 1-4 with 7 parameters )2,1,,,,,( ρρθbayxv = ,

where ),( yx are the coordinates of the center, a  and b  are the semi axes and θ  is the

rotation angle. Together, these 5 parameters control the geometric shape and location

of the inner ellipse that captures the bright center part of the egg. 1ρ  equals the ratio

between the area of the middle band and the inner ellipse, 2ρ  equals the ratio between

the area of the outer band and the middle ellipse. The middle band encloses the dark

exterior part of the egg. The outer band covers part of the worm body and part of the

background. By studying the homogeneity of the pixels enclosed, the outer band can

be used to suppress noise and find the best location for the egg. For example, if

),( yx is mistakenly inside the worm body, then the outer band will have similar
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brightness to the worm body (dark).  If ),( yx  is in the background area, the outer

band has similar brightness to the background (light). Half worm body and half

background inside the outer band indicate a perfect attached egg location. To reduce

model complexity, we opt to use a simplified model (Fig. 1-5) that does not have the

outer band, and use image analysis to restrain the search area. The outer band in Fig 1-

4, is only used for deletion purposes when multiple eggs/peaks are detected. In these

cases, the pixels inside the entire outer ellipse are deleted and the process is repeated

to detect additional eggs. The outer band is also shown in Fig. 1-3, 1-7 and 1-8 to

mark the location of the best-fit ellipse. There are 6 parameters characterizing the

shape of the simplified elliptic model ),,,,,( ρθbayxv = .

From a Bayesian framework, we have 
)(
)|()()|(

Ep
vEpvpEvp = , where E is the event

that the image contains an egg, and )|( Evp  is the probability density function of

parameter configuration given that an egg is present. There are many ways to define

the likelihood function. We propose the following model:

))}()((exp{1)|( vv
z

vEp outin βµαµ +−= (1)

where )(vinµ  is the mean pixel value inside the inner ellipse, )(voutµ  is the mean

pixel value in the band around the inner ellipse (Fig. 5), and α , β are weights to be

selected to give a proper weight for inside and outside areas. For calculating the mean

values, the pixel intensities are linearly rescaled to go from –1 to +1. z is a
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normalization constant to ensure that )|( vEp  is a proper probability density of unit

area.

The egg finding problem can then be modeled as finding the most likely

parameter configuration optv given that there is an egg in the image. Using a maximum

a posteriori (MAP) estimator,

)(
)|()(maxarg)|(maxarg

Ep
vEpvpEvpv

vv
opt == (2)

Since the egg can occur in any orientation and location in the search space, it is

reasonable to assume a uniform prior. For simplicity, we also assume a  and b  are

uniformly distributed in a narrow range. So Equation 2 is identical to

))}()((exp{1maxarg)|(maxarg vv
z

vEpv outin
vv

opt βµαµ +−== (3)

Furthermore, because z is a constant, Equation 3 is identical to

)}()(max{arg vvv outin
v

opt βµαµ += (4)

The optimal parameter configuration is the parameter v that maximizes the function

)()()( vvvU outin βµαµ += . (5)

We chose 5.0=α , 1−=β , and 8=ρ by feeding a small set of training samples of egg

and non-egg values of outin µµ ,  into the Classification and Regression Tree (CART)

algorithm (Breiman et al. 1984). The final model for locating eggs is as follows:

For a specified search space Ω in the image, find
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)(maxarg),,,,( vUbayxv
v

optoptoptoptoptopt == θ  (6)

where )()(5.0 vuvuU outin −= . Notice ]5.1,5.1[−∈U .

For every pixel ),( cc yx inside the search region Ω, U  is calculated for each

configuration with a range ( ]180,0[],1.2,9.1[],6.3,4.3[ === θba ). If optU  is greater

than a threshold value t, the location ),( optopt yx  is marked as the egg location and an

egg is declared found.

3.3. Experimental Results

The egg detection algorithm was tested on 1,600 5-minute video sequences

from 16 different mutant types (100 videos for each type) and five 20-minute video

sequences of wild type animals treated with serotonin, which causes an increase in egg

laying. The data were collected over a 3-year period by different individuals. A

laborious manual check found 9,000 frames containing 200 different eggs. These eggs

cover a wide variety of recording conditions, mutant types, sizes, and shapes. 100,000

non-egg frames were randomly selected from the rest of the 800,000 frames as non-

egg cases. By applying the above algorithm with the decision threshold t varying from

–1.5 to 1.5, the performance result is shown as a ROC curve (Metz 1978) in Fig. 1-6

and Table 1-1.  The True Positive fraction is over 98% when the False Positive

fraction is 1%. Fig. 1-7 shows some examples of the locations and best-fit ellipses

identified by the algorithm. Some failure examples are shown in Fig. 1-8.
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4. EGG ONSET DETECTION AND BEHAVIOR STUDY

4.1. Egg onset detection

Egg detection algorithms can be readily incorporated into a broader scheme for egg

event onset detection (identifying the frames in which the egg first appears). Fig. 1-8

shows one algorithm to accomplish it. The main functions of the egg onset detection

routine are to use the single frame egg detection result for a sequence. First, we decide

whether the current egg is a newly laid or a previously laid egg (worms sometimes

crawl back to previous eggs). This is accomplished by maintaining a list of all existing

locations of eggs. When the new location is not on the list, an egg onset event is

detected. Secondly, there are occasions when multiple eggs are laid at the same time.

Also, there are cases when multiple width abnormalities are detected for a single

frame due to multiple newly laid and previous eggs that remain near the worm body.

The egg onset detection routine runs the single frame egg detection routine repeatedly

in the search regions after the detected egg area (outer ellipse in the template model) is

removed from the image in each run. This way, clusters of eggs can be detected. The

egg onset detection routine also runs the abnormal width detection routine repeatedly

to find out new search regions to detect all the eggs attached to the worm body.

The onset detection algorithm was tested on 25 videos of 20-minute recordings

(500 minutes, 60,000 total frames). These recordings include 5 serotonin videos

previously used for the egg detection test and 20 new normal wild type videos. By

setting the thresholds conservatively (t=0.5) and declaring an egg onset has occurred if



23

one or more new eggs is detected in three or more consecutive frames, our algorithm

is able to pick up all 88 egg onsets in one pass through the videos. There are 131 false

alarm onset frames for the entire data set of 60,000 frames. The false alarm onsets are

easily eliminated by inspecting each onset frame visually. Among the 88 onsets

detected, there are 6 onsets that are delayed from true onsets by 1, 2, 3, 4, 10, 18

frames respectively.

4.2. Behavior Study

Previous study (Hardaker et al. 2001) indicated significantly increasing

locomotion activity prior to egg onset. We studied the behavior changes before and

after 55 wild type egg onsets (a fresh 10-hour recording) detected by our onset

detection algorithm. The behavioral characteristics can be summarized by extracting

features proposed by the feature extraction system (Baek et al. 2001, Geng et al. 2003,

Geng et al. 2004). For each feature, we looked for a significant difference in that

feature before and after the onset frame by using the non-parametric rank sum test on

paired data. For each of the 55 eggs, we paired the data from 40 seconds before the

onset frame with data after the onset frame. The 253 features examined include 131

morphological features (thickness, fatness, MER, Angle Change Rate, etc), 75 speed

features (min, max and average speed over 1,5,10,20,30, 40sec, etc), 35 texture

features (head, tail, center brightness, etc) and 12 other behavioral features (rate of

reversals, omega shape, looping, etc).  Out of these 253 features, 14 were found to be

significant at the .01 significance level as shown in Table 1-2. We also considered the

possibility that some features may be significantly different both before and after egg
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laying compared to the values for a worm that is not near an egg-laying time. So we

also looked at the paired data where the values from 40 seconds before an egg-laying

onset were paired with the values from an equal number of frames starting from a

randomly selected non-egg frame, and similarly where the values from after an egg-

laying onset were paired with the values from an equal number of frames starting from

a randomly selected non-egg frame. There were 32 (Table 1-3) comparisons that were

significant at the .01 significance level for before and 32 after respectively. We note

that, by random chance alone, out of 253 comparisons, we would expect to see 2.5

features to show a significant difference at the .01 significance level.

Most of the features found to be significantly different were related to speed,

confirming earlier results that were determined manually. In particular, we found that

the global centroid movement, as well as the local movement of the tail and head,

were all significantly larger before the onset compared to after (see Fig. 1-10).

Previous results only considered global movement. Local head movement is often

related to foraging behavior. We also found some differences in brightness parameters.

Due to the multiplicity of comparisons being made, these remain to be verified when

further data are collected.

5. CONCLUSION

We have presented a computer analysis method for attached egg detection and

egg onset event detection.  The testing results of egg detection on 100,000 frames and

200 eggs from a variety of mutant types and recording conditions illustrate the
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effectiveness of our proposed algorithm. The behavior study of egg onsets confirms

the result from previous studies and shows promise for new findings.

The algorithm proposed is flexible to suit different needs. First, the abnormal

width criteria (currently 7.5 pixels/24 µm) can be adjusted accordingly if prior

knowledge of certain egg size and shape for a particular mutant is present, or the

purpose is to obtain a rough idea of whether an egg is present. Secondly, the same

applies to the decision criterion t according to the expectation of the false positive and

false negative rate. Third, the current algorithm was applied on videos with frame rate

of 2 Hz. The same algorithms can be applied to videos that have different frame rates.

With increased frame rates, we anticipate an improved detection result.

With more accurate and complex computer vision systems (Baek et al. 2002,

Geng et al. 2003, Geng et al. 2004) being developed, we anticipate that many more

behavior features will be discovered. Therefore, we will be able to combine the

automatic egg onset detection and behavior studies together and explore the temporal

correlation between egg-laying and other behavioral characteristics more effectively.

Moreover, the ability to automatically detect egg-laying events will make it possible to

use these correlations between other behaviors and egg-laying, which previously could

only be assayed through time-consuming human analysis of videotapes (Hardaker et

al., 2001), as automatically-evaluated features for use in phenotype classification and

clustering studies (Geng et al., 2003).
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More generally, egg-laying has historically been an extremely useful assay for

genetic analysis of diverse aspects of neuromuscular function.  For example, egg-

laying has provided a behavioral measure for the activity of the Go/Gq signaling

network in neurons and muscle cells (Bastiani et al., 2003) and for neuromodulation

by serotonin, acetylcholine, and neuropeptides (Trent et al., 1983; Weinshenker, et al.,

1999; Waggoner et al., 2000).  The egg-laying assays typically used in genetic studies

are generally indirect measures of overall egg-laying rate, and consequently allow

limited inference about the functions of specific mutant genes in the behavior.

Quantitative assays of the temporal pattern of egg-laying can in principle make it

possible to distinguish effects on different egg-laying signal transduction pathways

(Waggoner et al., 1998; Waggoner et al., 2000).  The automated methods for egg

detection described here should greatly facilitate these more detailed behavioral

analyses.
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Fig. 1 Flowchart of the egg detection process

Segmentation

Skeletonizing

Is width abnormal?

Isolate the body area containing
the abnormal width

Extract two sides of worm
body

egg side ?

Region Ω growing from the
peak location(s)

Deformable Template
Matching result U

Is U>threshold ?

record egg and center
locations

No egg in this frame

l
e
f
t

b
o
t
h

r
i
g
h
t

Input video frame

N
o

Y
e
s

No

Yes



28

A B

0 100 200 300
10

15

20

25

30

35

40

Skeleton Pixel

W
i
d
t
h

C

0 100 200 300
10

15

20

25

30

35

40

Skeleton Pixel

W
i
d
t
h

D

Fig. 2. Width profile change on egg onset. (A) Gray image right before egg onset. (B)
Gray image right after egg onset. (C) Width profile of (A). The dotted line is the
median value of the middle part of the width profile. (D) Width profile of (B). The
lower dotted line is the median value of the middle part of the width profile. The upper
dotted line is 7.5 pixels above the lower dotted line.
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C D
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Fig. 3. Illustration of egg detection image analysis. (A) Gray scale image. (B)
The cutoff portion containing egg. (C) Two boundaries. (D) The highlighted area
(gray) shows dilating the skeleton four times. This area is not searched for eggs. (E)
The highlighted area (white) shows final search region. (F) Best-fit ellipse.
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Fig. 6. A plot of the receiver operating characteristic (ROC) curve with threshold t
varying from –1.5 to 1.5.
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Rate of non-
egg frames
detected as egg
(False positive)

Rate of egg
frames detected
as egg (True
Positive)

Rate of egg
frames detected
as non-egg
frames (False
Negative)

Rate of non-egg
frames detected
as non-egg
frames (True
Negative)

Threshold t

0.0967 0.9985 0.0015 0.9033 0.35

0.0947 0.9983 0.0017 0.9053 0.36

0.0924 0.998 0.002 0.9076 0.37

0.0893 0.9977 0.0023 0.9106 0.38

0.0857 0.9972 0.0028 0.9143 0.39

0.0814 0.9964 0.0036 0.9186 0.4

0.0769 0.9961 0.0039 0.9231 0.41

0.072 0.9955 0.0045 0.928 0.42

0.0663 0.9946 0.0054 0.9337 0.43

0.0597 0.9927 0.0073 0.9403 0.44

0.0524 0.9915 0.0085 0.9476 0.45

0.044 0.9902 0.0098 0.956 0.46

0.0354 0.9893 0.0107 0.9646 0.47

0.027 0.9883 0.0117 0.973 0.48

0.0194 0.9865 0.0135 0.9806 0.49

0.0131 0.9851 0.0149 0.9869 0.5

0.0101 0.9826 0.0174 0.9899 0.51

0.0082 0.9785 0.0215 0.9918 0.52

0.0065 0.9729 0.0271 0.9935 0.53

0.0052 0.9658 0.0342 0.9948 0.54

0.0042 0.9531 0.0469 0.9959 0.55

Table 1: The false positive, true positive, false negative, and true negative values for
part of the ROC curve. The boldface row is the final threshold used in the egg onset
detection.
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Features Description
TLMV10MIN Minimal tail movement in 5 seconds
TLMV10AVG Average tail movement in 5 seconds
HDMV10AVG Average head movement in 5 seconds
TLMVHFMIN Minimal tail movement in 0.5 second
HDMV10MAX Maximal head movement in 5 seconds
REVSALTIM Total percentage of time worm stays in reversal position
HTBRDMIN Minimal head and tail area brightness difference
HTBRRMIN Minimal head/tail brightness

BANGCRMIN Minimal whole body area angle change rate
LNWDRMAX Maximal length to width ratio of the bounding box
BANGCRAVG Average whole body area angle change rate
TLAMPMAX Maximal amplitude in the tail area

AMPMAX Maximal amplitude of worm skeleton wave
HDTLANMIN Minimal head to tail angle

Table 2: The features changed significantly 40-second before and after egg onsets.

Features Description Features Description
HDMVHFMIN Min head movt. in _ sec WHRATMIN Min width-to-height ratio of MER
HDMVHFMAX Max head movt. in _ sec MAJORMIN Min length of major axis
HDMVHFAVG Average head movt. in _ sec AMPRMIN Min amplitude ratio

HDMV10MAX Max head movt. in 5 sec AMPRMAX Max amplitude ratio
HDMV10AVG Avg. head movt. in 5 sec ANCHRMAX Max angle change rate
HDMV20MAX Max head movt. in 10 sec ANCHSMAX Max angle change standard deviation
HDMV20AVG Avg. head movt. in 10 sec CANGCRMIN Min angle change rate in middle sect.
TLMV10MAX Min tail movt. in 5 sec CANGCRMAX Max angle change rate in middle sect.
TLMV10AVG Avg.  tail movt. in 5 sec CANGCRAVG Avg. angle change rate in middle sect.
TLMV20AVG Avg. tail movt. in 10 sec BANGCRMAX Max body angle change rate

RV20MAX Max reversals in 10 sec HDAMPMIN Min amplitude in head
RV20AVG Avg. reversals in 10 sec TLAMPMAX Max amplitude in tail

TOTRV Total reversals in 5 minutes CNTAMPMIN Min amplitude in center
REVSALTIM Total percentage of time worm

stays in reversal position
AVGAMPMIN Avg. amplitude

TAILBRMIN Min tail brightness HDTLANMAX Max. head to tail angle
TAILBRAVG Avg. tail brightness TLANGMAX Max. head angle change rate

Table 3: The features which changed significantly between 40 seconds before an egg
onset and 40 seconds starting from a randomly selected non-egg frame.
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A B

C D

E F

Fig. 7. Some best-fit results of deformable template matching. Some figures are
rotated for plotting. (A) A fully laid egg in perfect condition. (B) A half laid egg. (C-
D) Stacked eggs,  identified by repeating the search. (E-F) Two eggs laid together with
close distance.
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Fig. 8. Some non-egg frames that are identified as eggs.
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Fig. 9. Flowchart of egg event onset detection
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Fig. 10. Velocity change 125s before and after egg onset. The velocity is a moving
average of 10s interval. (A) Centroid velocity. (B) Head velocity. (C) Tail velocity.
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CHAPTER III: BEHAVIORAL STUDIES OF CAENORHABDITIS ELEGANS
NICOTINIC ACETYLCHOLINE RECEPTOR MUTANTS

USING IMAGE ANALYSIS

INTRODUCTION

The study of muscle contraction at the cellular level has long been a problem

of interest in biology.  In particular, the role of nicotinic acetylcholine receptors

(nAChR’s) in muscle contraction has been well-studied.  nAchR’s are

heteropentameric ligand-gated ion channels found at the neuromuscular junction,

where they mediate rapid excitation leading to muscle contraction.  In the body

muscles of C. elegans, there are two distinct nicotinic receptor subtypes known to

mediate excitation of the body muscles (Richmond and Jorgenson 1999).  One of these

is activated by levamisole, a nematode specific antihelminthic drug, and is therefore

known as the levamisole receptor.  Wild type worms become paralyzed when exposed

to levamisole.  During a screen for levamisole-resistant C. elegans mutants, three

alleles of the gene lev-9 were identified (Lewis et al. 1980a).  It is hypothesized that

lev-9 acts indirectly to regulate the levamisole receptor, but its exact function remains

unknown (Lewis et al. 1987; Lewis et al. 1980a).

lev-9 mutants were previously described as weakly resistant to levamisole but

pseudo-wild type in behavior (Lewis et al. 1980b).  The three known alleles of lev-9

have varying degrees of resistance to levamisole, which led to the question of whether

or not the three mutants had different behavioral patterns both from each other and

from wild type worms.  To answer this question, the automated behavioral phenotype

quantification system described in Geng et al. 2003 was used to compare the behavior
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of lev-9 mutants to the behavior of wild type worms, as well as to other strains with

mutations in muscle-related genes.

RESULTS

In order to determine whether there was a true difference between the

behaviors of the three alleles of lev-9 and wild type worms, the automated behavioral

phenotype quantification system described in Geng et al. 2003 was used to analyze

lev-9(x16), lev-9(x62), lev-9(x66), as well as wild type worms.  In addition, the

following mutant worms were tracked: unc-29(x29), lev-10(x17), lev-1(x427), dys-

1(cx18), dyb-1(ls292), and H22K11.4(tm1232)X.  unc-29 and lev-1 are both known to

encode non-_ receptor subunits of the levamisole receptor (Lewis et al. 1997).  lev-10

encodes a protein required for localization of acetylcholine receptors (Gally et al.

2004).  The other three strains tracked carry mutations in genes involved in muscle

organization.

dys-1 encodes an orthologue of human dystrophin (Gieseler et al. 1999), a

protein found at the subsarcolemmal region in skeletal muscle that links the

intracellular cytoskeleton to the extracellular matrix, and has also been implicated in

organization of postsynaptic membrane and AChRs (Sadoulet-Puccio and Kunkel,

1996).  dyb-1 encodes a homologue of mammalian _-dystrobrevin (Bessou et al.

1998), a protein that binds directly to dystrophin and the sarcoglycan complex

(Compton et al. 2005).  H22K11.4 encodes a homologue of mammalian _-

sarcoglycan, a component of the sarcoglycan complex, which is intimately associated

with dystrophin and dystroglycan to form the dystrophin glycoprotein complex
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(Ervasti and Campbell 1993).  Using the automated tracking system, we observed

distinct differences between the behaviors of mutant worms of the three lev-9 alleles

and wild type worms.

Cluster Plot Analysis

Forty five-minute recordings were taken of individual adult hermaphrodites for

each strain.  For each recording, 152 features were measured that described body

position and speed (Table 4). Using principle component analysis (PCA) and the

methods described in Geng et al. 2003, a two-dimensional projection of all features

was obtained (Figure 11).  A classification tree is shown in Figure 12 that represents

the features used in the clustering of all ten strains.  Figure 13 contains bar graphs with

the average value for the entire strain for the top three features in the classification

tree.  Interestingly, lev-9(x16) and lev-9(x62) clustered on the opposite side of the

graph from wild type, indicating that those two strains have the most behavioral

differences from wild type among the strains studied.  Among the three alleles of lev-9

previously characterized, lev-9(x16) has the strongest resistance to levamisole, while

lev-9(x62) has intermediate resistance (Lewis et al. 1980a).  Also of interest is the fact

that lev-9(x66) clustered in the middle of the graph, reflecting its increased sensitivity

to levamisole which resembles wild type response.

unc-29(x29), a mutant described as uncoordinated, clustered in the center

between wild type and lev-9(x16).  This result was unexpected, given that unc-29(x29)

is described as uncoordinated, while the mutants of lev-9 are described as pseudo-wild

type.  To test whether unc-29(x29) was clustering in the correct region, data obtained
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from recordings of mutant strains known to be severely uncoordinated were added to

the cluster plot (Figure 14).  Even after the addition of these mutants, the relationship

between the representative centers of the original nine mutant strains and wild type

remained unchanged, leading to the conclusion that the clustering is correct.  lev-9

mutants, though originally characterized as pseudo-wild type, have subtle yet distinct

differences in behavior when compared to wild type.

Comparisons of wild type and lev-9 worms

Once the cluster plot had been obtained, we were interested in identifying the

specific features that had different values in wild type and lev-9 worms.  One feature

of interest was the average distance traveled by each strain during set periods of time.

Figures 15, 16, and 17 are graphs showing the net distance traveled by strain over

three lengths of time: 0.5, 1 and 5 seconds, as measured by the features MVHLFAVG,

MV1AVG, and MV5AVG.  As the time intervals increased, a definite difference

appeared between the distance traveled by lev-9(x16) animals and wild type animals.

lev-9(x16) does not appear to travel as far as wild type worms over a period of five

seconds, although when the distances traveled over 0.5 seconds are compared, lev-

9(x16) does not appear travel a significantly smaller distance.  This could indicate that

lev-9(x16) is more prone to changing and reversing direction than wild type worms.

lev-9(x62) and lev-9(x66) animals did not show significant changes in distance

traveled at any of the three time points, although their average distance traveled fell

below that of wild type animals.
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Other parameters of interest include those that measure the body bending

angles of the worms.  These features are useful when examining phenotypes such as

uncoordinated or loopy, and they also have great potential for measuring differences

that are not easily identified by eye.  Given that the net distance traveled by lev-9(x16)

over a period of 5 seconds is less than the distance traveled by wild type, we were

interested in determining if there was a change in lev-9(x16) body bending angles

when compared with wild type body bending angles.

The features HDANGAVG, TLANGAVG, and CNTANGAVG were

examined for differences between wild type and lev-9(x16) animals.  HDANGAVG

and TLANGAVG describe the average head and tail angle changing rate, respectively,

and CNTANGAVG describes the average center angle changing rate.  The areas of the

worm body identified as the head region and tail region are each approximately 1/6 of

the length of the total worm body (Geng et al. 2004).  Interestingly, HDANGAVG and

TLANGAVG did not show significant differences between wild type and lev-9 worms

(Figure 18), but when comparing the values of CNTANGAVG for wild type and the

three lev-9 mutants, a difference can be seen.  For each of the three lev-9 mutants, the

average center angle changing rate is greater than that of wild type animals, with lev-

9(x66) having the closest center angle changing rate to wild type, and lev-9(x16)

having the greatest difference in rate.
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DISCUSSION

Cluster Plot Analysis

Several observations may be made upon examination of the cluster plot in

Figure 11.  The representative centers of  lev-9(x16) and lev-9(x62) are found in

different regions than the representative center of wild type worms, leading to the

conclusion that although these worms were previously characterized as pseudo wild

type (Lewis et al. 1980b).  These two alleles of lev-9 also show stronger levamisole

resistance than lev-9(x66), a strain whose representative center was found to be

between those of wild type and lev-9(x16).  The representative centers of dyb-1(ls292)

and dys-1(cx18) are also close together, which is to be expected since those two strains

contain mutations in related genes.  The representative centers of lev-1(x427) and lev-

10(x17) are in the same region as the centers of  lev-9(x16) and lev-9(x62), which is of

interest given that lev-1 encodes a non-_ receptor subunit of the levamisole receptor

(Fleming et al. 1997) and  lev-10 encodes a protein required for localization of

acetylcholine receptors (Gally et al. 2004).

Comparisons of wild type and lev-9 worms

Two of the features that differed between lev-9(x16), the mutant with the

strongest levamisole resistance, and wild type were those that measured net distance

traveled in five seconds (Figure 17) and the angle changing rate of the center of the

worm (Figure 19).  However, when comparing the distance traveled in 0.5 seconds

and in one second, there was no significant difference between wild type and lev-

9(x16) worms (Figures 15 and 16).  This indicates that lev-9(x16) worms may reverse
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and change direction far more often than wild type worms.  This result could be

confirmed by doing further studies comparing reversal distances and frequencies of

lev-9 mutants to those of wild type worms.  The higher center angle changing rate

observed in lev-9(x16) worms, as well as the other two lev-9 mutants, is also an

indication that lev-9(x16) worms change direction more frequently than wild type

worms (Figure 19).

Automated behavioral phenotype quantification system

The automated behavioral phenotype quantification system used in this thesis

has been previously used to examine mutants with widely differing behaviors (Geng et

al. 2003).  The work described in this thesis has demonstrated that even mutants with

subtle phenotypes may demonstrate measurable differences in behavior from wild type

worms.  In the future, it may be possible to examine a mutant using this system, and

then to examine the same mutant injected with a rescue construct to determine if the

rescue was effective.  Once the levamisole receptor is molecularly and genetically

characterized, a comparison could be made of all levamisole-related mutants to

determine their similarities and differences, regardless of whether or not the phenotype

is subtle when observed by eye.  Correlations may also be made between the drug

resistance of a mutant and its behavior.  While it is of definite use to researchers to be

able to examine large differences in behavior, it is also important to have the ability to

study mutants whose phenotypes are subtle, and the system described in this thesis

may be used for those studies.
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METHODS

Strains

Routine culturing of C. elegans was performed as described (Brenner 1974).

The strains used are wild-type Bristol N2 strain, lev-9(x16), lev-9(x62), lev-9(x66),

H22K11.4(tm1232), dys-1(cx18), dyb-1(ls292), unc-29(x29), lev-1(x427), and lev-

10(x17).

Tracking Protocol

All worms analyzed in these experiments were young adults; fourth-stage

larvae were picked approximately 16 hours before the experiment and tracked after

cultivation at 22° C.  Plates for tracking experiments were prepared fresh the day of

the experiment; a single drop of a saturated LB culture of E. coli strain OP50 was

spotted onto a fresh NGM agar plate and allowed to dry before use.  A single adult

worm was transferred to the freshly spotted plate and tracked immediately.

Image Data Collection and Feature Extraction

Worm locomotion and body position were monitored using a Zeiss Stemi

2000-C stereomicroscope mounted with a Cohu high-performance CCD video camera

as described ((Baek et al. 2002).  To record an animal’s behavior, an image frame of

the animal was snapped every 0.25 seconds for at least 5 minutes.  For details of

image preprocessing and feature extraction, see Geng et al. 2003 and Geng et al. 2004.
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Table 4.  List of features.

WORMNUM worm index
AREAMIN minimum worm body area
AREAMAX maximum worm body area
AREAAVG average worm body area
HGHTMIN minimum height of the frame
HGHTMAX maximum height of the frame
HGHTAVG average height of the frame
WDTHMIN minimum width of the frame
WDTHMAX maximum width of the frame
WDTHAVG average width of the frame
LNGTHMIN minimum worm body length
LNGTHMAX maximum worm body length
LNGTHAVG average worm body length
WHRATMIN  minimum width/height ratio
WHRATMAX maximum width/height ratio
WHRATAVG average width/height ratio

MERFLMIN
 minimum worm area to MER (minimum enclosing rectangle) area, (MER
fill)

MERFLMAX
maximum worm area to MER (minimum enclosing rectangle) area, (MER
fill)

MERFLAVG
average worm area to MER (minimum enclosing rectangle) area, (MER
fill)

MAJORMIN minimum length of best-fit ellipse’s major axis
MAJORMAX maximum length of best-fit ellipse’s major axis
MAJORAVG average length of best-fit ellipse’s major axis
MINORMIN minimum length of best-fit ellipse’s minor axis
MINORMAX maximum length of best-fit ellipse’s minor axis
MINORAVG average length of best-fit ellipse’s minor axis
ECCTYMIN minimum eccentricity of best-fit ellipse
ECCTYMAX maximum eccentricity of best-fit ellipse
ECCTYAVG average eccentricity of best-fit ellipse
MVHLFMIN minimum distance moved in 0.5 second
MVHLFMAX maximum distance moved in 0.5 second
MVHLFAVG average distance moved in 0.5 second
MV1MIN minimum distance moved in 1 second
MV1MAX maximum distance moved in 1 second
MV1AVG average distance moved in 1 second
MV5MIN minimum distance moved in 5 second
MV5MAX maximum distance moved in 5 second
MV5AVG average distance moved in 5 second
HDTHKMIN minimum head thickness
HDTHKMAX maximum head thickness
HDTHKAVG average head thickness
TLTHKMIN minimum tail thickness
TLTHKMAX maximum tail thickness
TLTHKAVG average tail thickness
CNTHKMIN  minimum center thickness
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Table 4 continued.  List of features.

CNTHKMAX maximum center thickness
CNTHKAVG average center thickness
HDTLRMIN minimum head’s thick/length ratio
HDTLRMAX maximum head’s thick/length ratio
HDTLRAVG average head’s thick/length ratio
TLTLRMIN minimum tail’s thick/length ratio
TLTLRMAX maximum tail’s thick/length ratio
TLTLRAVG average tail’s thick/length ratio
CNTLRMIN minimum center’s thick/length ratio
CNTLRMAX maximum center’s thick/length ratio
CNTLRAVG average center’s thick/length ratio
HTTHRMIN minimum head/tail thickness ratio
HTTHRMAX maximum head/tail thickness ratio
HTTHRAVG average head/tail thickness ratio
HCTHRMIN minimum head/center thickness ratio
HCTHRMAX maximum head/center thickness ratio
HCTHRAVG average head/center thickness ratio
TCTHRMIN minimum tail/center thickness ratio
TCTHRMAX maximum tail/center thickness ratio
TCTHRAVG average tail/center thickness ratio
AMPMIN minimum amplitude of skeleton wave
AMPMAX maximum amplitude of skeleton wave
AMPAVG average amplitude of skeleton wave
AMPRMIN minimum amplitude ratio of skeleton wave
AMPRMAX maximum amplitude ratio of skeleton wave
AMPRAVG average amplitude ratio of skeleton wave
ANCHRMIN minimum angle changing rate of skeleton wave
ANCHRMAX maximum angle changing rate of skeleton wave
ANCHRAVG average angle changing rate of skeleton wave

ANCHSMIN
minimum angle changing rate (S.D.) of skeleton
wave

ANCHSMAX
maximum angle changing rate (S.D.) of skeleton
wave

ANCHSAVG average angle changing rate (S.D.) of skeleton wave
LNMFRMIN minimum ratio of worm length to MER fill
LNMFRMAX maximum ratio of worm length to MER fill
LNMFRAVG average ratio of worm length to MER fill

LNECRMIN
minimum ratio of length to eccentricity of best-fit
ellipse

LNECRMAX
maximum ratio of length to eccentricity of best-fit
ellipse

LNECRAVG
average ratio of length to eccentricity of best-fit
ellipse

FATMIN minimum fatness of worm (ratio worm area to length)

FATMAX
maximum fatness of worm (ratio worm area to
length)

FATAVG average fatness of worm (ratio worm area to length)
LNWDRMIN minimum ratio of length to width
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Table 4 continued.  List of features.

LNWDRMAX maximum ratio of length to width
LNWDRAVG average ratio of length to width
CNTMVMAX maximum moving distance of centroid
CNTMVAVG average moving distance of centroid
HDWDMIN minimum width of head
HDWDMAX maximum width of head
HDWDAVG average width of head
TLWDMIN minimum width of tail
TLWDMAX maximum width of tail
TLWDAVG average width of tail
CNTWDMIN minimum width of center
CNTWDMAX maximum width of center
CNTWDAVG average width of center
AVEWDMIN minimum average of width
AVEWDMAX maximum average of width
AVEWDAVG average average of width
HTWRMIN minimum head/tail width ratio
HTWRMAX maximum head/tail width ratio
HTWRAVG average head/tail width ratio
HDANGMIN minimum head’s angle changing rate
HDANGMAX maximum head’s angle changing rate
HDANGAVG average head’s angle changing rate
TLANGMIN minimum tail’s angle changing rate
TLANGMAX maximum tail’s angle changing rate
TLANGAVG average tail’s angle changing rate
CNTANMIN minimum center’s angle changing rate
CNTANMAX maximum center’s angle changing rate
CNTANAVG average center’s angle changing rate
AVEANMIN minimum average angle changing rate
AVEANMAX maximum average angle changing rate
AVEANAVG average average angle changing rate
HAREAMIN minimum area of head
HAREAMAX maximum area of head
HAREAAVG average area of head
TAREAMIN minimum area of tail
TAREAMAX maximum area of tail
TAREAAVG average area of tail
CAREAMIN minimum area of center
CAREAMAX maximum area of center
CAREAAVG average area of center
HDAMPMIN minimum amplitude of head
HDAMPMAX maximum amplitude of head
HDAMPAVG average amplitude of head
TLAMPMIN minimum amplitude of tail
TLAMPMAX maximum amplitude of tail
TLAMPAVG average amplitude of tail
CTAMPMIN minimum amplitude of center
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Table 4 continued.  List of features.

CTAMPMAX maximum amplitude of center
CTAMPAVG average amplitude of center
AVAMPMIN minimum average amplitude
AVAMPMAX maximum average amplitude
AVAMPAVG average average amplitude
HDCTDMIN minimum distance of head to center
HDCTDMAX maximum distance of head to center
HDCTDAVG average distance of head to center
TLCTDMIN minimum distance of tail to center
TLCTDMAX maximum distance of tail to center
TLCTDAVG average distance of tail to center
HTANGMIN minimum angle between head-center and tail-center
HTANGMAX maximum angle between head-center and tail-center
HTANGAVG average angle between head-center and tail-center

HCANGMIN
minimum angle between head-center and horizontal
line

HCANGMAX,
maximum angle between head-center and horizontal
line

HCANGAVG,
average angle between head-center and horizontal
line

TCANGMIN
minimum angle between tail-center and horizontal
line

TCANGMAX
maximum angle between tail-center and horizontal
line

TCANGAVG average angle between tail-center and horizontal line
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Figure 11. Distribution of behavioral data points in full feature space.
Each point on the graph represents one individual worm.  Colored squares indicate the
center of the data cloud as measured by Euclidean distance.  The center is considered
to be the prototype for each strain.  N2 worms are clustered on the far left side of the
graph, while lev-9(x16) and lev-9(x62) are clustered at the far right, with lev-9(x66)
falling in the middle.

_ N2
_ dyb-1(ls292)
_ dys-1(cx18)
_ unc-29(x29)
x lev-1(x427)
x H22K11.4(tm1232)X
_ lev-9(x16)
_ lev-9(x62)
_ lev-9(x66)
x lev-10(x17)
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Figure 12 Classification tree.  This classification tree lists the most important
features used in differentiating between strains to create the cluster plot shown in
Figure 3-1.  Variables used were ANCHRMIN, minimum angle changing rate of
skeleton wave; MVHLFMAX, maximum distance moved in 0.5 seconds;
HDANGMIN, minimum head angle changing rate; ANCHSMAX, maximum angle
changing rate standard deviation of the skeleton wave; LNMFRMAX, maximum ratio
of worm length to minimum enclosing rectangle (MER) fill; HCTHRMAX, maximum
head/center thickness ratio; CAREAMIN, minimum area of center; TCTHRMAX,
maximum tail/center thickness ratio; HDWDMAX, maximum width of head;
AMPAVG, average amplitude of skeleton wave; AMPRAVG, average amplitude ratio
of skeleton wave; HTTHRAVG, average head/tail thickness ratio; ANCHSMIN,
minimum angle changing rate standard deviation of the skeleton wave; ECCTYMIN,
minimum eccentricity of best-fit ellipse; CNTMVAVG, average moving distance of
centroid; TLANGMAX, maximum tail angle changing rate; MINORAVG, average
length of best-fit ellipse's minor axis; ANCHRMAX, maximum angle changing rate of
skeleton wave.

ANCHRMAX

MVHLFMAX HDANGMIN

ANCHSMAX LNMFRMAX

CAREAMIN

AMPRAVG

TCTHRMAX

HCTHRMAX

HDWDMAX AMPAVG

HTTHRAVG AMPRAVG
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TLANGMAX

ANCHRMAX

ANCHSMIN

ECCTYMIN



53

The top graph contains
mean values of
ANCHRMAX, the middle
graph contains mean
values of MVHLFMAX,
and the bottom graph
contains mean values of
HDANGMIN.

Figure 13 Mean values
for the top three nodes in
the classification tree.
The mean value shown in
the graphs was calculated
first by taking the mean
value of the specific
feature throughout the
entire five-minute
recording, which was then
averaged with all
recordings for that strain.
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Figure 14 Combined cluster plot.  Two dimensional cluster plot of lev-9 mutants
with severely uncoordinated worms.  The severely uncoordinated worms clustered on
the far left of the graph, while the position of unc-29(x29) was unchanged, leading to
the conclusion that the data is unskewed and is being clustered correctly.
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Average Distance Moved in 0.5 Seconds
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Figure 15 Average Distance Moved in 0.5 Seconds.  Averages of the net distance
moved in 0.5 seconds by each strain.

Average Distance Moved in 1 Second
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Figure 16 Average Distance Moved in 1 Second.  Averages of the net distance
moved in 1 second by each strain.
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Average Distance Moved in 5 Seconds
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Figure 17 Average Distance Moved in 5 Seconds.  Averages of the net distance
moved in 5 seconds by each strain.
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Average Head Angle Changing Rate 
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Average Tail Angle Changing Rate
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Figure 18. Average head and tail angle changing rates.
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Average Center Angle's Changing Rate
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Figure 19 Average Center Angle Changing Rate.
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CHAPTER IV: CONCLUSION

In this thesis, I have described two uses of an automated tracking and image

analysis system.  I participated in the development of an automatic egg-laying

detection algorithm described in Chapter II which may be used for further study of C.

elegans behavior.  In addition, I used the automated tracking system to examine a

mutant involved in nicotinic acetylcholine receptor function that was previously

characterized as wild type, and found that this mutant displays subtle differences in

behavior from wild type worms.
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