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The nematode C. elegans has powerful genetics, a well-described nervous sys-
tem, and a complete genome sequence; thus, it is well suited to analysis of behavior and
development at the molecular and cellular levels. In particular, the ability to function-
ally map the influence of particular genes to specific behavioral consequences makes it

possible to use genetic analysis to functionally dissect the molecular mechanisms un-
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derlying poorly understood aspects of nervous system function. However, many genes
with critical roles in neuronal function have effects on behavior that to a casual observer
appear very subtle or difficult to describe precisely. Therefore, to fully realize the poten-
tial of C. elegans for the genetic analysis of nervous system function, it is necessary to
develop sophisticated methods for the rapid and consistent quantitative characterization

of mutant phenotypes, espectally those related to behavior.

This dissertation addresses several key issues in building a computer vision sys-
tem which can accomplish this rapid and consistent characterization of mutant types.
We propose novel and practical methods for segmenting and tracking the worm body
and its head and tail positions. We design a comprehensive set of 253 features that char-
acterize the worm phenotypes measured from the image video sequences. We evaluate
and design several clustering and classification methods to demonstrate the system can
be used effectively for quantitatively characterizing the phenotypic patterns caused by
mutations or pharmacological treatments in C. elegans. The egg-laying detection al-
gorithms are also developed using this system and behavioral changes surrounding egg
onsets are also studied. Together, these constitute a completely automated C. elegans

tracking and identification system.



Chapter 1

Introduction

1.1 Background and Significance of Computer Vision

Based C. elegans study

1.1.1 C. elegans as an Excellent Model for Studying the Molecular

and Cellular Basis of Nervous System Function and Behavior

The nematode Caenorhabditis elegans is widely used for studies of nervous system
function and development. C. elegans is a free-living worm, approximately 1 pm in
length, that lives in the soil and feeds on bacteria. It has a simple nervous system con-
taining 302 neurons, and the precise position, cell lineage, and synaptic connectivity
of each of these neurons is known [80][81][92]. Despite its anatomical simplicity, the
C. elegans nervous system mediates surprisingly diverse and intricate patterns of be-
havior. The sense organs of C. elegans are capable of perceiving and responding to a
wide range of environmental conditions, including heavy and light touch, temperature,

volatile odorants, osmotic and ionic strength, food, and other nematodes. Each of these



sensory modalities in turn regulates many aspects of the animal’s behavior, including
the rate and direction of movement, the rates of feeding, egg-laying, defecation, and the
process of mating. Because a particular neuron can be positively identified based on
its position, it is possible to eliminate the function of an individual neuron or group of
neurons through single cell laser ablation. Moreover, because of their short generation
time, completely sequenced genome, and accessibility to germline transformation, these
animals are highly amenable to molecular and classical genetics. Thus, in C. elegans it
is relatively straightforward to evaluate the functions of particular neurons or gene prod-
ucts by characterizing the effects of mutations or neuronal ablations on the animal’s
behavior. For these reasons, it is an excellent model organism for studying the molecu-
lar and cellular basis of nervous system function and behavior. C. elegans is among the

most widely studied model organisms.

This approach to understanding nervous system function relies on the ability to
obtain precise quantitative computer-based measurements of behavioral abnormalities
seen in mutant and cell-ablated animals. Although gross behavioral defects can often be
discriminated qualitatively by simple observation, precisely defining these differences
can be challenging without quantitative measurements of parameters such as the cur-
vature and amplitude of body bends. Furthermore, many behavioral abnormalities are
reliably detected only using computer-based methods. For example, some behavioral
events, such as oviposition, occur on a time scale that precludes evaluation by long-time
human observation [88][95]. In other cases, differences between mutant and normal
strains are not apparent to the eye, but can readily be discriminated through quantitative
computer-based analysis. A number of mutants exhibiting altered egg-laying patterns or

hyperactive locomotion fall into this category.



1.1.2 C. elegans is I1deally Suited for Comprehensive Phenotype Stud-
ies
1. Hundreds of well-characterized loss-of-function alleles exist in isogenic strain
backgrounds. A major advantage of C. elegans is the abundance of existing mu-
tant lines with visibly different phenotypes. At present, loss-of-function mutants
defining approximately 500 genes have been identified in C. elegans; of these ap-
proximately 300 have been cloned [71]. Canonical alleles of nearly all of these
mutant genes are publicly available from the Caenorhabditis Genetics Center, and
annotations describing the nature of the mutant phenotypes are accessible on the
C. elegans internet database WormBase. Significantly, the vast majority of these
mutant lines are derived from the wild-type Bristol (N2) strain; since C. elegans
is a self-fertilizing hermaphrodite, this line is inbred to such a degree that it is es-
sentially homozygous at all loci. Thus, outside of secondary mutations acquired
during mutagenesis or propagation in the laboratory, nearly all C. elegans mu-
tants are isogenic in genetic background to one another and to the wild-type N2.
This provides an excellent starting point for the construction of any phenotype
database that seeks to correlate particular visible abnormalities with specific ge-

netic defects.

2. Automated methods can be used for comprehensive phenotyping of morpho-
logical, developmental and behavioral characters. The relative simplicity of
nematode anatomy and behavior makes it feasible to apply automated methods
to precisely and thoroughly characterize key aspects of C. elegans mutant phe-
notypes. Since nematodes lack appendages and move almost entirely in two di-

mensions (dorsoventral and anteroposterior), a worm’s shape as well as its be-



havior can be effectively captured by video recordings of animals crawling across
a flat surface such as an agar plate. With the development of specialized image
processing and analytical tools, it is possible to obtain an information-rich, com-
prehensive behavioral signature from data acquired by an automated tracking and
imaging system. Such methods can both facilitate high throughput data collection

as well as allow objective scoring of a large number of phenotypic characters.

. C. elegans is a well-established molecular model system for development, cell
biology and neuroscience. Crucially, C. elegans is not only notable for its ease of
manipulation in the laboratory, but also for its remarkable track record as a model
system for the identification of well-conserved developmental and signal trans-
duction mechanisms. For example, the conserved mechanisms for programmed
cell death [37][21] were first revealed through genetic studies in C. elegans. Like-
wise, the developmental roles of small regulatory RNAs were first discovered in
studies of nematode heterochronic mutants [51][52]. Many proteins playing criti-
cal roles in nervous system function and development were first identified geneti-
cally in C. elegans. In addition, C. elegans mutants harboring mutations affecting
previously identified nervous system proteins have been invaluable for evaluat-
ing function in an intact, living animal, and in some cases have served as models
for human disease [76] [12][54][50][59][66][74]. Recently, genetic pharmacol-
ogy in C. elegans has been successfully used to study the mechanisms of action
for psychotropic drugs, including therapeutic agents and drugs of abuse [15][82]
[89][91].



1.1.3 The Importance of Quantitative Analysis in the Characteriza-

tion of C. elegans Phenotypes

A critical aspect to the genetic analysis of nervous system function is the availability of
reliable assays to detect behavioral abnormalities. However, standard assays for abnor-
malities in complex behaviors such as locomotion are highly imprecise and subjective.
For example, mutations in over 100 genes have been described that cause abnormal
or uncoordinated movement [71]. In the published literature (e.g. [38]), these unco-
ordinated (Unc) mutants are usually classified into a number of descriptive categories,
including kinkers (animals that fail to propagate a smooth sine wave down the body
during locomotion), coilers (animals that tend to coil up during movement), shrinkers
(animals that contract dorsal and ventral body muscles simultaneously), loopy mutants
(animals that make sine waves of abnormally large amplitudes) and slow/sluggish ani-
mals (animals that move slower to varying degrees than normal animals). Since these
abnormalities are almost always scored subjectively by a human observer, it is not un-
common for the same Unc mutant to be described differently by different researchers.
Moreover, the imprecise nature of these descriptions means that two mutants with very
different phenotypes are often assigned the same classification. For example, both unc-
29 mutants (defective in a nicotinic ACh receptor [25]) and unc-2 mutants (defective
in a neuronal voltage-gated calcium channel [76]) are classified as weak kinkers [38],
despite the fact that these animals exhibit movement patterns that are visibly quite dif-
ferent to an expert observer. Thus, even though mutants affecting a common molecular
target generally have qualitatively similar behavioral phenotypes, it is difficult if not im-
possible to assess which mutants have genuinely similar phenotypes based on published

descriptions alone.



Another problem that arises during analysis of worm behavioral phenotypes is
that mutants with physiologically relevant defects in nervous system function often ex-
hibit only subtle alterations in behavior. Such subtle behavioral phenotypes can often
be accurately scored only through the use of special phenotyping tools. For example,
mutants with deletions of the flp-1 gene, which encodes a homologue of a human opioid
modulatory peptide, exhibit slightly hyperactive and loopy movement [65]. However,
although these abnormalities can be quantified by comparing videotapes of fip-/ and
wild-type worms, they are extremely difficult to recognize by visual inspection; in fact,
only the availability of a PCR assay makes it possible to reliably score for the fip-1 dele-
tion in a genetic cross. Other genes whose knockout phenotypes are extremely subtle
to the casual observer include those required for serotonin synthesis [79][53] as well as

those encoding the C. elegans AMPA and NMDA receptor homologues [11].

One way these problems can be surmounted is to use video capture, storage,
and analysis systems to aid manual analysis. By recording the behavior of individual
animals, often for long time intervals, it is possible to rigorously identify and quanti-
tate deviations from wild-type behavior that are difficult to discern by eye. For example,
the movement defect caused by mutations in a neuropeptide Y receptor was not apparent
until the rate of movement was measured and compared to wild-type strains using image
analysis software [18]. A different system that tracked the movements of individual ani-
mals in a chemotactic gradient [68] was instrumental in identifying the sensory defect in
lim-6 mutant animals. Finally, manual analysis of videotapes confirmed the hyperactive
phenotypes of the fIp-1 neuropeptide deletion mutants [65]. Automated motion analysis
systems have proven equally useful in genetic studies of behavior and drug response
mechanisms in the fruit fly Drosophila [60] [2]. Together, these studies demonstrate

the usefulness of sophisticated, quantitative behavioral assays in the analysis of many



conserved neuronal signaling pathways.

Much like human vision, a machine vision system combines image/video sens-
ing, image processing, and image analysis together to make sense of input images or
video sequences. Powered by the computing technology revolution, machine vision has
experienced explosive growth beyond traditional industrial inspection and measurement
areas, and expanded into new fields such as surveillance, transportation, and multimedia
applications. Statistical pattern recognition and classification techniques often work as
a post-processing step of a machine vision system to recognize and/or to classify objects
or patterns. A well-designed machine vision and statistical pattern recognition and clas-
sification system can not only work automatically and tirelessly, but can also provide
new insights into characteristics that human observers are not able to identify or quan-
tify. The system also provides more quantitative measurements and assessments of both
input data and output results. Together, they provide excellent tools to study C. elegans

problems.

In this dissertation, an automated computer vision and statistical learning system
for studying C. elegans phenotypes and specific behaviors was developed. It includes
data acquisition, tracking, and data analysis. In this chapter, we discuss related work in

the field, and give an overview of the system and the outline of the dissertation.

Figure 1.1 and Table 1.1 show representative images and descriptions for wild

and 15 different mutant types. All worms are young adults.



Figure 1.1: Representative images of wild type and 15 mutant types. Descriptions of
these mutants are summarized in Table 1.1.



1.2 Related Work

Even though there are no systems that are as automated and comprehensive as the sys-
tem developed in this dissertation, there were reported computer-driven systems for au-

tomated recording and/or analysis of a specific C. elegans behavior.

The systems developed by [18][16] are designed to observe multiple animals at
low magnification and track the position of each animal over time. Such systems make
it possible to measure large-scale behavioral features such as the rate and direction of
movement and the frequency of reversals in direction. However, because the animals
are observed at low magnification, it is not possible to obtain more detailed information

about their body posture and morphology.

There are also systems developed to study specific behaviors. For example, there
are systems in [88] that reveal the alternative behavioral states controlled by serotonin
in egg-laying behavior systems [18] that study solitary (slow moving) and social feed-
ing (fast moving) behaviors, systems [68] that investigate the behavioral mechanism of
chemotaxis by studying the speed and turning rate during chemotaxis in gradients of the
attractants ammonium chloride or biotin; systems [60] that report progressive increases
in both locomotor activity and stereotyped behavior known as “reverse tolerance” or
“behavioral sensitization” caused by repeated intermittent doses of cocaine. Each sys-
tem is capable of measuring some specific behavioral parameters, but there is no auto-
mated system that is designed to classify a large number of mutant types by evaluating

large numbers of behavioral parameters simultaneously.

Even though it is not directly related to C. elegans, it is interesting to notice



Table 1.1: Descriptions of wild and 15 mutant types.
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Strain | Defective molecule Description Source
Wild- N/A Normal Mendel et al., Science,
type 1995; [59] Segalat, et
al., Science, 1995 [74]
goa-1 | « subunit of G-protein | hyperactive, defective | Mendel et al., Science,
G, male mating 1995 [59]
nic-1 nic-1-typel glycosyl- | dumpy, moves poorly | J. Kim and W. Schafer,
transferase unpublished
egl-19 | egl-19-L-type VGCC | moderate bloating, | Lee et al., EMBO J.,
a1 subunit slow and floppy 1997 [50]
unc-2 | unc-2-non-L-type weak kinker, sluggish, | Schafer et al., Nature,
VGCC al subunit thin 1995 [76]
unc-29 | unc-29-nicotinic weak kinker, head re- | Fleming et al., J. Neu-
receptor 3 subunit gion stiff, moves bet- | rosci., 1997 [25]
ter in reverse
unc-38 | unc-38-nicotinic weak kinker, sluggish, | Fleming et al., J. Neu-
receptor o subunit slightly dumpyish rosci., 1997 [25]
unc-36 | unc-36-voltage-gated | very slow, thin loopy | Brenner, Genetics,
calcium channel | at rest 1974 [10]
(VGCC) a2/6 subunit
tph-1 tph-1-tryptophan bloated, slow moving | Sze et al.,, Nature,
hydroxylase 2000 [83]
unc-43 | unc-43-CaMKII slow, lazy, slightly rip- | Reiner et al., Nature,
pling movement 1999 [70]
unc-63 | unc-63-nicotinic weak kinker, slow, in- | Lewis et al., Nurosci.,
receptor subunit active 1980 [55]
dgk-1 | dgk-1-diacylglycerol | Hyperactive for loco- | Nurrish et al., J. Newu-
kinase motion and foraging rosci., 1999 [67]
dop-1 | dop-1-D1 dopamine | locomotion normal Sanyal et al., EMBO
receptor Journal, 2004 [73]
fip-1 flp-1-Fa-related neu- | hyperactive, loopy | Nelson, et al., Science,
ropeptide uncoordinated move- | 1998 [65]
ment
eat-4 eat-4(kyS5)-vesicular foraging abnormal Nelson, et al., Science,
glutamate transporter 1998 [65]
cat-2 cat-2-tyrosine hydrox- | defective in food- | Lee etal., J Neurosci.,

ylase

swallowing behavior

1999 [50]
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systems [2] that show that acute responses to cocaine and nicotine are blunted by phar-
macologically induced reductions in dopamine levels by measuring the effect of psy-

chostimulants on fly behavior.

As a preliminary study to this dissertation, [1] developed a system designed to
follow an individual animal at high magnification. To keep the animal from leaving the
field of view, a tracking program directs the movement of a motorized stage to maintain
the worm in the center of the field. In this way, it is possible to follow the position of
the animal over long time periods and comprehensively measure multiple features that
define behavioral and morphological abnormalities of nematode mutants. By using 94
such features, the system was able to classify representative mutant types using a binary
decision tree algorithm (CART). However, although this system performed well at dis-
tinguishing visibly different mutant phenotypes, it was less effective at distinguishing

types with more subtle differences.

1.3 Research Overview and Dissertation Structure

In this dissertation, an automated video capture and data analysis system is developed.
Our approach can be divided into several well-defined stages, presented in Figure 1.2.
After video images acquisition, the images are first segmented to isolate the worm body
from the background and remove noise and undesired components. Next, the head and
tail are recognized for entire video sequences. Feature extraction is applied, to extract
the useful information from the segmented objects and the head and tail locations. Fi-
nally, a classifier or clustering procedure operates on the characteristics extracted by the

previous stages. To study a specific behavior, a set of image analysis algorithms can be
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applied before or after the feature extraction step depending on the specific task.

The remainder of this dissertation is organized as follows. Chapter 2 explains
the algorithms we developed for segmenting the worm body from the background and
tracking worm location and movement by recognizing the head and tail in the video se-
quences. Chapter 3 covers all the features that are measured and calculated from either
the individual image frames or through the entire video sequence. Chapters 4 and 5 dis-
cuss the k-means based natural clustering and Random Forests classification schemes
and their performance. Comparisons to other methods are also evaluated in these chap-
ters. To study egg-laying events using our system, Chapter 6 presents the algorithms
we developed to detect egg-laying events automatically and some behavioral change re-
sults. Finally, Chapter 7 summarizes contributions made in the dissertation and lists a

few future research directions.
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B. Data Acquisition C. Segmentation
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Figure 1.2: (A) Fourth-stage larvae are picked the evening before the experiment and
tracked the following moring on a fresh plate. (B) A data acquisition system contain-
ing a high power microscope and a stage controller is used to track and record the worm
locomotive information. (C) Image processing steps remove noise and separate worm
bodies from the background. (D) head and tail tracking. (E1) Feature extraction step
extracts a total of 253 features from the binary and gray image sequence. (E2) Auto-
mated egg-laying detection. (F) The data are then fed through the learning stage for
classification, clustering or specific behavioral study.
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1.4 Summary of Contributions

This dissertation addresses several key issues for building a comprehensive computer
vision and statistical learning system for studying C. elegans behavioral phenotypes.
These issues include how to segment the worm body from the background correctly;
how to track worm movement and position; how to automatically extract useful features
that characterize phenotypes; how to use statistical methods to learn from the features,
tasks such as distinguishing one phenotype from another (classification), mapping from
phenotype to its underlying genotype (clustering), etc; and how to design an image anal-
ysis algorithm to study egg-laying. The following list summarizes contributions made

in this dissertation.

1. Characteristic features: To precisely characterize the behavioral phenotypes of
a large number of mutants, characteristic features need to be designed and real-
ized. The dissertation proposes a comprehensive set of 253 features to measure a
wide range of morphological and locomotion characteristics. The important fea-

tures are also identified.

2. Segmentation and Tracking algorithms: As a foundation of any computer vi-
sion system, object segmentation and tracking algorithms are crucial to the system
performance. In this dissertation, we propose some novel methods to segment and
track the worm movement and location accurately. They not only reduce the noise
of the measurements of the system, but also enable a large number of additional

features to be obtained.
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3. Clustering: To demonstrate that the measured features (therefore phenotypes)
accurately reflect the underlying genetic differences and also quantify the similar-
ities of C. elegans mutant phenotypes, and to determine how phenotypic similarity
as defined by our system correlates with the involvement of mutant gene products
in a common biological function, a k-means based clustering method is developed

in this dissertation.

4. Classification: We study and evaluate a variety of classification methods, and
determined that classification based on Random Forests can not only outperform
classification by a human expert dramatically, but can also provide insight about

the phenotypes.

5. Egg-laying behavior study: One of the most important behaviors for the analysis
of neuronal signal transduction mechanisms is egg-laying. In this dissertation, a
series of image analysis methods are developed to detect egg-laying events auto-
matically. As an integrated part of the system, we demonstrate that egg-laying
events can also be efficiently studied by incorporating the extracted features so

that the behavioral changes before and after egg-laying events can be discovered.



Chapter 2

Segmentation and Tracking

As in Figure 2.1, the image processing pipeline for studying C. elegans follows the typi-
cal machine vision steps such as video acquisition, object segmentation, object tracking.
Depending on the individual application, the subsequent domain dependent processing
steps varies for each application. For example, the domain dependent processes would
include Object Classification, Behavior Classification, and Scene Description steps in a
typical automated video surveillance task. In our applications, these subsequent domain
dependent processings include clustering, classification, or specific behavioral studies.
Because of the highly deformable nature of the C. elegans body, many of the conven-
tional segmentation and tracking algorithms designed for rigid bodies are not applied.
We have found that incorporating some unique constraints such as body width and
movement into the segmentation and tracking system results in a better performance.
Section 2.2 describes the data acquisition system. Section 2.3 and 2.4 elaborate upon

the segmentation and tracking process. Finally, Section 2.5 summarizes the results.

16
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processing

Figure 2.1: Typical machine vision system flow chart.

2.1 Strains and Culture Methods

Routine culturing of C. elegans was performed as described [10]. Animals were grown
on standard nematode growth medium (NGM) seeded with E. coli strain OP50; all ex-
periments were conducted in the presence of freshly-seeded OP50 lawns. All worms
analyzed in these experiments were young adults; fourth-stage larvae were picked the
evening before the experiment and tracked the following moming after cultivation at
22°. Since locomotion behavior shows reproducible and stereotyped changes follow-
ing the transfer of an animal to a new culture dish [35], experimental animals were
transferred to new plates and allowed to acclimate for 5 minutes before beginning track-
ing to ensure a valid comparison between experiments. We used wild type worms and
fifteen mutants: N2-wild-type; goa-1(n1134)-Goa subunit; nic-1(1722)-typel glycosyl-
transferase; unc-36(251)-VGCC «2/4 subunit; unc-38(x20)-nAChR o subunit; unc-
29(z29)-nAChR S subunit; egl-19(n582)-L-type VGCC al subunit; unc-2(mu74)-non-
L-type VGCC a1 subunit; tph-1(mg280) -tryptophan hydroxylase; unc-63(213)-nAChR
o subunit; dgk-1(nu62)-diacylglycerol kinase; unc-43 (e755)-CaMKII; dop-1(ev748)-
D1 dopamine receptor; flp-1(yn2)-Fa-related neuropeptide; eat-4(ky5)-vesicular gluta-

mate transporter; cat-2(e1112)-tyrosine hydroxylase.
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2.2 Data Acquisition System

C. elegans locomotion is tracked with a Zeiss Stemi 2000-C stereomicroscope mounted
with a Cohu High Performance CCD video camera. A high-quality monochrome image
acquisition board (National Instruments, Inc., IMAQ PCI/PXI-1409) is used to grab the
image and convert to digital format. A computer-controlled tracker (Parker Hann Au-
tomation Corp., OEMZLA4 stage controller) is also used at the same time to maintain the
worms in the center of the optical field of the stereomicroscope during observation. (ex-
cluding the microscope, the components for this system cost approximately $10, 000).
To record the locomotion of an animal, an image frame of the animal is snapped every

0.5 second for at least five minutes.

Among those image pixels with values less than or equal to the average value mi-
nus three times the standard deviation, the largest connected component is found. The
image is then trimmed to the smallest axis-aligned rectangle that contained this com-
ponent, and saved as eight-bit gray level data. The dimensions of each image, and the
coordinates of the upper left corner of the bounding box surrounding the image are also
saved simultaneously as the references for the location of an animal in the tracker field
at the corresponding time point when the images are snapped. The stereomicroscope is
fixed to its largest magnification (50 X) during operation. Depending on the type and
the posture of a worm, the number of pixels per trimmed image frame varied. These
smaller images reduce the storage space requirement by 90% on average. The number

of pixels per millimeter is fixed at 312.5 pixel/mm for all worms.
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2.3 Segmentation of the Worm Body

The segmentation process is presented in Figure 2.2, and a simplified graphic illustra-
tion is shown in Figure 2.3. The first operation is a local thresholding using a 5 x 5
moving window. The center pixel inside the moving window is assigned to 1 when the
mean value of the window is less than 70% of the background pixel value or the standard
deviation is larger than 30% of the mean value. Otherwise, the center pixel is assigned

to 0 as background.

Next, the sequential algorithm for component labeling is used to remove un-
wanted small objects [40]. A morphological closing operator (binary dilations followed
by erosions) [33] cleans up the spots inside the worm body. In order to avoid occa-
sional false contours and exterior holes (formed by severe worm body bending as shown
in Figure 2.4C) being filled by excessive closing operations, we also generate a ref-
erence binary image in parallel by filling the holes that have compactness (defined as
perimeter? /area) greater than 25 after local thresholding. Since exterior holes tend to
be round, the compactness was used to avoid filling large exterior holes (> 100 pixels).
Thus, two binary images are generated after local thresholding. The one with the closing
operation sometimes contains excessive pixels, whereas the binary image after the hole

filling operation tends to have fewer pixels than desired on other occasions.

The difference between these two binary images provides a good indication of
whether or not the segmentation is successful and of which binary image is better to
use. Figure 2.4 and Figure 2.5 illustrate the segmentation process. Comparing Figures
2.4 and 2.5, we see that the hole-filling result (Figure 2.4D) is more correct than the

closing result (Figure 2.4C) for one case, but the closing result (Figure 2.5C) is superior
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Figure 2.2: General description of the segmentation process.



Figure 2.3: A simplified graphic illustration of the segmentation and skeletonizing pro-
cess. (A) Original gray level image. (B) Binarized image. (C) Binary image after
closing operation. (D) Binary image after small object removal. (E) Skeleton.
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Figure 2.4: (A) Gray level image. (B) Original binary image after local thresholding
operation. (C) Binary image after closing operation. (D) Binary image after hole filling
operation. (E) Difference between C and D. (F) Final binary image with excess pixels
removed.
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to hole-filling (Figure 2.5D) in another case. By generating both hole-filling and closed
versions of each image, and analyzing the difference between them, the algorithm is able
to determine which pixels to include in the final binarization. For example, in Figure
2.4E, the excessive pixels caused by the closing operation are represented as the largest
connected component in the difference image. The worm bodies along both sides of the
arrow object’s second eigen-direction are wider than 20 pixels (the typical worm body
width), indicating the existence of excessive pixels. The second eigen-direction is the
direction that is perpendicular to the principal component direction, and is calculated as

follows:

n

f=m/2+tan"t (2% Y (a4 *yk)(Zxkz*Zyk2)), 2.1
k=1 k=1 k=1

where (g, yx) are the coordinates of the pixels in the object after centering.

In Figure 2.5, the missing pixels inside the worm body caused by thresholding are repre-
sented as the curved object in the difference image. The worm body portions along both
sides of the curved object’s second eigen-direction are much narrower than 20 pixels,

indicating missing pixels inside the worm body.

Following binarization, a morphological skeleton is obtained by applying a skeletoniz-
ing algorithm [94]. Redundant pixels on the skeleton are eliminated by thinning. To
avoid branches on the ends of skeletons, the skeleton is first shrunk from all its end
points simultaneously until only two end points are left. These two end points represent
the longest end-to-end path on the skeleton. A clean skeleton can then be obtained by
growing out these two remaining end points along the unpruned skeleton by repeating a

dilation operation (Figure 2.6A-D).
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Figure 2.5: (A) Gray level image. (B) Binary image after local thresholding operation.
(C) Binary image after closing operation. (D) Binary image after hole filling operation.
(E) Difference between C and D. (F) Final binary image with inside cracks filled.

2.4 Tracking and Head and Tail Recognition

Even though a simple tracking system was able to follow the movement of the worm
centroid, the head and tail information were not extracted in our earlier work. Because
of the highly deformable nature of the worm’s body, many conventional image matching
and tracking algorithms do not apply to this problem. To address these problems, we
have applied three spatial and temporal clues that human observers use to recognize the
head and tail sections. Even though the entire worm body could travel a large distance
(in camera coordinates) between two consecutive recording frames which were taken
0.5 seconds apart, the head and tail locations relative to the body centroid (worm body

coordinates) tend to change little, much as a rigid body would behave (Figure 2.7). The
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Figure 2.6: A-D illustrate the skeleton generating process. (A) Gray level image ac-
quired from a video sequence containing the worm body and part of the track. (B) Cor-
responding binary image after thresholding. (C) Skeleton after applying skeletonizing
algorithm and redundant pixel removal. (D) Clean skeleton after pruning.

other two clues are: the worm’s tail area is darker than the head (having to do with fat
distribution), and the head moves more frequently than the tail (having to do with for-
aging behaviors). The detailed procedure, illustrated in Figures 2.8, 2.9, 2.10, and 2.11,

is as follows:

1. From recorded gray level images, the above segmentation procedure is applied.

For each video frame, the gray level image and its corresponding binary image
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Figure 2.7: Worm movement characteristics and their usage for tracking. (A) A portion
of track in camera view. Solid line represents the worm body centroid movement, x
and - represent worm’s tail and head location respectively, as they wiggle around the
travel direction. (B) 3-D plot of head and tail movement in worm coordinates. The
centroid movement is represented as the vertical line in the (0,0,¢) location. The tail
locations (+) are connected, showing the circular movement around the centroid. The
head locations, marked by dots, tend to locate opposite the corresponding tail locations.
(C) Bottom plot shows the location offset of heads and tails in worm coordinates for two
consecutive frames. The head-head and tail-tail correspondences have smallest offsets
of the four.
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Endpoints Grouping
Group 1 Regions Group 2 Regions
Region Statistics: Region Statistics:
1) Brightness 1) Brightness
2) Head/tail movement 2) Head/tail movement

Group Assignment:
1) Group i brightness > 120% group j, assign group i as head.
2) Group i movement > group j, assign group i as head

Head/tail location Head/tail Statistics

Figure 2.8: Tracking and head and tail recognition algorithm flow chart.
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and skeleton are stored.

. The two end points of the skeleton are potential head and tail locations. We assign
the end points to two groups for each uninterrupted video segment according to

the following rules:

Let endptlz(t) denote the = coordinate of the end point in frame ¢ that was
assigned to group 1. Similar definitions hold for endptly(t), endpt2z(t) and
endpt2y(t). Now we use endptl(t) = [endptlz(t), endptly(t)] to denote the
vector of spatial coordinates for end point 1 in frame t. Let endptA(t + 1)
and endptB(t + 1) denote the vectors of spatial coordinates for the two end
points in frame ¢ + 1 that have not yet been assigned to group 1 or group 2.
Let (I,J) = argming; dist(endpti(t + 1), endptj(t)), (i € {4,B},j €
{1,2}). Then endptI(t + 1) will be assigned to group J provided that (I,.J) #
arg maxg ;) dist(endpti(t + 1), endptj(t)), (i € {4, B},j € {1,2}). The condi-
tion statement is to avoid head and tail locations being accidentally flipped. If the
condition is not met, the current frame is marked as “undecided” and the grouping
process restarts from the next frame to avoid potentially spreading errors. Figures

2.9 and 2.10 illustrate the algorithm in details.

. To isolate the head and tail sections from the rest of the body, we identify two
points on the skeleton that are at 1/6 skeleton-length away from each end point.
We compute the best fit line to 9-pixel-long segments from the skeleton list sur-
rounding the two identified pixels. The lines are then rotated by 90 degrees to get

perpendicular lines. Lines that are +5 and 5 degrees off from the perpendicular
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Figure 2.9: Skeleton 1 — 2 is the skeleton from frame ¢. Skeleton A — B is the skeleton
in frame ¢ + 1. Of the four distances: dist(1, A), dist(1, B), dist(2, A), dist(2, B), the
smallest is dist(1, A). So endpoint A gets assigned to group 1 because dist(2, B) is not
the maximum of the four.

Figure 2.10: Now dist(2, A) is the smallest of the four, but endpoint A does not get
assigned to group 2 because dist(1, B) is the largest of the four distances. This is an
undecided frame, and the grouping process will re-initialize at this frame.
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are also generated. The line with the shortest distance traversing the binary image
is chosen as the separation line between the head/tail and the rest of the body.
The end sections are separated from the rest by deleting binary pixels along the

separation lines.

4. Using the binary image and the end point locations as an index to the gray level
image, we calculate the median brightness of the two end sections for each frame.
The means of these values for group 1 and 2 are calculated for the segment. If
the difference between these two mean values is at least 20% of the larger mean

value, the group with the higher average brightness value is labeled as the head.

5. Mutant types with digestive abnormalities have smaller brightness differences be-
tween head and tail. For these (brightness difference < 20%), a secondary deci-
sion rule is introduced to compare the local movement distance for the two end
points. The group with higher total movement distance is labeled as the head.
This procedure was applied independently for each video segment. Segments are

separated by missing frames, failed segmentation, or undecided frames.

2.5 Results

The tracking and head and tail recognition procedure was tested on 161 5-minute video
sequences (sampled at 2H z) from 16 mutant types including more than 111, 000 image
frames. The videos were played back with the worm’s tail marked by the algorithm for

a human observer to verify. Experimental results are shown in Table 2.1. The method
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Figure 2.11: Image processing and head/tail extraction procedure. (A) Original gray
level image. Notice there is an egg object nearby that needs to be removed by the clean-
ing operation. (B) Binary image after segmentation and cleaning. The worm skeleton
generated from thinning, pruning process is superimposed on the binary image. Two
end points of the skeleton are candidates of head and tail locations. (C) Two perpendic-
ular lines (to skeleton line fitting) at 1/6 of skeleton location. Deleting the pixels along
these separation lines divides the worm body into head, tail and middle sections. (D)
Head and tail sections of the gray level image can be easily obtained by indexing cutoff
portions from the binary image from (C).
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produces excellent results as the average correct identification rate is around 98%. For
13 of the worm types the correct identification rate is 100%. For one mutant type (unc-

36), the tail is often lighter than the head, leading to a 24% misidentification rate for this

one type.

2.6 Summary

In this chapter, we described the data acquisition system and novel segmentation and
tracking algorithms developed to analyze the mutant movement videos. Results (Table

2.1) show that our automated algorithm achieves high performance.

Part of this chapter has appeared in the following publications.

e W. Geng, P. Cosman, C. Huang, and W. R. Schafer. “Automated Worm Tracking
and Classification.” Proc. of the 37th IEEE Asilomar Conference on Signals,
Systems and Computers, pp. 2063-2068, Pacific Grove, CA, November 2003.

e W. Geng, P. Cosman, C. Berry, Z. Feng and W.R. Schafer, “Automatic Tracking,
Feature Extraction and Classification of C. elegans Phenotypes”, IEEE Transac-

tions on Biomedical Engineering, in press, 2004.

I was the primary researcher and the co-author. Dr. Pamela C. Cosman and Dr. William

R. Schafer directed and supervised the research which forms the basis for this chapter.
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Table 2.1: Head and tail identification results. Data were collected from 161 5-minute
video sequences (2H z) from 16 distinct mutant types. First column shows the mutant
type. Second column shows the total number of frames in the videos. The number of
frames that had head recognized as tail due to the tail section being lighter is listed in
column 3. The number of frames that had head recognized as tail due to grouping errors
is listed in column 4. The average error rate is around 2% for 111, 233 frames tested.

Worm Total Recognition| Grouping | Error
type Frames Wrong Wrong Percent
goa-1 6193 0 1 0
unc-29 4679 0 0 0
w.t. 6057 ) 0 0
egl-19 5503 1 0 0
cat-2 4908 0 5] 0
dop-1 4954 0 0 0
dgk-1 4892 0 0 0
eat-4 5014 0 0 0
flp-1 4942 0 30 0
nic-1 11817 1 0 0
unc-38 4853 3 0 0
unc-63 4926 0 0 0
unc-43 9908 251 0 0.03
tph-1 10552 51 0 0
unc-2 10361 69 0 0.01
unc-36 10559 2613 3 0.24
Total 111233 3030 33 0.02




Chapter 3

Feature Extraction

Many of the C. elegans mutants have distinct behaviors, posture, or morphological char-
acteristics. For example, nic-1 is short and fat, while eg/-19 has an elongated body shape.
Some mutants such as unc-29 and unc-38, however, have very similar characteristics
that are difficult to distinguish by eye. To take full advantage of the computer vision
system illustrated in Chapter 1, we design a comprehensive set of 253 features charac-
terizing the mutant phenotypes. These features generally fall into several categories as
shown in Figure 3.1. Section 3.1 describes the feature extraction principles. The size
related features are described in Section 3.2. Section 3.3 explains the body shape and
posture related features. Section 3.4 illustrates the movement related features. Section
3.5 covers the brightness features. Section 3.6 touches on the complex behavior related

features. We conclude the chapter with a summary Section 3.7.

34
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Size Posture Movement Texture Comp.l X
Behaviors
o Length o K-curvature o Global o Head o Coils
o Area o Eccentricity movement brightness o Turns
o Fatness o Major axis o Head/tail o Tail o Egg-laying
o Head/tail o Minor axis movement brightness o ..
thickness o .. o Reversals o ..

o .. o ..

Figure 3.1: Feature categories and typical representatives.

3.1 Feature Extraction Overview

All of the software for binarization, skeletonization, and feature extraction is coded ei-
ther in C or MATLAB and implemented on UNIX machines. Some features (e.g., the
area of the worm, that is, the number of pixels which make up the single binary ob-
ject in the frame) could be computed on a single frame; these are computed for all 600
frames in the sequence. The average value, the maximum value and the minimum value
are then computed for these 600 measurements. Other features could not be extracted
from a single frame, for example, the movement between two frames, or the movement
within 10 seconds (20 frames). Since there are 600 frames total in a sequence, the move-
ment between two frames could be computed 300 times if we take pairs of frames in a
non-overlapping fashion, or it could be calculated 599 times taking pairs of frames in a
sliding window or overlapping fashion. Likewise, for the movement within 20 frames,
we could compute 581 values for overlapping 20-frame intervals. Quantities of this type
are calculated in a sliding window fashion. The average, max, and min are computed

from this set of numbers.
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Some of the maximum and minimum values are outliers introduced by noise or
errors during image capture and processing. To avoid using these extreme values, it
is more useful to summarize the group statistics with such quantities as the 90th and
10th percentile values out of the population of 600 numbers. For the remainder of this
dissertation, the terms max and min are used to denote the 90th and 10th percentile
values. The measured features include the minimum, maximum, and average values
of the following: distance moved in 0.5, 5, 10, 15, 20, 25, 30 seconds and 5 minutes.,
number of reversals in 10, 20, 40, 60, 80, 100, 120 sec and 5 minutes, worm area, worm
length, width at center and head/tail, ratio of width to length, fatness, eccentricity and
lengths of major/minor axes of best-fit ellipse, height and width of minimum enclos-
ing rectangle (MER), ratio of MER width and height, ratio of worm area to MER area,
angle change rate, head/tail/center brightness, local head/tail/center movement relative
to centroid, and head-centroid-tail angle. The area, angle change rate, and movement
features are calculated separately for the head, tail, center, and entire worm body. We
now describe in detail how several of these features are extracted from the image data.

For a complete list of the features, descriptions, and statistics, see Table A.1.

3.2 Body Size

1. Body Size

The worm’s body size is obtained by counting the number of “on” pixels in the
binary image. Similarly, the size of the worm’s head, tail and middle part are ob-

tained from the cutoff areas of the tracking procedure outputs (See Figure 3.2).

2. Length
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Figure 3.2: Average body size of 6,000 frames for each mutant type. The unit is number
of pixels. In all cases, the box extends from the first quartile (25th percentile) to the third
quartile (75th percentile), and the horizontal line within the box indicates the median.
The lower and upper error bars indicate 10th and 90th percentiles respectively; each
outlier is indicated with a dot symbol. Note the car-2 has significantly larger body size
than the rest of the mutant types.
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Figure 3.3: Width measurement.

The animal’s length is defined as the number of pixels in the image skeleton from

the skeletonizing output.

. Thickness, width, and fatness

The worm thickness (Width/length) is measured at the center, head, and tail po-
sitions of the worm skeleton (the center position is the value at the center of the
skeleton pixel list; the head and tail positions are defined as the position which is

7 pixels away from head and tail end points identified by the tracking algorithm).

In order to measure the center width, we first take a 9-pixel-long segment from the
middle of the skeleton list, and compute the best fit line for the segment by a line
fitting algorithm. Then we rotate the line by 90 degrees to get a perpendicular line
to it (see Figure 3.3). We traverse the perpendicular line in both directions from
the center position until we reach the edges of the worm body, and then compute
the distance between the two edges. We also rotate the perpendicular line by -5
and +5 degrees, and measure the width in those two directions. The minimum

value of the three measurements is considered to be the center width.
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Similarly, in order to measure the head/tail width, we take two 9-pixel-long seg-
ments from each end of the skeleton list. After getting the best fit lines for the
segments, we find the designated head/tail position by going back 7 pixels from
the end of the worm body along the best fit line. Then we compute the width at
these two measuring positions (one at each end) by traversing the perpendicular
lines to the best fit lines. The minimum value of the two measurements is consid-
ered to be the head/tail width. We also define the worm’s fatness as the ratio of

worm area to length.

Body Shape

. Angle change rate

The angle change (Figure 3.4), an important feature for distinguishing different
worm types, is defined as
n—1
0
_ 1 &
T n—-1 L’

3.1

where L is the worm length, §; = tan™! ;’—:;;’%ﬁ“% —tan™! %, and

(%i, i), (Tit1, Yig1)--. are the location of consecutive points that are 5 pixels apart
along the worm skeleton, and n is the number of such points along the skeleton.
A larger angle change rate means that a worm has sharper body bends. Figure 3.5
(A-B) shows typical skeletons from two different mutant types. The angle change
rate is 15.51 for the unc-2 skeleton in Figure 3.5A, compared with for 8.45 for
the egl-19 skeleton in Figure 3.5B. The angle change rates are also calculated

separately for head, tail, and center regions. The angle change rates of all worm

samples are shown in Figure 3.6.
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Figure 3.4: Angle change rate calculation.

A B

Figure 3.5: Comparison of the skeletons from two mutant types. (A) a typical unc-2
skeleton. (B) a typical egl-19 skeleton.

2. Best fit ellipse and minimum enclosing rectangle

The best fit ellipse calculation follows the eigen direction calculation for the ob-

ject, as shown in Figure 3.7,

n n n n n
3zt + Zyk2+\/2$k2— Do+ 4% ) Ty
Lo k=1 k=1 k=1 k=1

1 —_

5 (3.2)
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Figure 3.6: Average angle change rate of 6,000 frames for each mutant type. Within
each frame, the maximal angle change is used for calculation. In all cases, the box
extends from the first quartile (25th percentile) to the third quartile (75th percentile),
and the horizontal line within the box indicates the median. The lower and upper error
bars indicate 10th and 90th percentiles respectively; each outlier is indicated with a dot
symbol. Note the eg/-19 and cat-2 have significant lower angle change rate than the rest
of the mutant types, indicating a less curvaceous body posture during movement.
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Figure 3.7: Best fit ellipse.

n n n n n
Z$k2+zyk2—\/2$k2— YUk +4% ) TRk
k=1 k=1 k=1 pra] k=1

Do = ' : (33)

where (z, yx) are the coordinates of the pixels in the object after centering. The
major axis length A; and minor axis length A, are the two eigenvalues of the
shape. After rotating the shape according to the angle of the principal eigenvec-
tor, the minimal enclosing rectangle (MER) is the rectangular box surrounding
the shape as shown in Figure 3.8. The eccentricity is defined as the ratio of the
distance between the foci of the ellipse and its major axis length. The MER and
best fit ellipse give an indication of whether the worm tends to take on elongated
positions with low amplitude waves, or, on the contrary, tends to have deeper body

bends or looped body positions.

. Symmetry
To measure the unbalanced muscle behavior of uncoordinated mutants, we char-

acterize the way a worm body deviates from a perfect symmetry. These features
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Figure 3.8: Minimal enclosing rectangle.

include the amplitude (defined as the absolute distance from points on the skele-
ton to the line connecting the head and tail), the sum of signed distances to the
line connecting the head and tail, the angle between the line connecting head to
centroid, and the line connecting tail to centroid, and the distances between head

and centroid, and between tail and centroid (see Figure 3.9A).

Movement

. Global Movement

Global movement measures the distance and speed of the worm’s entire body
movement. It can be measured simply by following the trajectory of the animal’s
centroid over time. To measure speed, the centroid position data are sampled over
a constant time interval, and the worm’s displacement is proportional to its aver-
age speed during that interval. Interval durations used in our experiments range
from 0.5 seconds (1 frame), to 5 minutes (the total time of observation). The

movement measured at 0.5 second intervals is shown in Figure 3.10.
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Figure 3.9: Feature examples. (A) Worm skeleton, head, tail, and centroid locations.
The length, angle of head to tail, head to centroid, tail to centroid lines provide symmetry
information. Worm amplitude can also be measured. (B) A portion of track left by
centroid. The reversal location is marked.
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Figure 3.10: Average centroid movement in 0.5 second. In all cases, the box extends
from the first quartile (25th percentile) to the third quartile (75th percentile), and the
horizontal line within the box indicates the median. The lower and upper error bars in-
dicate 10th and 90th percentiles respectively; each outlier is indicated with a dot symbol.
Notice nic-1 has significantly slower movement.
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Figure 3.11: Average head vs. tail movement in 0.5 second averaged for all samples in
each mutant type. The units are in pixel displacement. Notice all centers are in the lower
right region indicating the head moves slightly more than the tail. Also notice both Sfip-1
head and tail move much faster than nic-1.

2. Local Movement

Besides the features characterizing the global movement using the absolute dis-

tance traveled by the worm body centroid over various fixed time intervals, we

also measure the relative offset of the head with regard to the centroid across the

frames as an indication of the worm’s head movement. This offset is defined as

the movement of the head when the worm centroids are aligned on top of each

other from one frame to the next. The tail movement is also measured. These

measurements calculate how much the individual body parts move relative to the

rest of the body (see Figure 3.11).

3. Reversals
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Reversals are interesting characteristics during movement. They are characterized
by the distance and frequency of the worm moving back into the recent previous
path. We keep a moving window to record the previous 20 centroid locations.
A reversal is detected when the new centroid is closer to any of the 19 previous

centroid locations than to the most recent past as shown in Figure 3.9B.

3.5 Brightness

Variations in fat distribution and absorption of nutrients cause some mutant types to be-
come more transparent than others. The transparency can be measured by the median
pixel value of the head, center, tail, and whole body regions as shown in Figure 2.11.

The head and tail brightness features are shown in Figure 3.12.

3.6 Behavioral Features

The amount of time a worm spends in a coil as well as how often it coils are unique
behavioral characteristics of several types of worms. A coiled body posture creates a
hole in the image where the worm loops or touches itself. To identify coiled postures,
we search for holes in the worm image by performing connected component labeling
on the inverted image [40]. Counting up the number of connected objects will always
give a value of at least one for the background; thus the number of holes is equal to
the number of connected components minus one. In our subsequent analysis, we count
the number of frames the worm is in a coiled posture as well as the number of times

the worm switches from a non-coiled to a coiled posture (i.e., the number of runs). The
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Figure 3.12: Head vs. tail brightness averaged for all samples in each mutant type.
The units are in pixel values [0 — 255]. Notice all centers are in the lower right region
indicating that the head is significantly brighter than the tail.

length of time the worm remains coiled is characterized by finding the minimum, maxi-

mum, and average of the run lengths. We also count the total number of times the worm

briefly loops and the total number of frames the worm has multiple loops.

There are other behavior features that are potentially useful for defining pheno-
types. These features include defecation, pharyngeal pumping, and social behaviors.

Due to the complexity of the behaviors, these are left to future research.

3.7 Summary

In summary, the 253 features include 131 morphological features (thickness, fatness,
MER, Angle Change Rate, etc), 75 speed features (min, max and average speed over 1,

5, 10, 20, 30, 40sec, etc), 35 texture features (head, tail, center brightness, etc) and 12
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other behavioral features (rate of reversals, omega shape, looping, etc).

The feature extraction is a crucial step in defining mutant behavioral phenotypes.
It is one of the key objectives of our research. A good set of features ultimately con-
trols the performance of the clustering and classification results. A good segmentation
and tracking design will not only allow more features to be calculated, but also reduces

noises that are introduced in the measurement stage.

In the subsequent chapters, we will discuss the clustering, classification, and
egg-laying studies using these features. The important features will also be identified in

these chapters. Table A.1 lists the descriptions and statistics for all 253 features.



Chapter 4

Natural Clustering

Natural clustering (or grouping, cluster analysis, data segmentation) is a set of tech-
niques used to understand the complex natural multivariate relationships among the
data. Grouping data in clusters, such that those objects within each cluster are more
closely related to one another than to objects assigned to different clusters, can provide
an informal means for assessing dimensionality, identifying outliers, and suggesting in-

teresting hypotheses concerning relationships.

In this chapter, we develop a clustering procedure to demonstrate the features de-
scribed in Chapter 3, characterize the mutant phenotypic behaviors and illustrate the cor-
relations between phenotypes and the underlying genotypes. We start with an overview
of common clustering procedures. Then feature scaling, clustering, and stopping rules

are discussed in Sections 4.3-6. We conclude this chapter with a summary section 4.7.

50
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4.1 Natural Clustering Overview

The common clustering techniques generally fall into hierarchical and nonhierarchical
categories. Hierarchical clustering techniques proceed by either a series of successive
mergers or a series of successive divisions. Typical methods in this category include
Ward’s, agglomerative, and divisive methods [36] [20][45]. In these methods, there is
no provision for a reallocation of samples that may have been “incorrectly” grouped at

an early stage.

Nonhierarchical clustering techniques are designed to group samples into a col-
lection of K clusters. The number of clusters, K, may either be specified in advance
or determined as part of the clustering procedure. Nonhierarchical methods start from
either an initial partition of sémples into groups or an initial set of seed points. The most
popular method in this category is the k-means algorithm [57] and its variations such as
k-mediods [46], Self-Organizing Maps(SOM) (a constrained version of K-means) [48],
and EM (a soft boundary version of K-means) [19]. Unlike the hierarchical clustering,

the samples can be reallocated to other clusters as the number of clusters K changes.

There are also many methods designed for displaying transformed multivari-
ate data in low-dimensional space. The popular methods include Principle Component
Analysis (PCA) [20], Multidimensional Scaling (MDS) [45], Independent Component
Analysis (ICA) [39], and their variations. Whenever multivariate observations can be
presented graphically in two or three dimensions, visual inspection can greatly aid in-

terpretations.

Since all the features measured in Chapter 3 are numeric and represent distance
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measures, a k-means based clustering algorithm is preferred in our study (see Figure

4.1).

4.2 Strains

The alleles and predicted products of the genes used in these experiments are 8 mu-
tant types as follows: unc-38 (x20); nicotinic acetylcholine receptor alpha-subunit (null
allele); unc-29 (x29), nicotinic acetylcholine receptor non-alpha-subunit (null allele);
goa-1 (n1134), G-protein-alpha-subunit (strong loss-of-function allele); unc-36 (e251),
voltage-gated calcium channel alpha-2-subunit (strong loss-of-function allele); unc-2
(mu74), N-type voltage-gated calcium channel alpha-1-subunit (null allele); egl-19 (n582),
L-type voltage-gated calcium channel alpha-1-subunit (partial loss-of-function allele);

nic-1 (1j22), type 1 glycosyltransferase (partial loss-of-function allele).

4.3 Normalization of Feature Data

Standardizing inputs on a set of carefully selected features plays an important role in
pattern recognition. Since our features are measured in different units, it is necessary
to normalize them on a common scale to avoid one feature dominating others. The
outliers introduced by noise and errors during the feature extraction process tend to give
false clusters in clustering analysis; thus, the scaling method also needs to be carefully
selected to suppress outliers. We evaluate three standard normalization methods: Min-
max (linear transformation of the original input range into [—1, 1]), Zscore (defined as

Equation 4.1),

_ f —mean(f)
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Figure 4.1: Clustering flow chart.
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where f is the original input feature, and sigmoidal method ([34]). The Sigmoidal

method is defined as in Equation 4.2,

_1—e"
- 1+e*

Y 4.2)

where 7 is the output of Zscore scaling. Figure 4.2 shows a comparison among different
scaling methods and feature subsets. The blue, red, and magenta curves represent the 1
Nearest Neighbor (1-NN) classification error rate using Min-Max, Sigmoidal, and Zs-
core scaling, respectively. The error is an average of 50 trials of 10-fold cross-validation
result for each method. The features are selected from the first few Principal Compo-
nents (PCs) of the entire 253 input features. All three scaling methods achieve similar
performance, with the sigmoidal and Min-Max methods slightly outperforming the Zs-
core. The fact that the error curves level off indicates most of the useful information for
classification is heavily concentrated in the very first few PCs. The black curve shows
the same cross-validation test but with a subset of features selected by a backward elim-
ination method (see Section 4.5). The black curve also shows the adverse effect of
increasing error rate with more features added. The Sigmoidal method is chosen be-
cause it obtains a better balance of limiting outliers and equalizing feature variance on

our dataset given our goal of natural clustering.

4.4 Representation of Phenotypic Patterns in Multidi-
mensional Feature Space

To visualize the phenotypic patterns as defined by the selected parameters, we use prin-

cipal component analysis (PCA) to obtain a two-dimensional projection of our 253-
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Figure 4.2: Comparison of three scaling methods and feature subset.

dimensional data. We observe in Figure 4.4 that the data points for each mutant type
form a data cloud that occupies a specific region of feature space. To investigate the
distribution of these clouds, we compute the centroid for each mutant type (i.e., the cen-
ter of the data cloud as measured by Euclidean distance), and consider this to be the

prototype for that mutant type as shown in Table 4.1.

Consistent with our expectation, the majority of the worm samples for each type are
closer to its respective prototype than are samples from other mutant types as shown
in Table 4.2. Interestingly, the distances between the centers (see Table 4.1) of the
mutant data clouds also show a strong correspondence to the similarities between the
described mutant phenotypes. For example, the clouds for the 4 mutants (unc-2, unc-
36, unc-29, and unc-38) described in the literature as “kinkers” map close together in

feature space, whereas the wild-type, goa-1, nic-1 and egl-19 clouds are more widely
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Table 4.1: Euclidean distance between prototype centers (cluster centers) measured in
253-dimension feature space. Wild-type-nic-1 are the furthest; unc-29-unc-38 and unc-

2-unc-36 are among the closest.

Wild type goa-1 nic-1 unc-36 unc-38 wunc-29 egl-19 unc-2

Wild type - 6.5 11.0 84 7.0 5.7 59 8.7
goa-1 - 9.0 6.6 6.9 5.8 8.5 7.1
nic-1 - 6.6 5.6 8.0 10.6 6.6
unc-36 - 52 5.1 6.1 3.6
unc-38 - 35 6.8 4.1
unc-29 - 52 42
egl-19 - 7.1
unc-2 -

Table 4.2: 10-fold cross-validated classification result using 1-Nearest Neighbor classi-
fier. The percentage number shows the probability the mutant type specified in the row
is classified as being the mutant type specified in the column by this classifier. A subset
of 39 features achieves a similar performance to the full set.

Wild type goa-1 nic-l  unc-36 unc-38 unc-29 egl-19 unc-2
Using 253 features
Wild type  1.00 0 0 0 0 0 0 0
goa-1 0.01 094 O 0.01 0.02 0.01 0 0
nic-1 0 0 099 0 0 0 0 0.01
unc-36 0 0 0 0.84 0.05 0 0 0.11
unc-38 0 0 0.01 0 0.80 0.19 0 0
unc-29 0 0 0.01 0 0.37 0.60 0 0.02
egl-19 0 0 0 0.03 0.01 0.01 0.95 0
unc-2 0 0 0 0.08 0.04 0 0.01 0.87
Using 39 features
Wild type  1.00 0 0 0 0 0 0 0
goa-1 0.01 095 O 0.01 0.02 0.01 0 0
nic-1 0 0 099 0 0 0 0 0.01
unc-36 0 0 0 0.87 0.03 0 0 0.09
unc-38 0 0 002 O 0.78 0.20 0 0
unc-29 0 0 0.01 0 0.36 0.62 0 0.01
egl-19 0 0 0 0.03 0.01 0 0.95 0
unc-2 0 0 0 0.09 0.04 0 0.01 0.86
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Figure 4.3: Percentage of the total variance captured by the first few principal com-
ponents (PCs) shows the evidence that feature data may be represented in lower-
dimensional space. The top 43 PCs capture over 94% of the total variance.

separated from the other types and from each other. Moreover, the closest two clus-
ters are unc-29 and unc-38 (distance=3.5); these encode nicotinic receptor subunits with
overlapping functional expression. unc-2 and unc-36 (distance=3.6), the next closest
clusters, respectively encode a-1 and a-2 voltage-gated calcium channel subunits with
nearly coincident expression patterns. This indicates that a simple Euclidean distance

in feature space can be used to quantify the relative similarity between different mutant

types.
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4.5 Feature Selection and Classification of Phenotypes

Since one of our main objectives is to identify parameters that define particular mutant
types, we wish to identify a small number of features that provide discriminative infor-
mation. A variance plot (Figure 4.3) shows that the top 43 principal components (17%
of total PCs) capture over 94% of the total variance. This gives a strong indication that

a few carefully selected features would represent the data well.

To identify best features for distinguishing any two worm types, we screen the entire
feature set using a backward elimination process based on the linear Lagrangian Sup-
port Vector Machine classifier [58][64]. The support vector machine classifier is used
because it generalizes well. The process starts from the full feature set. In each iteration,
one feature is eliminated from the remaining feature set by evaluating all the possible
subsets (7 subsets, each containing n — 1 features) and selecting the subset that achieves
the smallest training error as our next feature set. We use a low training error as an
approximation of the importance of that feature. All the features can thus be ranked ac-
cording to when they are eliminated from the backward elimination process. We repeat
this process for all 8 mutant types in a pairwise fashion and generate 28 sequences of

ranked features.

Feature subsets that are effective to distinguish all worm types are then selected pro-
gressively by choosing the most frequently features that appear on the top of all 28
sequences. For example, the first feature is selected as the feature that appeared most
frequent as the No. 1 feature in all 28 sequences. The second feature is selected as the
feature that appears most frequently as the No. 1 or No. 2 feature in all 28 sequences

besides the feature that is already in the subset. A simple 1-nearest neighbor (1-NN)
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classifier with 10-fold cross-validation [20] is used to evaluate subset performance. To
avoid over-fitting, a 10-fold cross validation technique is used. For each feature subset
in each trial, we divide data from each worm type randomly into 10 sections. One sec-
tion (80 worms) is held out for testing and the other 9 sections (720 worms) are used
as training data. In subsequent steps in the trial, different testing and training sections
are chosen. The classification error is calculated as the average of the 10 iterations for
each of the 28 class pairs. For each subset, 50 trials are performed to give an aggregated
classification error rate for that subset. We also compare the classification error of the

first few principal components using the three scaling methods (Figure 4.2).

A small set of features can be readily identified to approximate the dataset by following
the cross-validation error curve. Table 4.2 shows the classification results by using all
253 and a subset of 39 features. This subset is chosen by the backward elimination
process when the error rate first drops below 0.02. The data are well represented using
a subset of 39 features for discriminating phenotypes. These features include several
measurements of speed and reversals averaged over different time periods, and worm

head and tail width and brightness information (Table 4.3).

Table 4.3: Features used in mutant characterization,

Feature Description
CNTMVAVG avg centroid movement
CNTMVMAX max centroid movement
LNECRAVG avg length/eccentricity
LNECRMIN min length/eccentricity
LNMFRMAX max length/MER
ANCHRMAX max angle change
ANCHSMAX max angle change std
RV20MAX max reversal rate in 20s
RV20AVG avg reversal rate in 20s
Continued on next page




Table 4.3 — continued from previous page

Feature Description
RV40MAX max reversal rate in 40s
RV6OMAX max reversal rate in 60s
RVSOMAX max reversal rate in 80s
RV100MAX max reversal rate in 100s
RV120MAX max reversal rate in 120s
TOTRV total reversal
TOTMOVE dist moved in 5 min
PRP50MAX max displacement in 25 sec
PRP40MAX max displacement in 20 sec
PRP30MAX max displacement in 15 sec
PRP20MAX max displacement in 10 sec
PRPIOMAX max displacement in 5 sec
MVHLFAVG avg speed in 0.5 sec
MVHLFMAX max speed in 0.5 sec
LNGTHAVG avg length
LNGTHMAX max length
LNGTHMIN min length
CNLNRAVG avg center width/length
CNLNRMAX max center width/length
CNLNRMIN min center width/length
HCTHRMAX max head to center thickness ratio
HEADBRAVG avg head brightness
TAILBRMIN min tail brightness
TAILBRMAX max tail brightness
HTBRRMAX max head/tail brightness
HANGCRMAX max head angle change
HDMVHFAVG avg head movement in 0.5s
HTMVRAVG avg head/tail movement ratio
HDHFTOTMV head movement in Smin

TLHFTOTMV

tail movement in Smin

60
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4.6 Natural Clustering of Phenotypic Data

To further investigate the clustering of the data points, we apply the k-means clus-
tering algorithm to find the natural clusters in the behavioral data. For this analysis,
each data point is treated individually without regard to mutant type. The k-means
algorithm is an elementary but very popular clustering method. It enjoys the bene-
fits of making no assumptions about the underlying data probability distributions, and
is thus applicable to many problems. Suppose there are to be k clusters with respec-
tive centers C' = ¢y, ..., ¢ and their corresponding non-overlapping divisions of feature
space are defined as D = D, ..., D;. Let ||.||* denote squared Euclidean distance.

Our data are x; : ¢ = 1,2,...,797. We would like to choose C = ¢, ..., ¢ so that
C = argminy, 3 o — ol
j=1z;€Dy

While there is no closed form solution to the minimization, Lloyd [57] demonstrated
that an alternating descent algorithm will always converge. The Lloyd algorithm for
k-means clustering is an iterative descent algorithm. Starting with an initial set of k rep-
resentative points, all the points in the data set are assigned to whichever of the k points
is closest according to some distance measure, usually Euclidean distance. Next, each
of the k representative points is relocated to be the centroid of the data points which
Jjust got assigned to it. At this point, we have a new set of k representative points, and
can go back to the assignment step. The algorithm iterates between these steps of data
point assignment and cluster centroid calculation, until convergence is reached. The
final convergence, in general, depends on the initial choice of k representative points.
The algorithm does not necessarily find the global optimum, and so often many random
initialization seeds are used. We generate sufficiently many (10,000) random initializa-

tions for each k and track the error at the convergence to be reasonably confident that
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Figure 4.4: Cluster centers found by the k-means algorithm, ¥ = 6. The data are
presented in the first 2 principal component directions of the 253 features.

the global minimum is found.

Figures 4.4 & 4.5 show the cluster centers identified by the k-means algorithm; for each
case, the centers are marked by black squares. Although the actual k-means clustering
is done using all 253 selected features, the data are visualized by showing the first two

principal components.

A key issue in k-means clustering is to determine the optimal number of clusters for
the data set. We use two algorithms to determine the optimal cluster number for our

behavioral data: the gap statistic [84] and the information theoretic method [78][77].

The idea of the Gap Statistic is to standardize the graph of log(W}) by comparing it to

its expectation under an appropriate null reference distribution of the data. Wy is the
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Figure 4.5: Cluster centers found by the k-means algorithm, k¥ = 8. The data are
presented in the first 2 principal component directions of the 253 features.

total within-cluster sum of squares around the cluster centers, when there are k clusters.
Since we have 797 points in our data set, the null reference distribution is generated by
drawing 797 samples from a distribution that is uniform along each feature data dimen-

sion. This is repeated B times. The expectation of the null reference E[log(Wb*)] can

B
' 3 log(Wib*) . "
be estimated as =1———, where W;.b* is the within-cluster sum of squares of the ref-

erence dataset, and B is the number of reference datasets. The distance between these

two curves is defined as the Gap (Equation 4.3),

B
Gap(k) =Y _ log(Wib*) — log(Wy), k =1,.., K (4.3)

b=1

where K is the maximum number of clusters defined by the user according to the ex-
pected range of clusters. We use a maximum of 10 centers (X = 10) and 5 reference

datasets (B = 5). The sampling distribution can be measured by sy = sdxy/1 + —}5,
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where sdj, is the standard deviation of the reference null distribution. The formula to
calculate the optimal number of clusters &,,; can be obtained as the first location where
the gap curve starts to drop or level off. That is the first k that satisfies gap(k) >
gap(k + 1) — asg41, where a is a multiplier adjusted to reject null mode. Here is « set

to 3.

The Information Theoretic approach tries to find the optimal number of clusters by
fitting the within-cluster sum of squares curve (distortion curve) with two hyperbolic
curves breaking at the location of the optimal k. When applying a negative power to the
hyperbolic curves, they are transformed into two straight lines and the location of the
break can be identified. The magnitude of the power is controlled by the dimensionality
of the data . Here it is set to 7. The transformed distortion curve usually can be approx-
imated reasonably well by a piecewise linear function consisting of two straight lines
with a break, or elbow, at the location of the optimal k. The optimal number of clusters
can be easily obtained by finding the biggest jump, which is the difference between the
successive points on the transformed distortion curve. The paper [78] provides theoretic
justification and points out that this method can also provide suboptimal solutions by
finding smaller jumps in the curve. This is particularly appealing given our objective of

exploring the substructure of the data.

As shown in Figures 4.6 & 4.7, both methods identify 6 clusters as the optimal number
as shown in Table 4.4. In this optimal classification, the calcium channel mutants unc-36
and unc-2 are grouped into a single cluster and the nicotinic receptor mutants urnc-29 and
unc-38 into another cluster. In addition, the information theoretic approach identifies an
additional suboptimal solution of 8 clusters with each cluster composed primarily of a

single mutant type (Figure 4.4 and Table 4.5). Together, these results demonstrate that



65

Gap

number of clusters k

Figure 4.6: Gap plot by the gap statistic method. The optimal number of clusters,
marked by a red circle, is identified as the gap curve first started to level off.

worms of the same mutant type tend to exhibit similar behavioral patterns and further
show that cluster analysis can be used to assess phenotypic similarities between different

mutant classes.

4.7 Summary

In this chapter, we showed that quantitative morphological and locomotion features ob-
tained from digital video recordings can be used to distinguish the behavioral pheno-
types of C. elegans mutants. As shown in Table 4.2, a reduced set of 39 features is
sufficient to identify visibly dissimilar mutant types with very high reliability. Further-
more, these features can often be used to distinguish between types with highly similar
phenotypes (e.g. unc-2 and unc-36) that can not be reliably identified even by an ex-

perienced human observer. Thus, the parameters in the reduced feature set are likely
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Figure 4.7: Jump plot by the information theoretic method. The optimal and suboptimal
number of clusters, marked by red circles, are identified as the most and second most
significant peaks.

Table 4.4: Data points are classified into 6 clusters (optimal number of clusters) based
on their shortest distance to the cluster centers identified by the k-means algorithm. Note
unc-38 and unc-29 are clustered together, as are unc-2 and unc-36.

Center 1 2 3 4 5 6
Wild type 97 2 0 0 1 0
goa-1 2 94 0 3 1 0
nic-1 0 0 100 0 0 0
unc-36 0 0 0 90 10 0
unc-38 0 0 2 7 91 0
unc-29 1 0 1 9 82 5
egl-19 0 0 0 1 0 99
unc-2 0 0 2 74 22 1
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Table 4.5: Data points are classified into 8 clusters (suboptimal number of clusters)
based on their shortest distance to the cluster centers identified by the k-means algo-
rithm. For the 8-cluster result, the majority of the samples belong to the correct clusters.

Center 1 2 3 4 5 6 7 8
Wild type 97 2 0 0 1 0 0 0
goa-1 2 93 0 4 1 0 0 0
nic-1 0 0 97 1 2 0 0 0
unc-36 0 0 0 70 5 2 0 23
unc-38 0 0 1 4 69 24 0 2
unc-29 0 0 0 5 26 64 1 2
egl-19 0 0 0 2 0 1 97 0
unc-2 0 0 1 15 15 1 1 66

to have great utility in assessing subtle or modest abnormalities in behavior caused by

hypomorphic mutant alleles or by incompletely penetrant dsRNA inhibition.

These studies also provide insight into the nature of specific mutant phenotypes. For ex-
ample, unc-36, unc-29, unc-38 and unc-2 have all been categorized as “weak kinkers”, a
term that has been difficult to define precisely. From Tables 4.3 & A.1, it is apparent that
these mutants share many common effects on the variables used in our classification; in
particular, all have a substantially higher angle change rate and substantially lower cen-
troid movement and global speed parameters than wild-type. This combination of char-
acters (increased body bending and a decreased rate of movement) thus provides an op-
erational definition of the ‘“kinker” phenotype. Likewise, the combination of increased
centroid movement and increased angle change rate provides a functional definition of
goa-1’s “hyperactive loopy” phenotype, while increased length and length/eccentricity
and decreased angle change rate and speed define the “long, slow and floppy” phenotype

of egl-19. In some cases, significant phenotypic differences are identified that are unno-
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ticed (or unreported) in previous observer-based studies. For example, both goa-1 and
unc-36 mutants show particularly large reductions in the ratio of head-to-tail movement,
an abnormality whose neural basis could be investigated in future studies. Thus, it has
been possible not only to obtain precise quantitative descriptions of phenotypic classes
whose definitions have previously been subjective and qualitative, but also to resolve

subtle differences within broad classes such as kinker Uncs.

The application of machine-based pattern recognition methods also allows us to probe
the similarities between different behavioral patterns based on their clustering in multi-
dimensional feature space. In general, the pattern of phenotypic clustering mirrors the
known similarities in molecular function and cellular site of action of the mutant gene
products. For example, unc-29 and unc-38, which respectively encode o and 3 nico-
tinic receptor subunits with overlapping expression patterns, form a single cluster in the
optimal clustering and have centers that are the closest together by Euclidean distance
(Figure 4.4). Likewise, unc-2 and unc-36 mutants, which are defective in the a-1 and
a-2 subunits respectively of the neuronal N-type calcium channel, form a single cluster
in the optimal k-means clustering, and the centers of these two types’ data clouds are
relatively close in feature space. In fact, the centers for all four of these types (which
have all been designated as kinker Uncs and all encode excitatory ion channels whose
focus of action is primarily at body muscle neuromuscular junctions) are closer to one
another than to the other Unc mutants or to wild-type. Thus, the quantitative phenotypic
signature obtained through behavioral tracking appears to correspond well to the under-

lying functional defects of the mutants we analyze.

We anticipate that this type of comprehensive quantification of mutant behavioral phe-

notypes will have powerful applications in functional genomic studies. Clustering and
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pattern recognition analysis of microarray-derived gene expression profiles has provided
important information about the likely functions of novel gene products in C. elegans
and other organisms [47]. In principle, a behavioral phenotype represents a similarly
complex quantitative signature whose direct linkage to nervous system activity makes
it particularly useful for classifying genes that function in excitable cells. In several
genome-wide deletion and RNAi-based knockout surveys undertaken in C. elegans, the
identification and classification of behavioral and other non-lethal phenotypes has been
a crucial limiting factor [26][96]. Using the machine-based phenotyping approaches de-
scribed here, it should be possible to record the behavior of an uncharacterized knock-
out strain, compare its phenotypic pattern to a database of known mutants, and make
an informed initial hypothesis about the molecular pathways in which the mutant gene

product participates.

Part of this chapter has appeared in the following publications.

e W. Geng, P. Cosman, J-H Baek, C. Berry, and W.R. Schafer, “Quantitative Classi-
fication and Natural Clustering of C. elegans Behavioral Phenotypes”, Genetics,

vol. 165, pp. 1117-1136, 2003.

e W. Geng, P. Cosman, J.-H. Baek, C. Berry and W.R. Schafer, “Feature Extrac-
tion and Natural Clustering of Worm Body Shapes and Motion Characteristics”,
IASTED International Conference on Signal and Image Processing (SIP 2003),
August 13-15, 2003, Honolulu, Hawaii.

I was the primary researcher and the co-author. Dr. Pamela C. Cosman and Dr. William

R. Schafer directed and supervised the research which forms the basis for this chapter.



Chapter 5

Classification of Large Numbers of C.

elegans Phenotypes

Hundreds of genes have been identified in C. elegans that affect behavior and morphol-
ogy in specific ways. Our long-term aim is to collect data on large numbers of mutant
types and effectively classify them according to their phenotypic similarity. With an
increasing data set, it becomes progressively more challenging to identify features that

effectively classify and distinguish the large variety of worm types.

To identify a proper identification and classification system, we present the re-
sults from different classifiers in this chapter. We start with an overview of the common
classification procedures. Then we describe results from CART and Random Forests
classifiers. The comparisons to human observers are discussed in Section 5.4, and the
classifier comparison is discussed in Section 5.5, and we conclude with a summary sec-

tion.

70
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5.1 C(lassification Overview

A classification task is a supervised learning process. From a statistical learning point
of view, a classification is a process that can be formulized as follows: Given a set of n
training observations and the class label pairs (21, ¢1), ..., (Zn, Ck), Zi € 1, ..., T, ¢ €
¢, ..., ¢, from k different classes. The goal of learning is to find a function g,y =
minE[l(g(z), y)] that minimizes the expected losses caused by using the classification
function g(x), and [ is a loss function. When all classification errors are assumed equally

costly, a “0-1 loss function” such as:

1 ifg(z) #y

0 otherwise

Wg(z),y) =

is used. In this case, Bayesian Decision Theory states the minimum probability of error
is achieved when g(z) = argmin; P;(j|z) is chosen, where P, ,(j|x) is the condi-
tional probability of class label ¢ is true given sample z is present. The optimal (mini-
mum probability of error) solution is to choose the class that the observation z is most
likely from given the observations. In practice, however, it is difficult to achieve the
minimum probability of error because the underlying conditional probability density
function P(z|c) is unknown. By making certain assumptions about P(z|c) such as
Gaussianity and independence, a series of linear classifiers can achieve good results

[72].

Instead of estimating probability density function, non-parametric methods such as k-
nearest neighbor(KNN) [20] and Classification and Regression Trees (CART) [9], try to
build models from the data directly. Neural networks approaches(NN) [4] try to extract

linear combinations of the inputs as derived features, and then derive the outputs as a
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nonlinear function of these features. Support Vector Machines (SVM) [86][13] produce
nonlinear boundaries by constructing a linear boundary in a large, transformed version

of the feature space.

Other methods take advantage of ensemble learning by combining different classifiers
or using the same classifier with different input data to procedure an optimal result. Such

methods include Boosting, Bagging, and Stacking [93].

As the training (model building) process is established using only the training data, an
important issue in the learning process is overfitting (bias and variance tradeoff). That
is, the training error alone is not a good estimate of the test error because the training
error consistently decreases with increasing model complexity. However, a model with
zero training error is overfit to the training data and will typically generalize poorly.
Therefore, it is important to understand how to estimate the test error when designing
the experiments. Bootstrapping or cross-validation methods [63] are commonly used to

estimate the test error.

5.2 Classification and Regression Trees (CART)

The CART algorithm for designing classification and regression trees has its origins in
a 1984 monograph by Breiman, Friedman, Olshen, and Stone ([9]). Briefly, the CART
approach involves recording a set of examples of each worm type (i.e., wild-type or
a specific mutant), and measuring features that might in principle be used to distin-
guish different types. From these measurements, a training vector is generated for each

recording consisting of an identifier of worm type along with the values for each feature
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measurement. Using this learning sample (which in our case consisted of 1,596 data
points - approximately 100 for each of the 16 strains), CART produces a binary classifi-
cation tree in which each binary split of the data involves a splitting question of the form
“Is ,,< ¢?” where z,, is one of the measurements, and c is a threshold. The root node
of the tree contains all the training cases; the worm types are equally mixed together in
this node. The goal of CART is to successively subdivide the training set using binary
splits in such a way that the data associated with the terminal nodes of the tree do not
have a mix of worm types; rather each node should be as pure as possible. We use the
Gini index of diversity to measure the impurity of a set of data. A class assignment rule
assigns a class to every terminal node. A simple rule is to assign the most popular class
for each terminal node; this is called the plurality rule, and is what we use. When two
different classes are tied for the most popular class in the node, we arbitrarily choose the

lower numbered class as the class for that node.

A CART tree applied on a small set of six mutants is shown in Figure 5.1 to illustrate
a typical tree process. CART has some distinct benefits over other classifiers. These
benefits include that there is no need to scale the inputs; it can deal with a mixture of
ordinal and numerical variables; and the ease of interpretability. For a large and complex
dataset such as ours, however, CART performance is less satisfactory as shown in Table
5.2. There are more than 40 nodes in the 16-class CART tree, it is difficult to explain

the complex structure.

5.3 Random Forests

Almost 20 years after being a co-inventor of CART, Breiman [5] [6][7][8] recently

proposed a much improved classification and learning method called Random Forests.



74

Yes Node | No
LNMFRMAX

<= 11977,

N: 600 egl-19: 95
other: 2

Node 2
PRPIOMAX

Node 3
LNMFRAVG
<=637.19

A 4

nic-1: 97
other: 4

N: 10t

unc-38: 90
other: 7

N:97

Figure 5.1: Optimal classification tree for 6 mutant types. The tree is constructed using
the CART algorithm as described. The number of total animals in each node (N: ) is
indicated below the respective node; the number of animals of a particular type in that
node is indicated within the node. For each type, the predominant terminal node is
indicated in yellow.
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Table 5.1: Classification result using CART with 253 features. The optimal tree is
determined using 10-fold cross validation. The average classification success percentage
is around 79%. Some of the mutant names have been abbreviated to fit into the table.

worm| w.t. | goal| nicl| wc36| uc38 wuc29 eglﬁ} uc2 | tphl| uc63 dgkll uc43 dopl fipl| eatd| car2
type

wt | 85 1 3 1 2 4 1 3
goal 86 1 1 3 2 4 1

nicl 90 2 3 4 1

uc36 1 90 1 6 1 1

uc38 | 1 2 1 66 | 21 4 2 1 ] 1

uc29 3 1 1 15 [ 65 [ 2 1 3 3 1 1 1

egl9 1 1 1 89 1 2 2 1 2
uc2 2 7 1 84 1 1 1 2 1

tphl | 3 1 1 1 2 2 77 |3 1 4 1 5 1
ucé3 2 5 1 4 2 76 13 1 1 2

dgkl 2 1 3 2 82 3 1 6

uc43 | 1 2 2 1 1 1 2 91

dopl | 2 1 2 2 1 3 1 3 73 13 10

fipl | 4 1 1 2 1 2 1 1 7 2 69 |3 4
eatd | 1 2 1 1 2 2 6 2 8 8 2 59

car2 | 3 2 4 4 2 87

Random Forests utilizes an ensemble learning scheme. Instead of generating a single
classification tree, many trees (to make up the forests) are generated independently by
bootstrapping from the original data. A simple majority vote is taken for prediction. In
addition to constructing each tree with a different bootstrap sample of the data, Random
Forests adds an additional layer of randomness by splitting at each node using a random

subset of predictors instead of using the best split among all features as is done in CART

[9].

By adding these two layers of randomness, Breiman [5] provided both empirical and
theoretic evidence that the two levels of randomness minimize the correlation (depen-
dence) among trees while maintaining strength (accuracy of each individual tree clas-
sifier). Thus the Random Forests method performs very well compared to CART and
many other classifiers including discriminant analysis, support vector machines and neu-

ral networks. The method is also robust against overfitting [5]. An estimate of the error
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rate can be obtained by predicting using “Out-of-bag” (OOB[8]) data, which are the data
(around 36% of the data) that are not used in each bootstrap sample. The classification
error rate is thus defined as the aggregated OOB prediction error rate. Given enough
trees being grown, the OOB error rate is quite accurate [14]. There are only two free
parameters (the number of trees in the forest and the number of random features consid-

ered at each split).

Random Forests also provides four measures of feature importance that can be used for
model reduction. One of these measures of feature importance, defined as the average
lowering of the margin across all samples when this feature is randomly permuted, is
used because it is more robust against noise (Personal Communications from Liaw and
Breiman & [56]). For each sample, the margin is defined as the proportion of votes for

its true class minus the maximum of the proportion of votes for each of the other classes.

For the classification of 16 mutant types, the forest is made up by 5, 000 trees (Njpees =
5,000). At each split, 15 features are randomly selected to be considered for splitting
(myyy, = 15), which is approximately the square root of the total 253 features used. The
confusion matrix, represented by OOB errors, is shown in Table 5.3. The classification
success rates are listed along the shaded main diagonal while the off-diagonal entries
represent the misclassification error rates. The average success percentage is 90.9%,
showing a high degree of success at identifying the correct mutant type even if pre-

sented with a single example recording.

The important features identified by Random Forests are shown in Table 5.3. If we run
the classification procedure using only the top 25 features (10% of the total features)

identified by Random Forests, we achieved 85.9% classification accuracy.
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Table 5.2: Classification result using Random Forests with 253 features, 5, 000 trees and
15 random features to split on at each node. The OOB estimate of success percentage is
90.09%. Some of the mutant names have been abbreviated to fit into the table.

type

worm; w.t.

goal

nicl

uc36,

uc38l uc29

egl9)

uc2

wphl

uc63

dgk]]

uc43

dopl

fipl

eatd

cat2

w.t,

goal

93

nicl

98

uc36

uc38

83

11

uc29

74

egl9

97

uc2

tphl

89

uc63

dgkl

91

uc43

98

dopl

finl

eatd

=l

cat2

91

Figure 5.2A shows the effect of the number of features selected at each split on the error

rate with 5000 trees constructed. The errors are stable between 10 and 100 features

(error = [0.088,0.095]) and trend upward slightly afterwards. Figure 5.2B shows the

effect of the number of trees used when 15 features are selected at each split. The error

converges quickly after 800 trees (error = [0.090, 0.096]) are constructed. Both plots

indicate that the results are not sensitive to the selection of these two parameters.

5.4 Comparison to Human Observers

It is interesting to compare our system with human experts. A preliminary compari-

son with one human expert reveals that our automatic system outperforms the human

dramatically. For example, in one experiment we conduct, an experienced observer is
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Table 5.3: Important features identified by Random Forests. The OOB estimate of
success percentage by using these 25 features is 85.9%.

Feature Description

MVHLFMAX | Maximal centroid movement in 0.5 sec
HTMVRAVG | Local head and tail movement ratio
PRP1OMAX Maximal centroid movement in 5 seconds
TOTMOVE Total centroid movement in 5 minutes
TAILBRMAX | Maximal tail brightness

TAILBRAVG | Average tail brightness

PRP2OMAX Maximal centroid movement in 10 seconds
HTBRRMIN | Head and tail brightness ratio
HDHFTOTMYV | Sum of head movements in 0.5 sec
LNECRMIN | Length/eccentricity max

ANCHRMAX | Max angle change rate

TLHFTOTMYV | Sum of tail movements in 0.5 sec
LNGTHAVG | Average Length

TLMVHFMAX| Maximal tail movements in 0.5 sec
MVHLFAVG | Average centroid movement in 0.5 sec
TAILBRMIN | Minimal tail brightness

HTBRRAVG | Average head to tail brightness ratio
LNGTHMIN | Minimal length

HDMVHFAVG | Average head movements in 0.5 sec
HDMVHFMAX Maximal head movements in 0.5 sec
HTBRRMAX | Maximal head to tail brightness ratio
LNGTHMAX | Maximal length

AVGBRMAX | Maximal body brightness

ANCHSMAX | Maximal standard deviation of angle change rate
TLTHKMIN Minimal tail thickness
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(B) Effect of number of trees used to construct Random Forests on OOB error rate. 15

features are used at each split.
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presented with 100 1-minute videos of unc-36 and unc-2 (50 of each), and identified
only 50% of unc-36 and 90% of unc-2 videos correctly. Running the same experiment
on dgk-1 and goa-1, the observer identified 84% of goa-1 and 52% of dgk-1 correctly.
Using 1-minute videos for the human observer reduces the experiment time by 80%
compared to 5-minute videos, and in any case, the human observer typically makes his
decision within the first 70 frames (35 seconds). The human observer in our experi-
ment is a C. elegans expert with more than twenty years of experience working in this
field. The system produces over 93% correctness for each of these types against 15 other
types combined. Furthermore, from the features extracted by the system, the head and
tail brightness difference and total movement and reversals are the top features distin-
guishing unc-2/unc-36 and goa-1/dgk-1 pairs respectively. These features are hard to

quantify by eye.

5.5 Comparison to Other Classifiers

To investigate other popular classifiers and also compare the cross-validation and OOB
methods, we compare the performance of several well-known classification methods
for our C. elegans data. These methods include: k-nearest neighbor classifier (KNN),
support vector machines (SVM), CART, Random Forests using bootstrap samples, and

Random Forests using cross-validation method.

KNN classifiers are based on finding the & nearest examples in some reference set, and
taking a majority vote among the classes of these k examples, or, equivalently, esti-
mating the posterior probability p(c|z) by the proportions of the classes among the k
examples. The nearness is measured by Euclidean distance. Here we consider using

k=1,3.
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Support Vector Machines classifiers first map input feature vectors to a higher dimen-
sional space by a function ¢. Using a radial basis kernel function, K (z;, x;) = exp(—7||zi—
z;|/%),~v > 0, the mapping function can be expressed as K (z;, ;) = o(x;)" ¢(x;). Then
SVM finds a linear separating hyperplane with the maximal margin in this higher dimen-
sional space. The maximal margin is desired to avoid overfitting. Vapnik [86][13] show
that the mapping and maximal margin can be found by solving a dual optimization prob-
lem defined in the following Equations 5.1 and 5.2:

Define (z;,9:),1=1,...,l, wherez; € R"and y € {1, —1}1,

!
argmin 1/2wTw +CZ§,~ 5.1
w,b,¢ t=1
subject to g (w' ¢(z:) +b) > 1 - &, & > 0. (5.2)

where w, b defines the linear separating hyperplane in the transformed feature space. &;
is the distance between the point on the wrong side of the hyperplane and the hyper-
plane. C is the penalty parameter of the error term, which defines a band that are C

units away from the hyperplane.

All the implementation is done using statistical computing software R [69]. In each
cross-validation method, a 10-fold stratified cross-validation [63] is applied. For each
classification method, 100 trials are constructed. For the Random Forests method, a
bootstrap validation is also performed. The parameters are tuned for each method be-

fore the final experiments. The result is shown in Figure 5.3.

The Random Forests methods show the best results. Notice both bootstrap and cross-
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validation experiments give consistent results. The variability of Random Forests ex-
periments are among the smallest. SVM also shows good result. KNN (k¥ = 1, 3) have

higher classification error rates. CART has the worst performance.

Overall, we have found that the Random Forests approach both leads to an overall lower
misclassification rate as well as to a more stable assessment of classification errors.
Combined with the ability to identify the important features and no need to scale the
input features, our preliminary analyses suggest that Random Forests method is ideal

for C. elegans phenotype classification.

5.6 Summary

In this chapter, we evaluate some popular classification methods on a large set of C.
elegans behavioral feature data extracted using the methods presented in Chapters 2 &
3. The results show that the features describe the phenotypes well. The machine vision
based classification system outperforms a human expert. Among all the classifiers eval-

uated, Random Forests is best suited for C. elegans classification.

Part of the chapter has appeared in the following publications.

e W. Geng, P. Cosman, C. Huang, and W. R. Schafer. “Automated Worm Tracking
and Classification.” Proc. of the 37th IEEE Asilomar Conference on Signals,
Systems and Computers, pp. 2063-2068, Pacific Grove, CA, November 2003.

e W. Geng, P. Cosman, C. Berry, Z. Feng and W.R. Schafer, “Automatic Tracking,
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Figure 5.3: Summary of errors for classifications performed on the same set of data
(1,596 worms from 16 mutant types with 253 features). In all cases, the box extends
from the first quartile (25th percentiles) to the third quartile (75th percentiles), and the
horizontal line within the box indicates the median. The lower and upper error bars
indicate 10th and 90th percentiles respectively.
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tions on Biomedical Engineering, in press, 2004.

I was the primary researcher and the co-author. Dr. Pamela C. Cosman and Dr. William
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Chapter 6

Egg-laying Behavior Study

We have shown in this dissertation thus far that a machine vision system (including data
acquisition, segmentation, tracking, and feature extraction) can be used to define phe-
notypes (classification and clustering). Another way of studying C. elegans behaviors
using this system is to study specific behaviors. In this chapter, we describe a method of
studying egg-laying using the machine vision system illustrated in Chapters 2 and 3. We
begin with a brief overiew on egg-laying (Section 6.1). Then the algorithm for attached
egg detection is introduced in Section 6.2-3. Egg onset detection and the behavioral
changes surrounding egg-laying events are studied in Section 6.4-5. We conclude this

chapter with a summary section.

6.1 Egg-laying Overview

One of the most important behaviors for the analysis of neuronal signal transduction
mechanisms is egg-laying. Egg-laying in C. elegans occurs when embryos are expelled

from the uterus through the contraction of 16 vulval and uterine muscles [92]. In the
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presence of abundant food, wild-type animals lay eggs in a specific temporal pattern:
egg-laying events tend to be clustered in short bursts, or active phases, which are sepa-
rated by longer inactive phases during which eggs are retained. This egg-laying pattern
can be accurately modeled as a three-parameter probabilistic process, in which animals
fluctuate between discrete inactive, active, and egg-laying states [88]. Egg-laying has
also been shown to be coordinated with locomotion: specifically, animals undergo a
transient increase in global speed immediately before each egg-laying event [35]. Many
neurotransmitters and neuronal signal transduction pathways have been shown to have
specific effects on egg-laying behavior; thus it has become an important behavioral as-

say for the analysis of many neurobiological problems in C. elegans.

Because egg-laying is infrequent, it is well suited for analysis by automated
imaging methods. In previous egg-laying studies [35]{89] [95], individual worm move-
ments were videotaped and the centroid location and time information were saved at
1s intervals during recording. The entire videos were later played back and each video
frame was examined by expert observers to look for egg and egg onset frames (the

frames in which the egg first appears).

Automated egg-laying detection is a difficult problem. There is a variety of
scenarios due to a low occurence of egg-laying events and their bursty nature. For
example, there could be more than one egg being laid at the same time. The eggs tend
to stay attached to the worm body for a period of time (ranging from a few seconds to a
few minutes) after egg-laying onsets. In the meanwhile, other subsequent eggs could be
laid. Adding to the complexity of the problem, the worm sometimes could crawl back
to the previous eggs. We break the onset detection problem into two problems. We will

solve the above issues in the egg onset detection section. In following section, we will
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only focus on deciding whether or not there is an egg or eggs attached to the worm body

in a given frame.

6.2 Model-based Attached Egg Detection

6.2.1 Image Analysis

To find the possible egg locations and limit the search area for deformable template
matching, we developed a series of morphological image analysis algorithms to limit
our search area to around 2% of a typical region that a worm body covers. The search is
greatly expedited and match accuracy is improved by effectively eliminating potential

false alarms. The flowchart of attached egg detection is shown in Figure 6.1.

For each input video frame, the worm body is first segmented from the back-
ground and the skeleton (medial akis) is obtained by algorithms described in Chapter 2.
The laying of an egg changes the shape of the binarized worm body (Figure 6.2.1), which
can be captured by examining the width profile in the middle part of the worm body in
the following way. For each pixel in the skeleton pixel list, a straight line traversing
the worm body that passes through that skeleton pixel is calculated. 71 additional lines
are also calculated at 5-degree intervals to cover a 360 degree radius. The worm body
width at that skeleton pixel is the shortest of the 72 lines, which has the shortest distance
traversing the binary image through the skeleton pixel. We next test for an abnormal
width, by which we mean a difference greater than 7.5 pixels between median and peak
width in the middle part of the body, indicating a potential egg event. The fixed width
of 7.5 pixels is chosen over a proportional width (threshold proportional to the worm’s

body size) because most eggs have very similar size regardless of the worm’s size. In
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Figure 6.1: Egg detection process flow chart.
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the case where the abnormal width is caused by an attached egg, one of the two end

point locations on the shortest-distance line is enclosed by that egg.

Figure 6.2A shows the frame immediately prior to an egg-laying event. Figure
6.2B shows the egg-laying frame. The corresponding width profiles are shown in Figure
6.2C and Figure 6.2D respectively. The solid curves show the width measured along
the worm skeletons. The horizontal dotted lines in Figure 6.2C and Figure 6.2D show
the median width for the middle part of the worm body. A second horizontal line in
Figure 6.2D shows the threshold (7.5 pixels above the median width value) that defines
abnormal width. The width profile curves are normalized to 300 pixels for comparison.
Since egg laying is a rare event, over 90% of the frames are quickly passed through and

not subject to further analysis.

Since the abnormal width measure can not tell us which side the egg is on (which
end point the egg encloses), we extract the boundaries from both sides of the worm body
and consider the side that has higher k-curvature values to be the egg side. This way,
the search area is constrained to only one side of the worm body and half of the search
area is effectively eliminated. The process starts with isolating the body area contain-
ing the abnormal width by cutting off the worm body area that is 25 pixels before and
after using the minimal-distance straight lines passing through the skeleton pixels. This
cutoff area is 51-pixels in medial axis and has four boundaries. Two of the boundaries
are the straight cutoff lines, and the other two are the two sides of the worm body (Fig-
ure 6.3B). A boundary following algorithm similar to {75] is then used to extract the
two boundaries along the sides of the worm body (Figure 6.3C). The k-curvature [40]
of these two boundaries is calculated, and the boundary that has higher (for all 5 k-

curvature measurements) values is designated as the egg side. If neither boundary has
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Figure 6.2: Width profile change on egg onsets. (A) Gray level image right before an
egg onset. (B) Gray level image right after an egg onset. (C) Width profile of (A). The
dotted line is the median value of the middle part of the width profile. (D) Width profile
of (B). The lower dotted line is the median value of the middle part of the width profile.
The upper dotted line is 7.5 pixels above the lower dotted line.

all 5 measurements higher, both sides are checked for eggs. The k-curvature is defined

in Equation 3.1, where (z;, ¥:), (i+1, Yi+1), ... are the locations of consecutive points

that are k pixels apart along the worm side boundaries.

Once the location of the maximal peak is decided, the search region W can be
obtained by region growing out of the egg side end point to enclose the egg center. A
directional dilation algorithm such as [17] can be used for this purpose. Here we once

again take advantage of the worm skeleton. The directional dilation is achieved by ap-
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Figure 6.3: Illustration of egg detection image analysis. (A) Gray level image. (B) The
cutoff portion containing egg. (C) Two boundaries. (D) The highlighted area shows the

skeleton dilation region that will not be searched. (E) The highlighted area shows the
final search region. (F) best-fit ellipse.
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plying two constraints in the dilation process: (1) dilation starts from the end point and
should remain inside the binary worm body; (2) dilation remains outside skeleton area
(dilated 4 times from skeleton) (Figure 6.3D). The dilation process stops when more
than 200 pixels are inside the region. The directional dilation forces the search area to
be inside the worm body close to the side boundaries rather than close to the skeleton.
The final search region W (Figure 6.3E) typically contains between 200 and 250 pixels

for each frame.

6.2.2 Deformable Template Matching

Deformable template matching models have been applied to a variety of image recogni-
tion and analysis applications with success [61][42][41] [22][23][24][43]. They enjoy
not only the flexibility of a parameterized model, but also can be explained in a Bayesian
framework. Even though the attached eggs could be partially obscured by shadows, by
the worm body, and/or partially laid, they share many common characteristics. They
tend to have oval shapes, and are generally brighter in the middle and darker around the
boundary. The eggs are similar in size. These characteristics make them ideal for the

elliptic deformable templates.

In an ideal case, the shape of the attached eggs can be modeled by an elliptic
model such as the one shown in Figure 6.4 with 7 parameters v = (z,y, a, b, 0, p1, p2),
where (z,y) are the coordinates of the center, a and b are the semi axes and @ is the
rotation angle. Together, these 5 parameters control the geometric shape and location
of the inner ellipse that captures the bright center part of the egg. p; equals the ratio
between the area of the middle band and the inner ellipse, p, equals the ratio between

the area of the outer band and the middle ellipse. The middle band encloses the dark
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Figure 6.4: Ellipse egg model.

exterior part of the egg. The outer band covers part of the worm body and part of the
background. By studying the homogeneity of the pixels enclosed, the outer band can
be used to suppress noise and find the best location for the egg. For example, if (x, y)
is mistakenly inside the worm body, then the outer band will have similar brightness
to the worm body (dark). If (z,y) is in the background area, the outer band has sim-
ilar brightness to the background (light). Half worm body and half background inside
the outer band indicate a perfect attached egg location. To reduce model complexity,
we opt to use a simplified model (Figure 6.5) that does not have the outer band, and
use image analysis described in the previous subsection to restrain the search area. The
outer band in Figure 6.4 is only used (in Figure 6.7) to mark the locations of the best-fit
ellipses. There are 6 parameters characterizing the shape of the simplified elliptic model
v=(x,y,a,b,0,p).

—. pW)p(E|v)

From a Bayesian framework, we have p(v|E) = ®°755=, where E is the event
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Figure 6.5: Simplified ellipse egg model.

that the image contains an egg, and p(v|FE) is the probability density function of pa-
rameter configuration given that an egg is present. There are many ways to define the

likelihood function. We propose the following model:

P(Ele) = ~eap—(oiin(v) + Buous(v)) ©.1)

where u;, (v) is the mean pixel value inside the inner ellipse, uq,:(v) is the mean pixel
value in the band around the inner ellipse (Figure 6.5), and a,3 are the weights to be
selected to give a proper weight for inside and outside areas. For calculating the mean
values, the pixel intensities are linearly rescaled to go from —1 to +1. z is a normaliza-

tion constant to ensure that p(E|v) is a proper statistical distribution.

The egg finding problem can then be modeled as finding the most likely parameter

configuration v,y given that there is an egg in the image. Using a maximum a posteriori
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(MAP) estimator, we have

p(0)p(Bl)
() €2

Since the egg can occur in any orientation and location in the search space, it is reason-

Vopt = argmax p(v|F) = arg max
v v

able to assume a uniform prior. For simplicity, we also assume a and b are uniformly

distributed in a narrow range. So Equation 6.2 is identical to

1
Vopt = arg max p(E|v) = argmax ;exp—-(aum(v) + Buout(v)) (6.3)
v v

Furthermore, because z is a constant, Equation 6.3 is identical to

Vopt = aIg ma*x(auin(v) + ﬁuout(v)) (6.4)

The optimal parameter configuration is the parameter v that maximizes the function

U(v) = atin(v) + Bueu(v) (6.5)

We choose o = 0.5, # = —1, and p = 8 by feeding a small set of training samples of
egg and non-egg values of u;,, U, into the Classification and Regression Trees (CART)

algorithm [9]. The final model for locating eggs is as follows:

For a specific search space €2 in the image, find

Vopt = (xopty Yopt ) Copt, bopta aopt) = argmax U(U) (6-6)
v

where U = 0.5, (v) — toye(v). Notice U € [—1.5,1.5].

For every pixel (z., 3.) inside the search region €2, U is calculated for each configura-
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tion with a range (a = [3.4,3.6],b = [1.9,2.1],0 = [0,180]). If U,y is greater than a
threshold value ¢, the location (Zp:, Yopt) is marked as the egg location and an egg is

declared found.

6.3 Experimental Results

The egg detection algorithm was tested on 1,600 5-minute video sequences from 16 dif-
ferent mutant types (100 videos for each type) and on five 20-minute video sequences
of wild type animals treated with serotonin, which causes an increase in egg laying. The
data were collected over a 3-year period by different individuals. A laborious manual
check found 9,000 frames containing 200 different eggs. These eggs cover a wide va-
riety of recording conditions and mutant types. 100,000 non-egg frames (also verified
manually) are randomly selected from the rest of the 800,000 frames as non-egg cases.
By applying the above algorithm with the decision threshold ¢ varying from -1.5 to 1.5,
the performance result is shown as a ROC curve [62] in Figure 6.6 and Table 6.1. The
True Positive fraction is over 98% when the False Positive fraction is 1% . Figure 6.7

shows some examples of the locations and best-fit ellipses identified by the algorithm.

6.4 Egg Onset Detection

Egg detection algorithms can be readily incorporated into a broader scheme for egg
event onset detection. Figure 6.8 shows one algorithm to accomplish it. The main func-
tions of the egg onset detection routine are to use the single frame egg detection result

for a sequence. First, we decide whether the current egg is a newly laid or a previ-
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Table 6.1: The true positive (Rate of egg frames detected as egg frames), true negative
(Rate of non-egg frames detected as non-egg frames), false positive (Rate of non-egg
frames detected as egg frames), and false negative (Rate of gg frames detected as non-
egg frames) values for part of the ROC curve. The highlighted row is the final threshold
used in the egg onset detection.

False positive | True Positive | False Negative | True Negative | Threshold t
0.0967 0.9985 0.0015 0.9033 0.35
0.0947 0.9983 0.0017 0.9053 0.36
0.0924 0.998 0.002 0.9076 0.37
0.0893 0.9977 0.0023 0.9106 0.38
0.0857 0.9972 0.0028 0.9143 0.39
0.0814 0.9964 0.0036 0.9186 0.4
0.0769 0.9961 0.0039 0.9231 0.41
0.072 0.9955 0.0045 0.928 042
0.0663 0.9946 0.0054 0.9337 043
0.0597 0.9927 0.0073 0.9403 0.44
0.0524 0.9915 0.0085 0.9476 0.45
0.044 0.9902 0.0098 0.956 0.46
0.0354 0.9893 0.0107 0.9646 0.47
0.027 0.9883 0.0117 0.973 0.48
0.0194 0.9865 0.0135 0.9806 0.49
0.0131 0.9851 0.0149 0.9869 0.5
0.0101 0.9826 0.0174 0.9899 0.51
0.0082 0.9785 0.0215 0.9918 0.52
0.0065 0.9729 0.0271 0.9935 0.53
0.0052 0.9658 0.0342 0.9948 0.54
0.0042 0.9531 0.0469 0.9959 0.55
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Figure 6.6: A plot of the receiver operating characteristic (ROC) curve with threshold t
varying from —1.5 to 1.5.

ously laid egg (worms sometimes crawl back to previous eggs). This is accomplished
by maintaining a list of all existing locations of eggs. When the new location is not on
the list, an egg onset event is detected. Secondly, there are occasions when multiple
eggs are laid at the same time. The egg onset detection routine runs the single frame
egg detection routine repeatedly in the search regions after the detected egg area (outer
ellipse in the template model) is removed from the image in each run. This way, clusters
of eggs can be detected. The egg onset detection routine also runs the abnormal width
detection routine repeatedly to find out new search regions to detect all the eggs attached

to the worm body.

By setting the thresholds conservatively (t=0.5), our algorithm is able to identify all 88
egg onsets in the 135 hour videos. There are 131 false alarm onset frames. The false
alarm onsets are easily eliminated by inspecting each onset frame visually. Among the

88 onsets detected, there are 6 onsets that are delayed from true onsets by 1, 2, 3, 4,
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Figure 6.7: Some best-fit results of the deformable template matching. (A) A fully laid
egg in perfect condition. (B) A half laid egg. (C-D) Stacked eggs, identified by repeating
the search. (E-F) Two eggs laid together in close distance.
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Figure 6.8: Egg event onset detection flow chart.

10,and 18 frames respectively. Assuming 40 frames (20 frames before and 20 after)
surrounding each identified egg onset need to be manually verified to eliminate false
alarms, the egg onset detection algorithm represents a saving of more than 99% of the

time human observers spend on examining all 972000 frames in the 135-hour video.

6.5 Behavior Study

Previous study [35] indicates significantly increasing locomotion activity prior to egg
onset. We study the behavior changes before and after 55 wild type egg onsets (a fresh
10-hour recording) detected by our onset detection algorithm. The behavioral charac-
teristics can be summarized by extracting features proposed by the feature extraction
system [1][28][29][27][30]. For each feature, we looked for a significant difference in
that feature before and after the onset frame by using the non-parametric rank sum test
[49] on paired data. For each of the 55 eggs, we pair the data from 40 seconds before the

onset frame with 40 seconds of data after the onset frame. Out of the 253 features (see
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Chapter 3), 14 are found to be significant at the .01 significance level. We also consider
the possibility that some features may be significantly different both before and after
egg laying compared to the values for a worm that is not near an egg-laying time. So we
also look at the paired data where the values from 40 seconds before an egg-laying on-
set are paired with the values from an equal number of frames starting from a randomly
selected non-egg frame, and similarly where the values from after an egg-laying onset
are paired with the values from an equal number of frames starting from a randomly
selected non-egg frame. There are 32 comparisons that are significant at the .01 signifi-
cance level for before, and 32 for after. We notice that, by random chance alone, out of
253 comparisons, we would expect to see 2.5 features to show a significant difference

at the .01 significance level.

Most of the features found to be significantly different are related to speed, confirming
earlier results that were determined manually. In particular, we find that the global cen-
troid movement, as well as the local movement of the tail and head, are all significantly
larger before the onset compared to after (see Figure 6.9). Previous results only consid-
ered global movement. Local head movement is often related to foraging behavior. We
also find some differences in brightness parameters. Due to the multiplicity of compar-

isons being made, these remain to be verified when further data are collected.

6.6 Conclusion

We have presented a computer analysis method for attached egg detection and egg onset
event detection. The testing results of egg detection on 800,000 frames and 200 eggs

from a variety of mutant types and recording conditions illustrate the effectiveness of
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Figure 6.9: Velocity change 125s before and after egg onsets. The velocity is a moving
average of 10s interval. The solid curves are the averaged moving velocities surrounding
egg onsets. The dotted curves are the averaged moving velocities randomly chosen as
reference. The dashed vertical lines mark the egg onsets. The dashed horizontal lines
represent the average velocity of the 250s period surrounding egg onsets. (A) Centroid

velocity. (B) Head velocity. (C) Tail velocity.
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our proposed algorithm. The behavior study of egg onsets confirms the results from

previous studies.

Furthermore, it has demonstrated that the machine vision system presented in Chapters
2 and 3 can be used effectively to study specific behaviors. With more accurate and
complex computer vision systems [1][28]{29][27][30] being developed, we anticipate
that many more behavior features will be discovered. Therefore, we will be able to
combine the automatic egg onset detection and behavior studies together and explore
the temporal correlation between egg-laying and other behavioral characteristics more
effectively. Moreover, the ability to automatically detect egg-laying events will make it
possible to use these correlations between other behaviors and egg-laying, which pre-
viously could only be assayed through time-consuming human analysis of videotapes
[35], as automatically-evaluated features for use in phenotype classification and cluster-

ing studies [28].

More generally, egg-laying has historically been an extremely useful assay for genetic
analysis of diverse aspects of neuromuscular function. For example, egg-laying has pro-
vided a behavioral measure for the activity of the Go/Gq signaling network in neurons
and muscle cells [3] and for neuromodulation by serotonin, acetylcholine, and neuropep-
tides [85][91][89]. The egg-laying assays typically used in genetic studies are generally
indirect measures of overall egg-laying rate, and consequently allow limited inference
about the functions of specific mutant genes in the behavior. Quantitative assays of the
temporal pattern of egg-laying can in principle make it possible to distinguish effects
on different egg-laying signal transduction pathways [88][89]. The automated methods
for egg-detection described here should greatly facilitate these more detailed behavioral

analyses.
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Part of the chapter will appear in the following publications.

e W. Geng, P. Cosman, and W. R. Schafer. “Egg Onset Detection Using Deformable
Template Matching.” IASTED International Conference on Computer Graphics
and Image Processing(CGIM2004), Kauai, Hawaii, August 2004, to appear.

e W. Geng, P. Cosman, M. Palm, and W. R. Schafer. “C. elegans Egg-laying Detec-
tion and Behavior Study Using Image Analysis.” submitted to EURASIP Journal

on Applied Signal and Image Processing, January 2004.

I was the primary researcher and the co-author. Dr. Pamela C. Cosman and Dr. William

R. Schafer directed and supervised the research which forms the basis for this chapter.



Chapter 7

Summary

This dissertation starts with presenting the idea of using machine vision and statistical
learning techniques to study C. elegans behavioral phenotypes, therefore gaining in-
sights into their corresponding genotypes. Then the dissertation addresses individual
system blocks (segmentation, tracking, feature extraction, statistical learning for natu-
ral clustering, classification, and C. elegans egg detection). Our contributions in these

aspects are summarized next.

7.1 Contributions

e Developed a content based segmentation scheme to improve the segmentation

results.
e Created a tracking algorithm to track worm movement.

e Created a comprehensive set of 253 features that measure worm morphological,

locomotion, behavior, and texture information.

105
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e Developed a natural clustering scheme to visualize the mutant samples in a low

dimensional feature space and also correlate the phenotypes and their underlying

genotypes.

e Evaluated and identified that Random Forests classification method is best among
a set of classifiers in distinguishing the phenotypes. The important features can

also be identified in the process.

e Using the above machine vision system, we have developed automated algorithms
and procedures to identify egg-laying events and the behavior changes surround-

ing the events.

7.2 Application of the System to Genetic Study

7.2.1 Quantitative Definition of Behavioral Mutant Phenotypes

In this dissertation, we have shown that quantitative morphological, locomotion, and
texture features obtained from digital video recordings can be used to distinguish the
behavioral phenotypes of C. elegans mutants. As shown in Table 5.3, a reduced set of
approximately 25 features is sufficient to identify visibly dissimilar mutant types with
very high reliability. Furthermore, these features can often be used to distinguish be-
tween types with highly similar phenotypes (e.g. unc-2 and unc-36) that can not be
reliably identified even by an experienced human observer. Thus, the parameters in the
reduced feature set are likely to have great utility in assessing subtle or modest abnor-
malities in behavior caused by hypomorphic mutant alleles or by incompletely penetrant

dsRNA inhibition.

These studies also provide insight into the nature of specific mutant phenotypes.
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For example, unc-36, unc-29, unc-38 and unc-2 have all been categorized as “weak
kinkers”, a term that has been difficult to define precisely. From Tables 4.3 and A.1, it
is apparent that these mutants share many common effects on the variables used in our
classification; in particular, all have a substantially higher angle change rate and sub-
stantially lower centroid movement and global speed parameters than wild-type. This
combination of characteristics (increased body bending and a decreased rate of move-
ment) thus provides an operational definition of the “kinker” phenotype. Likewise, the
combination of increased centroid movement and increased angle change rate provides
a functional definition of goa-1’s “hyperactive loopy” phenotype, while increased length
and length/eccentricity and decreased angle change rate and speed define the “long, slow
and floppy” phenotype of eg/-19. In some cases, significant phenotypic differences are
identified that are unnoticed (or unreported) in previous observer-based studies. For ex-
ample, both goa-1 and unc-36 mutants showed particularly large reductions in the ratio
of head-to-tail movement, an abnormality whose neural basis could be investigated in
future studies. Thus, it has been possible not only to obtain precise quantitative de-
scriptions of phenotypic classes whose definitions have previously been subjective and
qualitative, but also to resolve subtle differences within broad classes such as kinker

Uncs.

With the collection of larger data sets, it should be possible to use this approach
to define and subdivide other widely-cited phenotypic classes of C. elegans. For exam-
ple, it should be possible to obtain precise definitions for other classes of uncoordinated
mutants, such as coilers, shrinkers, and loopy mutants. In addition, although we have
focused here on the analysis of phenotypes associated with abnormal locomotion, the
image parameters we have used in this study could also be used to categorize other

classes of behavioral or developmental mutants that involve alterations in body mor-
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phology. Such studies would provide valuable insight into the nature of these additional
phenotypic types; in addition, it would be interesting from an informatics perspective
to learn how the inclusion of genes whose focus of action is outside the neuromuscular

system would impact the importance of features used in classification.

7.2.2 Prospects for Using Behavioral Phenotypes for Bioinformatic
Analysis

The application of machine-based pattern recognition methods also allows us to probe
the similarities between different behavioral patterns based on their clustering in multi-
dimensional feature space. In general, the pattern of phenotypic clustering mirrors the
known similarities in molecular function and cellular site of action of the mutant gene
products. For example, unc-29 and unc-38, which respectively encode « and 3 nicotinic
receptor subunits with overlapping expression patterns, formed a single cluster in the
optimal clustering and have centers that are the closest together by Euclidean distance
(Figure 4.4). Likewise, unc-2 and unc-36 mutants, which are defective in the « — 1 and
o —2 subunits respectively of the neuronal N-type calcium channel, form a single cluster
in the optimal k-means clustering, and the centers of these two types’ data clouds are
relatively close in feature space. In fact, the centers for all four of these types (which
have all been designated as kinker Uncs and all encode excitatory ion channels whose
focus of action is primarily at body muscle neuromuscular junctions) are closer to one
another than to the other Unc mutants or to wild-type. Thus, the quantitative phenotypic
signature obtained through behavioral tracking appears to correspond well to the under-

lying functional defects of the mutants we analyzed.
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We anticipate that this type of comprehensive quantification of mutant behav-
ioral phenotypes will have powerful applications in functional genomic studies. Clus-
tering and pattern recognition analysis of microarray-derived gene expression profiles
has provided important information about the likely functions of novel gene products in
C. elegans and other organisms [47]. In principle, a behavioral phenotype represents a
similarly complex quantitative signature whose direct linkage to nervous system activ-
ity makes it particularly useful for classifying genes that function in excitable cells. In
several genome-wide deletion and RNAi-based knockout surveys undertaken in C. ele-
gans, the identification and classification of behavioral and other non-lethal phenotypes
has been a crucial limiting factor ([26][96]). Using the machine-based phenotyping
approaches described here, it should be possible to record the behavior of an uncharac-
terized knockout strain, compare its phenotypic pattern to a database of known mutants,
and make an informed initial hypothesis about the molecular pathways in which the mu-

tant gene product participates.

7.2.3 Applications for Computer Vision-based Quantification of Mu-

tant Phenotypes

Hundreds of genes have been identified in C. elegans that affect behavior and morphol-
ogy in specific ways. Our long-term aim is to collect data on large numbers of mutant
types and effectively classify them according to their phenotypic similarity. With an
increasing set of mutant types, it becomes progressively more challenging to identify
features that effectively classify and distinguish the large variety of worm types. The im-
age processing methods developed here, including new features that require accurately

identifying the head and tail regions of the animal, allow us to achieve high classification
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accuracy even for a data set involving 16 different mutant types with subtle distinctions

that are hard to classify by eye.

7.2.4 Application of Computer Vision System to Specific Behavior

Study

The image processing and computer vision methods developed in this dissertation are
basic building blocks for studying specific C. elegans behaviors. For example, Chapter
6 shows the methods to automatically detect egg-laying events which allow the study
of egg-laying events on a large scale. We anticipate that similar studies can be readily
conducted using similar principles. For example, an interesting study could be auto-
mated reversal detection and the behavioral changes surrounding the reversal events.
Future studies with multi-animal behaviors such as mating, social feeding, etc, can also
take advantage of the methods developed. The algorithms developed here for tracking,
head/tail recognition and feature extraction will be an essential part of a completely au-

tomated C. elegans tracking and identification system.



Appendix A

FEATURE DESCRPTIONS

Table A.1: 253 features statistics and descriptions.

worm type

Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
AREAMIN Mean | 7867 | 6054 | 5669 | 6377 | 7152 | 7318 | 7755 | 7040
{min arca of worm) Std 596.3| 550.7| 735.5| 558.5{ 564.9| 628.7| 661.4| 494.8
AREAMAX Mean | 8440 [ 6501 | 5925 | 6744 | 7560 | 7741 | 8222 | 7486
{max area of worm) Std 715.9( 537.4 | 750.0 573.01 614.9| 666.0] 652.8| 630.4
AREAAVG Mean | 8132 | 6272 | 5798 | 6557 | 7347 | 7527 | 7990 | 7266
(avg arca of worm) Std 636.8( 5325 742.6 563.2| 579.6| 635.0| 622.3| 567.8
HGHTMIN Mean | 97.9 | 91.1 | 111.4] 1005 103.2| 1045| 1163 | 1147
(min height of MER) Std 215 | 136 | 482 | 296 | 282 | 245 | 31.8 | 324
HGHTMAX Mean | 282.8| 227.5  167.8( 240.6 | 231.2 | 241.2 | 304.5| 2334
(maxheight of MER) Std 216 | 229 | 504 | 313 | 323 | 269 | 286 | 317
HGHTAVG Mean | 1954| 1589 | 139.1( 171.3 | 167.6 | 172.7} 216.7| 173.7
(avg height of MER) Std 246 | 194 | 497 | 29.5 | 29.8 | 25.2 | 32.8 | 308
WDTHMIN Mean | 101.3( 92.7 | 121.2( 100.5} 109.1 | 107.8 | 107.9| 1094
(min width of MER) Std 228 | 153 | 514 | 261 | 287 | 227 | 261 | 272
WDTHMAX Mean | 284.6| 226.8 | 1784 236.7 | 234.8 | 2427 2964 | 227.1
(max width of MER) Std 165 | 19.7 | 53.8 | 31.5 | 278 | 309 | 30.6 | 348

Continued on next page
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
WDTHAVG Mean | 199.9{ 160.9 | 151.5] 171.0| 1734} 175.0 [ 202.8| 168.5
(avg width of MER) Std 225 | 19.0 | 525 | 287 | 283 | 250 | 305 | 304
LNGTHMIN Mean | 277.8| 232.0| 197.7] 255.5| 251.6 | 263.0 [ 307.9| 264.1
(min length) Std 13.1 | 126 | 187 | 100 | 109 | 141 | 17.7 | 131
LNGTHMAX Mean | 299.1| 254.5 | 2174 2762} 273.9 | 288.6 | 331.2| 288.0
(max length) Std 137 | 133 | 204 [ 109 | 124 | 13.7 | 145 | 110
LNGTHAVG Mean | 288.9| 2434 | 207.6( 266.0 | 262.9 | 276.2 | 320.1| 276.0
(avg length) Std 133 | 128 | 196 [ 102 | 116 | 135 | 14.1 | 10.7
WHRATMIN Mean | 0.4 0.4 0.9 0.5 0.5 0.5 04 0.5
(min width-to-height ratio of MER) Std 0.1 0.2 0.7 0.2 0.3 0.2 0.2 0.2
WHRATMAX Mean | 3.0 2.5 2.1 2.5 24 24 2.7 2.1
(max width-to-height ratio of MER) Std 0.7 0.5 1.5 0.9 0.7 0.7 0.9 0.7
WHRATAVG Mean | 1.4 1.3 1.5 1.3 1.3 1.3 1.3 1.2
(avg width-to-height ratio of MER) Std 0.3 0.3 1.0 0.5 04 0.3 04 04
MERFLMIN Mean | 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
(min ratio of worm area to MER area) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
MERFLMAX Mean | 0.4 0.4 0.4 04 0.4 0.4 0.3 0.4
(max ratio of worm area to MER area) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1
MERFLAVG Mean | 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3
(avg ratio of worm area to MER area) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
MAJORMIN Mean | 274.2| 191.9 | 195.1} 2164 2157 | 2103 | 279.1| 204.9
(min length of best-fit ellipse’s major axis) Std 19.1 | 220 | 355 | 240 | 279 | 254 | 410 | 31.0
MAJORMAX Mean | 3269| 268.2 | 240.0 290.6 [ 283.8 | 294.1 [ 3503 | 296.3
(max length of best-fit ellipse’s major axis) Std 154 | 166 | 260 | 14.1 18.0 17.0 19.8 | 206
MAJORAVG Mean | 304.8| 237.8 | 219.9( 2583  252.5( 255.8 | 320.0] 253.2
(avg length of best-fit ellipse’s major axis) Std 149 | 167 | 29.0 | 160 [ 21.0 | 195 | 267 | 233
MINORMIN Mean | 522 | 549 | 429 | 556 | 57.2 | 61.3 | 60.4 | 60.2
(min length of best-fit ellipse’s minor axis) Std 3.5 4.6 9.4 6.0 8.6 7.6 8.2 7.5
MINORMAX Mean | 93.6 | 949 | 72.7 | 941 | 98.7 | 109.2| 110.8| 104.6
(max length of best-fit ellipse’s minor axis) Std 105 | 7.2 172 | 137 124 11.6 15.8 14.8
MINORAVG Mean | 700 | 733 | 564 | 72.8 | 76.5 | 84.1 | 829 | 81.1
(avg length of best-fit ellipse’s minor axis) Std 5.7 5.4 124 | 8.1 9.7 9.1 106 | 9.8
ECCTYMIN Mean | 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
(min best-fit ellipse’s eccentricity) Std 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1
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Variable Stat. | wild | goal | micl | uc36 | uc38 | uc29 | egl9 | uc2
ECCTYMAX Mean | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(max best-fit ellipse’s eccentricity) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ECCTYAVG Mean | 1.0 0.9 1.0 1.0 0.9 0.9 1.0 0.9
(avg best-fit ellipse’s eccentricity) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MVHLFMIN Mean | 0.2 0.3 0.0 0.0 0.0 0.0 0.1 0.0
(min distance moved in 0.5 seconds) Std 0.5 0.7 0.0 0.1 0.0 0.1 0.2 0.1
MVHLFMAX Mean | 59.6 | 53.1 | 5.7 18.1 | 19.7 | 257 | 357 | 122
(max distance moved in 0.5 seconds) Std 8.4 8.5 34 6.6 59 79 332 | 34
MVHLFAVG Mean | 243 | 245 | 1.0 6.4 6.1 83 110 | 3.7
(avg distance moved in 0.5 seconds) Std 5.6 7.3 0.4 23 2.5 3.6 32 1.8
PRP1OMIN Mean | 133 | 7.3 0.3 37 44 6.1 125 | 2.6
(min distance moved in 5 sec or 10 frames) Std 11.7 { 104 | 0.6 4.1 6.9 9.0 135 | 2.8
PRP1OMAX Mean | 412.3| 3764 | 155 | 1183 | 120.1 | 160.6 | 198.7| 81.6
(max distance moved in 5 sec or 10 frames) Std 744 | 55.7 104 | 339 | 393 | 646 | 464 | 27.7
PRP10AVG Mean | 198.5| 165.6 | 4.9 571 | 538 | 69.6 | 100.6| 33.4
(avg distance moved in 5 sec or 10 frames) Std 536 | 583 32 235 244 35.7 320 18.6
PRP20MIN Mean | 44.8 | 284 | 0.9 8.6 9.2 194 | 357 | 7.2
(min distance moved in 10 sec or 20 frames) | Std 414 | 404 1.1 9.7 9.8 21.7 | 37.8 | 8.0
PRP20MAX Mean | 740.8| 673.4( 20.5 | 211.7| 214.1 | 273.0| 340.7| 143.2
(max distance moved in 10 sec or 20 frames) | Std 14631 1244 164 | 725 | 794 1162 86.8 | 56.7
PRP20AVG Mean | 370.0] 2849 | 7.1 984 | 985 | 1285( 183.6| 62.8
(avg distance moved in 10 sec or 20 frames) Std 106.1] 104.7| 6.0 478 | 476 | 672 | 649 | 378
PRP30MIN Mean | 91.0 | 643 | 1.6 169 | 21.7 | 37.0 | 59.5 | 126
(min distance moved in 15 sec or 30 frames) | Std 806 | 86.5 | 2.7 18.8 | 29.5 | 46.1 67.6 | 148
PRP30MAX Mean | 1028.4 864.9 ] 24.9 | 291.3 | 2943 | 364.6 | 466.4| 196.7
(max distance moved in 15 sec or 30 frames) | Std 217.1f 2181 232 | 114.6| 1159] 1559} 133.2( 85.9
PRP30AVG Mean | 535.5| 3944 | 9.0 133.8 ) 1399 180.3| 258.8| 88.0
(avg distance moved in 15 sec or 30 frames) Std 156.8{ 148.9] 8.9 725 | 7.1 | 949 | 988 | 55.1
PRP40MIN Mean | 139.8]| 89.7 | 2.5 238 | 312 | 589 | 89.8 | 216
(min distance moved in 20 sec or 40 frames) | Std 113.5{ 1184 4.0 31.7 | 389 | 629 | 951 | 321
PRP4OMAX Mean | 1275.9 1038.4 27.2 | 358.1| 3714 439.1 [ 593.5| 235.6
(max distance moved in 20 scc or 40 frames) | Std 290.1 2853} 26.0 | 156.1| 151.6] 199.8{ 176.5| 109.6
PRP40AVG Mean | 679.6 482.7 | 10.9 | 1674 | 179.9| 2255| 331.2( 1121
(avg distance moved in 20 sec or 40 frames) Std 202.8| 1921 11.8 | 945 | 92.7 115.1 132.7| 74.0
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Variable Stat. | wild | goal | micl | uc36 | uc38 | uc29 | egl9 | uc2
PRPSOMIN Mean | 217.8| 142.1| 3.1 335 | 55.6 | 885 | 1233} 421
(min distance moved in 25 sec or 50 frames) | Std 173.7( 172.3| 6.5 400 [ 701.5 | 859 | 123.7| 61.9
PRP50MAX Mean | 1476.9 1140.7 30.0 | 415.1 | 437.9 | 507.9( 700.2| 269.3
(max distance moved in 25 sec or 50 frames) | Std 364.6| 332.9( 30.5 | 194.8] 187.2| 239.8| 2294| 136.0
PRPS0AVG Mean | 818.6| 568.9| 124 | 200.2 | 223.8| 273.0| 403.5] 139.6
(avg distance moved in 25 sec or 50 frames) Std 25171 2390 143 | 119.7| 1183 1419 162.9] 98.0
PRP60MIN Mean | 315.6 1757} 3.5 46.0 | 649 | 1226 166.7| 57.1
(min distance moved in 30 sec or 60 frames) | Std 2372 1824 6.1 49.1 77.5 1262 165.2| 93.9
PRP60MAX Mean | 1648.4 1216.9 30.8 | 466.2 | 4874 | 573.7 802.1| 291.3
(max distance moved in 30 sec or 60 frames) | Std 422.4| 380.0| 31.6 | 2423} 2154 279.9{ 277.7| 164.7
PRP60AVG Mean | 953.6( 642.1 | 14.0 | 2262 | 25551 3133 | 465.6| 157.8
(avg distance moved in 30 sec or 60 frames) | Std 296.4| 2632} 169 | 143.3] 137.8| 167.5| 198.4] 1193
TOTMOVE Mean | 13645 13595| 576 | 3134 | 2807 | 3360 | 5854 | 1415
(total amount of movement in 5 minutes) Std 3195 | 4142 | 206 1313 | 1197 | 1517 | 1884 | 796
RV20MAX Mean | 4.8 5.0 0.6 23 23 3.1 23 1.4
(max number of reversals in 10 sec) Std 1.2 1.1 0.7 0.5 0.8 1.0 0.9 0.6
RV20AVG Mean | 1.2 1.7 0.1 0.5 0.4 0.6 04 03
(avg number of reversals in 10 sec) Std 0.5 0.5 0.1 0.2 0.2 0.3 0.3 0.1
RV40MIN Mean | 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0
(min number of reversals in 20 sec) Std 0.2 0.6 0.0 0.1 0.0 0.0 0.0 0.0
RV40MAX Mean | 7.1 7.4 0.7 32 3.2 4.2 3.1 1.9
(max number of reversals in 20 sec) Std 2.0 1.8 0.8 0.8 12 1.4 1.5 0.7
RV40AVG Mean | 2.4 33 0.1 1.1 0.8 1.1 0.8 0.5
(avg number of reversals in 20 sec) Std 1.1 1.0 0.1 04 0.4 0.5 0.6 0.3
RV60MIN Mean | 0.3 1.3 0.0 0.1 0.0 0.0 0.0 0.0
(min number of reversals in 30 sec) Std 0.8 1.3 0.0 0.4 0.1 0.1 0.1 0.0
RV60OMAX Mean | 8.9 9.4 0.7 4.0 38 5.0 3.9 2.3
(max number of reversals in 30 sec) Std 2.7 24 0.9 1.1 1.6 1.8 2.0 0.9
RV60AVG Mean | 3.6 5.0 0.1 1.6 1.2 1.7 1.3 0.8
(avg number of reversals in 30 sec) Std 1.7 1.5 0.2 0.7 0.7 0.8 0.9 0.4
RV8OMIN Mean | 0.9 2.5 0.0 0.3 0.1 0.1 0.1 0.0
(min number of reversals in 40 sec) Std 14 1.8 0.0 0.5 0.3 0.3 04 0.2
RVSOMAX Mean | 105 | 113 { 0.8 4.7 43 5.8 4.5 2.6
(max number of reversals in 40 sec) Std 34 3.0 1.0 1.5 19 22 25 1.1
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | wuc?
RV80AVG Mean | 4.9 6.6 0.2 2.1 1.7 23 1.7 1.1
(avg number of reversals in 40 sec) Std 22 2.0 0.3 0.9 0.9 1.1 1.3 0.6
RV100MIN Mean | 1.7 38 0.0 0.6 0.2 0.2 0.2 0.2
(min number of reversals in 50 sec) Std 2.0 2.4 0.0 0.8 0.6 0.6 0.7 0.4
RVI0OOMAX Mean | 11.8 | 13.1 | 0.8 5.3 4.8 6.2 5.0 2.9
(max number of reversals in 50 sec) Std 4.2 35 1.1 1.7 22 2.5 2.8 1.3
RV100AVG Mean | 6.1 8.2 0.2 2.7 2.1 2.8 2.1 1.4
(avg number of reversals in 50 sec) Std 2.8 2.6 04 12 12 1.4 1.6 0.7
RV120MIN Mean | 2.5 5.3 0.0 0.9 0.4 0.5 0.4 0.3
(min number of reversals in 60 sec) Std 2.7 3.0 0.1 1.1 0.9 0.9 0.9 0.5
RV120MAX Mean | 12.9 | 148 | 0.9 5.9 5.2 6.9 5.4 3.2
(max number of reversals in 60 sec) Std 4.9 4.0 1.1 1.9 24 2.8 3.2 1.4
RV120AVG Mean | 7.3 9.9 0.3 32 2.5 34 2.5 1.6
(avg number of reversals in 60 sec) Std 34 31 0.5 14 1.5 1.7 20 0.9
TOTRV Mean| 292 | 398 | 1.1 125 | 93 133 | 98 6.3
(total number of reversals in 5 minutes) Std 12.6 | 123 1.6 5.0 4.9 6.0 7.1 3.1
HDTHKMIN Mean | 94 9.2 9.5 8.8 9.6 9.6 8.7 10.0
(min bead width) Std 0.9 1.5 1.1 14 1.0 0.9 0.8 1.0
HDTHKMAX Mean | 12,6 | 13.1 [ 133 [ 128 | 128 | 126 | 113 | 142
(max head width) Std 0.7 0.7 0.9 1.3 0.8 0.9 1.6 1.2
HDTHKAVG Mean| 110 | 112 | 114 [ 108 [ 113 [ 111 | 9.9 12.2
(avg head width) Std 0.7 0.9 0.7 1.1 0.8 0.7 0.6 09
TLTHKMIN Mean | 8.2 8.2 8.9 7.7 7.1 6.4 8.1 7.7
(min tail width) Std 1.1 1.3 1.6 1.3 0.8 1.0 0.8 1.1
TLTHKMAX Mean | 129 | 128 | 128 | 12.1 | 13.1 | 126 | 113 | 123
(max tail width) Std 1.7 1.2 1.4 L5 1.4 24 1.3 1.5
TLTHKAVG Mean | 106 | 106 | 109 [ 99 10.1 | 95 9.7 10.2
(avg tail width) Std 1.2 i1 1.2 1.0 0.9 1.3 0.8 1.0
CNTHKMIN Mean | 25.7 | 23.0 | 253 | 224 | 255 | 247 | 240 | 238
(min center width) Std 1.3 1.4 2.1 1.5 1.6 1.8 1.5 1.4
CNTHKMAX Mean | 28.1 | 25.0 | 27.7 | 245 | 27.7 | 268 | 26.0 | 264
(max center width) Std 1.9 1.4 2.5 1.9 1.8 2.2 1.8 2.7
CNTHKAVG Mean | 268 | 240 | 264 | 234 | 265 | 258 [ 250 | 251
(avg center width) Std 1.4 14 22 1.6 1.6 1.9 1.5 2.0

Continued on next page




Table A.1 - continued from previous page

116

Variable Stat. | wild | goal | nicl | uc36 | wuc38 | uc29 | egl9 | uc?
HDLNRMIN Mean | 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
(min head width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HDLNRMAX Mean | 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1
(max head width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HDLNRAVG Mean | 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0
(avg head width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TLLNRMIN Mean | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(min tail width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TLLNRMAX Mean | 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1
(max tail width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TLLNRAVG Mean | 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
(avg tail width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CNLNRMIN Mean | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(min center width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CNLNRMAX Mean | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(max center width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CNLNRAVG Mean | 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(avg center width to length ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HDTLTRMIN Mean | 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9
(min head to tail width ratio) Std 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HDTLTRMAX Mean | 1.4 1.4 1.4 1.5 1.6 1.7 1.3 1.6
(max head to tail width ratio) Std 0.2 0.2 0.3 0.4 0.2 0.3 0.1 0.2
HDTLTRAVG Mean | 1.1 1.1 1.1 1.1 12 1.3 1.1 1.2
(avg head to tail width ratio) Std 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.1
HCTHRMIN Mean | 0.4 0.4 04 04 04 04 0.4 04
(min head to center width ratio) Std 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
HCTHRMAX Mean | 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.6
(max head to center width ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
HCTHRAVG Mean | 0.4 0.5 0.5 0.5 0.5 0.5 04 0.5
(avg head to center width ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TCTHRMIN Mean | 0.3 04 0.4 0.4 0.3 03 0.4 0.3
(min tail to center width ratio) Std 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1
TCTHRMAX Mean | 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5
(max tail to center width ratio) Std 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
TCTHRAVG Mean | 0.4 0.5 0.4 0.5 04 04 0.4 0.4
(avg tail to center width ratio) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
AMPMIN Mean | 374 | 404 | 265 | 42.1 | 426 | 480 | 468 | 479
(min amplitude of worm skeleton wave) Std 34 4.6 94 6.0 7.0 7.5 8.9 6.7
AMPMAX Mean | 79.0 | 822 578 | 789 | 834 | 925 956 | 894
(max amplitude of worm skeleton wave) Std 9.9 7.4 146 | 126 | 116 | 105 162 | 122
AMPAVG Mean | 554 | 593 | 41.1 | 589 | 619 | 69.8 | 694 | 67.5
(avg amplitude of worm skeleton wave) Std 58 5.5 113 | 83 9.1 8.8 108 | 8.7
AMPRMIN Mean | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(min amplitude ratio) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AMPRMAX Mean | 0.8 0.8 0.6 0.7 0.8 0.8 0.7 0.7
(max amplitude ratio) Std 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1
AMPRAVG Mean | 0.3 0.4 0.2 0.3 03 0.3 0.3 0.3
(avg amplitude ratio) Std 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ANCHRMIN Mean | 2.8 4.1 4.5 3.9 4.0 3.7 23 4.0
(min angle change rate) Std 03 0.6 1.1 0.5 0.6 0.5 0.4 0.6
ANCHRMAX Mean | 3.9 6.7 7.4 6.4 6.0 59 3.5 6.9
(max angle change rate) Std 0.4 0.9 1.8 0.8 0.8 0.9 0.6 1.0
ANCHRAVG Mean | 3.3 5.2 5.9 5.0 5.0 4.7 2.8 5.4
(avg angle change rate) Std 03 0.7 1.4 0.6 0.7 0.7 0.5 0.8
ANCHSMIN Mean | 1.8 2.7 3.0 24 2.6 24 1.6 2.6
(min standard deviation of angle change) Std 0.2 03 0.7 0.3 0.3 03 0.2 0.3
ANCHSMAX Mean | 2.7 4.5 52 39 4.0 3.9 24 42
(max standard deviation of angle change) Std 0.2 0.6 1.1 0.4 0.5 0.6 0.4 0.5
ANCHSAVG Mean | 2.2 34 4.0 3.1 3.2 31 2.0 34
(avg standard deviation of angle change) Std 0.2 04 0.9 0.3 04 0.4 03 04
LNMFRMIN Mean | 791.8| 627.6 ) 528.1{ 737.7| 683.0 [ 722.6 | 1047.3 7304
(min ratio of worm length to MER fill) Std 770 | 72.0 | 1489 87.1 | 80.5 | 8.7 | 118.6| 1145
LNMFRMAX Mean | 1634 | 1206 | 807 | 1452 | 1231 | 1347 | 2078 | 1384
(max ratio of worm length to MER fill) Std 1410 131.7( 199.9| 147.7| 137.5| 1783| 215.7| 208.1
LNMFRAVG Mean | 1225 | 906 667 1072 | 948 1021 | 1558 | 1037
(avg ratio of worm length to MER fill) Std 113.7| 94.6 175.1f 109.2} 1102 129.8( 175.6| 160.7
LNECRMIN Mean | 285.6| 243.6 | 205.5| 265.7| 2629 277.0 [ 317.8| 2783
(min ratio of worm length to eccentricity) Std 13.7 | 129 19.6 | 109 12.2 15.9 18.3 11.5
LNECRMAX Mean | 313.11 282.0 | 237.3| 3019 ( 304.9 | 328.1] 3589 | 330.5
(max ratio of worm length to eccentricity) Std 157 | 184 | 344 | 246 | 305 | 282 | 242 | 383
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc?
LNECRAVG Mean | 299.9| 262.8 [ 220.3| 283.4 | 282.8 | 301.2 | 337.5| 301.3
(avg ratio of worm length to eccentricity) Std 142 | 142 | 224 150 | 180 | 184 | 166 | 17.2
FATMIN Mean | 268 | 245 | 267 | 236 | 267 | 260 | 23.9 | 252
(min fatness = length/area) Std 1.3 1.4 1.7 15 1.5 1.8 1.1 1.5
FATMAX Mean | 29.7 | 27.1 | 292 | 258 | 293 | 287 | 26.0 | 276
(max fatness = length/area) Std 19 14 1.9 1.8 1.8 23 1.3 23
FATAVG Mean | 282 | 258 | 279 | 247 | 28.0 | 273 | 250 | 264
(avg fatness = length/arca) Std 1.5 1.4 1.8 1.6 1.6 2.0 1.2 1.8
LNWDRMIN Mean | 1.0 1.1 1.3 1.1 1.1 1.2 1.1 1.2
(min of worm length to MER width ratio) Std 0.1 0.1 0.5 0.2 0.2 0.2 0.1 0.2
LNWDRMAX Mean | 3.0 2.6 2.1 2.8 25 2.7 3.1 2.6
(max of worm length to MER width ratio) Std 0.6 0.4 1.0 0.6 0.6 0.6 0.6 0.6
LNWDRAVG Mean | 1.7 1.7 1.6 1.8 1.7 1.8 1.9 1.8
(avg of worm length to MER width ratio) Std 0.3 0.2 0.7 0.4 0.3 0.4 0.3 04
CNTMVMIN Mean | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(min of normalized centroid movement) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CNTMVMAX Mean | 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
(max of normalized centroid movement) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CNTMVAVG Mean | 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
(avg of normalized centroid movement) Std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NUMOMEGA Mean | 75.0 | 55.1 [ 1258; 97.8 | 96.1 | 925 | 958 | 87.0
(total number of frames the worm has omega | Std 16.1 | 209 | 703 | 50.7 | 485 | 450 | 33.7 | 39.1
shape)
OMEGACHG Mean | 50.0 | 38.1 [ 372 | 267 | 29.1 | 28.0 | 32.0 | 225
(number of times the worm changes from | Std 9.1 126 | 132 | 8.0 8.7 8.6 7.4 7.4
non-omega shape to omega shape)
HEADBRMIN Mean | 67.1 | 68.6 | 708 | 725 | 70.0 | 70.8 | 785 | 71.8
(min head brightness) Std 4.9 7.2 7.2 8.1 57 6.0 5.7 6.9
HEADBRMAX Mean| 91.1 | 946 | 91.0 | 953 | 933 | 941 | 99.1 | 959
(max head brightness) Std 54 8.0 7.6 8.4 6.2 6.9 7.0 7.9
HEADBRAVG Mean| 79.5 | 820 | 81.1 | 841 | 81.8 | 825 | 839 | 844
(avg head brightness) Std 5.0 7.6 7.2 8.1 5.9 6.3 59 73
TAILBRMIN Mean} 49.8 | 49.1 | 581 | 71.2 | 533 | 51.8 | 65.6 | 68.3
(min tail brightness) Std 3.6 4.8 6.9 7.8 3.8 36 5.7 7.7
TAILBRMAX Mean | 673 | 642 | 732 | 925 | 708 | 68.1 | 855 | 87.9
(max tail brightness) Std 4.9 6.8 7.4 8.6 53 5.5 7.4 8.8
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
TAILBRAVG Mean | 589 | 56.7 | 65.7 | 82.1 62.0 599 | 755 | 784
(avg tail brightness) Std 4.1 5.7 7.1 8.2 4.5 4.3 6.2 8.1
CNTBRMIN Mean| 39.0 | 463 | 473 | 48.7 | 414 | 43.1 | 458 | 49.1
(min center brightness) Std 2.3 6.6 5.1 5.7 2.8 2.7 3.2 4.0
CNTBRMAX Mean | 48.9 | 573 | 545 | 594 | 496 | 514 | 57.6 | 584
(max center brightness) Std 3.0 7.1 6.1 6.2 34 34 7.5 44
CNTBRAVG Mean | 440 | 52.1 | 51.0 | 543 | 456 | 474 | 515 | 539
(avg center brightness) Std 2.6 6.9 5.6 5.9 3.0 29 38 4.1
AVGBRMIN Mean | 456 | 51.3 533 | 56.7 | 485 | 49.7 | 53.7 | 56.8
(min whole body brightness) Std 24 5.9 4.8 6.0 2.9 2.8 34 4.5
AVGBRMAX Mean| 55.6 | 61.8 | 60.6 | 675 | 56.6 | 57.8 | 65.7 | 66.1
(max whole body brightness) Std 29 6.2 5.7 6.2 33 3.5 7.0 49
AVGBRAVG Mean | 508 | 56.9 57.0 | 623 527 | 539 | 59.6 | 61.6
(avg whole body brightness) Std 2.6 6.1 52 6.0 3.0 3.1 3.9 4.6
HTBRRMIN Mean | 1.1 1.2 1.1 0.9 1.1 1.1 1.0 0.9
(min head/tail brightness) Std 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HTBRRMAX Mean | 1.7 1.8 1.5 1.2 1.6 1.7 14 1.3
(max head/tail brightness) Std 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1
HTBRRAVG Mean | 1.4 1.5 1.3 1.0 13 14 1.2 1.1
(avg head/tail brightness) Std 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
HTBRDMIN Mean | 244 | 172 | 204 | 19.0 | 247 | 239 | 28.6 18.4
(min head brightness - tail brightness) Std 4.2 6.1 6.2 5.0 53 5.4 4.8 5.2
HTBRDMAX Mean | 46.1 | 41.7 | 39.3 | 40.t 474 | 46.1 458 | 416
{max head brightness - tail brightness) Std 42 6.5 6.0 5.2 5.2 5.6 5.0 6.2
HTBRDAVG Mean | 355 | 2908 | 30.1 | 298 | 362 | 351 | 374 | 305
(avg head brightness - tail brightness) Std 4.2 6.2 57 5.0 5.2 53 4.6 5.5
HEADWDMIN Mean | 17.7 | 166 | 171 | 161 | 178 | 176 | 152 | 176
(min of head area width average) Std 1.3 1.5 1.8 15 1.5 13 1.1 1.2
HEADWDMAX Mean | 21.6 | 21.1 [ 21.6 | 199 | 21.2 | 209 | 179 | 21.0
{max of head area width average) Std 15 1.2 2.1 1.7 1.6 2.0 14 1.6
HEADWDAVG Mean | 196 | 188 | 192 | 18.0 | 194 | 192 | 166 | 193
(avg of head area width average) Std 12 1.2 1.5 14 1.4 1.5 1.0 1.2
TAILWDMIN Mean | 186 [ 169 | 186 | 158 | 182 | 175 | 16.1 | 17.0
(min of tail area width average) Std 1.4 1.1 1.5 1.3 1.4 1.6 1.0 1.3
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
TAILWDMAX Mean | 22.8 | 205 [ 223 | 194 | 229 | 224 | 192 | 210
(max of tail arca width average) Std 1.9 1.4 2.1 1.7 1.9 24 1.2 2.2
TAILWDAVG Mean | 20.7 | 188 | 204 | 17.6 | 206 | 200 | 17.7 | 19.0
(avg of tail area width average) Std 1.5 12 1.6 1.4 1.5 1.8 1.0 1.6
CNTWDMIN Mean | 25.0 | 225 | 25.0 | 21.5 | 250 | 243 224 | 229
{min of center area width average) Std 1.2 1.4 1.9 1.4 1.5 1.8 1.1 14
CNTWDMAX Mean | 26.8 | 239 | 262 | 229 | 266 | 258 | 23.7 | 246
(max of center area width average) Std 1.9 1.3 2.0 1.7 1.8 2.2 14 2.1
CNTWDAVG Mean | 25.8 | 232 | 256 | 222 | 257 | 250 | 23.0 | 238
(avg of center area width average) Std 1.4 1.3 19 1.5 1.5 1.9 1.2 1.7
AVGWDMIN Mean | 23.0 | 21.0 [ 23.0 | 200 | 23.1 | 224 | 205 | 214
(min of whole body width average) Std 1.2 1.3 1.6 1.3 1.4 1.6 1.0 1.3
AVGWDMAX Mean | 250 | 226 | 244 | 21.5 | 247 | 241 | 21.7 | 230
(max of whole body width average) Std 1.7 1.2 1.7 1.6 1.6 2.0 1.3 1.8
AVGWDAVG Mean | 23.9 | 21.7 | 23.7 | 20.7 | 238 | 23.2 | 21.1 222
(avg of whole body width average) Std 13 1.2 1.6 14 14 1.8 1.1 1.5
HTWDRMIN Mean | 0.8 0.8 0.8 0.9 0.8 0.8 0.8 09
(min head/tail width ratio) Std 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HTWDRMAX Mean | 1.1 12 1.1 12 1.1 1.1 1.1 1.2
(max head/tail width ratio) Std 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HTWDRAVG Mean | 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0
(avg head/tail width ratio) Std 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HBBDRMIN Mean | 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8
(min head/whole body brightness) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
HBBDRMAX Mean | 0.9 1.0 0.9 0.9 0.9 0.9 0.8 0.9
(max head/whole body brightness) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0
HBBDRAVG Mean | 0.8 0.9 0.8 0.9 0.8 0.8 0.8 0.9
(avg head/whole body brightness) Std 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
HANGCRMIN Mean | 4.6 4.2 4.4 4.7 4.5 43 39 53
(min head area angle change rate) Std 03 0.5 0.6 0.6 04 0.4 0.3 0.7
HANGCRMAX Mean | 11.1 | 12,0 | 142 | 124 | 11.3 | 10.6 | 100 | 140
(max head area angle change rate) Std 0.7 0.9 2.1 12 0.8 0.9 0.4 1.6
HANGCRAVG Mean | 7.8 8.0 9.1 8.4 7.9 7.4 6.9 9.5
(avg head area angle change rate) Std 04 0.6 11 0.8 0.6 0.5 0.3 1.1
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc?
TANGCRMIN Mean | 4.2 54 5.1 5.3 5.7 5.7 4.4 5.7
(min tail area angle change rate) Std 0.3 0.5 1.2 0.7 0.8 0.8 0.5 0.8
TANGCRMAX Mean| 103 | 13.9 | 135 | 127 | 136 | 13.8 | 105 | 136
(max tail area angle change rate) Std 0.5 1.5 19 1.2 1.6 1.7 1.0 1.8
TANGCRAVG Mean | 7.1 9.5 9.1 8.9 9.5 9.6 74 9.5
(avg tail area angle change rate) Std 03 0.8 14 0.8 1.2 1.1 0.7 1.2
CANGCRMIN Mean | 5.9 6.7 6.4 6.9 6.9 6.9 5.7 7.3
(min center arca angle change rate) Std 0.2 0.5 0.8 0.5 0.5 0.5 0.4 0.7
CANGCRMAX Mean | 8.7 10.1 | 10.1 | 103 | 101 | 10.1 | 85 11.0
(max center area angle change rate) Std 03 0.7 1.1 0.6 0.7 0.7 04 0.8
CANGCRAVG Mean | 7.3 83 8.2 8.6 8.5 8.5 7.1 9.1
(avg center area angle change rate) Std 0.2 0.5 09 0.5 0.5 0.5 04 0.7
BANGCRMIN Mean | 8.1 9.4 9.3 9.0 9.1 8.9 7.7 9.1
(min whole body area angle change rate) Std 0.3 0.5 0.6 04 0.5 0.5 0.3 0.6
BANGCRMAX Mean | 116 | 136 | 140 | 13.0 | 13.1 | 129 | 11.0 | 135
(max whole body area angle change rate) Std 04 0.7 1.1 0.6 0.6 0.7 0.5 0.8
BANGCRAVG Mean | 9.7 114 | 114 { 109 | 11.0 | 10.8 | 9.2 11.2
(avg whole body area angle change rate) Std 0.3 0.5 0.7 0.5 0.5 0.6 0.4 0.7
HDAREAMIN Mean | 97521 777.8| 677.1| 8263 | 884.6| 9149 9253 943.5
(min head area ) Std 790 | 879 [ 983 | 8.9 | 828 | 89.1 | 808 | 72.7
HDAREAMAX Mean | 1232 | 1021 | 876 | 1062 | 1109 | 1152 | 1163 | 1170
(max head area ) Std 994 | 84.6 | 1202) 1054 | 1065 109.2| 942 | 100.2
HDAREAAVG Mean | 1098 | 895 775 | 941 994 1031 { 1040 | 1058
(avg head area ) Std 86.1 | 815 | 1052 919 | 906 | 959 | 84.0 | 804
TLAREAMIN Mean | 990 | 762 686 | 785 860 880 959 868
(min tail area ) Std 9.8 | 70.7 | 81.6 | 73.7 | 75.1 | 729 | 824 | 69.1
TLAREAMAX Mean | 1309 | 997 912 | 1023 | 1169 | 1187 | 1234 | 1137
(max tail area ) Std 1449] 108.6 | 118.8] 112.8| 1232 167.81 111.8} 1249
TLAREAAVG Mean | 1145 | 879 798 | 902 1011 | 1031 | 1093 | 1003
(avg tail area ) Std 1176 882 | 93.5 | 893 | 960 | 969 | 934 | 949
CNAREAMIN Mean | 5600 | 4253 | 4016 | 4487 | 5090 | 5201 | 5587 | 4944
(min center area ) Std 423.0{ 383.0| 560.3| 387.0| 393.6( 463.0| 517.0| 358.7
CNAREAMAX Mean | 6112 | 4667 | 4343 | 4869 | 5511 | 5643 | 6041 | 5397
(max center area ) Std 504.9( 395.1| 586.47 4219 440.5| 490.2| 491.4| 501.8
CNAREAAVG Mean | 5844 | 4458 | 4182 | 4675 | 5298 | 5423 | 5819 | 5166
(avg center arca ) Std 451.3| 383.1| 572.0{ 400.7| 410.6| 467.8| 465.5| 418.8
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Variable Stat. | wild | goal | nicl | uc36 | wc38 | uc29 | egl9 | uc2
HDAMPMIN Mean | -19 -15 -13 -17 -18 -18 -21 =20
(min head area amplitude ) Std 2.1 23 3.2 4.1 32 4.3 4.1 32
HDAMPMAX Mean | 188 | 148 | 127 | 165 | 17.1 | 188 | 202 | 188
(max head area amplitude ) Std 1.9 2.0 4.6 4.1 32 3.7 4.2 4.8
HDAMPAVG Mean | -03 | -02 [ -02 | -06 [ -03 | 0.6 -04 | -11
(avg center area atmplitude) Std 1.5 1.8 43 43 3.6 4.1 4.0 44
TLAMPMIN Mean | -16 -17 -10 -17 -17 -19 -20 -18
(min tail area amplitude ) Std 24 1.9 4.9 43 44 4.7 48 4.6
TLAMPMAX Mean | 15.5 | 163 | 9.1 163 | 16.7 | 198 | 19.0 | 16.8
(max tail area amplitude ) Std 23 24 5.8 3.7 52 3.8 5.6 5.5
TLAMPAVG Mean| -03 | -03 [ 0.0 -0.6 | 0.1 1.0 04 | -1.0
(avg tail area amplitude) Std 1.8 2.3 5.1 4.2 5.2 5.2 5.1 5.6
CNTAMPMIN Mean | -34 -29 -23 -36 -36 -38 -41 -43
(min center area amplitude ) Std 7.6 94 18.0 | 163 14.1 15.6 170 | 173
CNTAMPMAX Mean | 31.8 | 269 | 224 | 329 | 350 | 428 | 386 | 373
(max center area amplitude ) Std 7.9 94 2131 176 14.3 15.0 16.8 18.1
CNTAMPAVG Mean | -08 | -0.8 [ 0.1 -5 | 07 | 24 09 | 29
(avg center area amplitude) Std 54 6.2 194 | 134 13.4 14.2 139 | 164
AVGAMPMIN Mean | -26 -22 -18 -28 -28 -29 -32 -33
(min of whole body amplitude average) Std 5.6 6.8 132 | 121 104 11.8 12.5 12.8
AVGAMPMAX Mean | 25.1 | 205 | 176 | 260 [ 27.0 | 329 | 300 | 286
(max of whole body amplitude average) Std 5.7 6.9 157 § 13.1 10.7 114 124 13.6
AVGAMPAVG Mean| -0.6 | -06 | 0.1 -1.2 | -05 1.9 -0.7 | 23
(avg of whole body amplitude average) Std 4.1 4.6 144 | 102 102 | 108 | 10.8 | 124
HDCNTDMIN Mean | 120.9| 857 | 76.6 | 862 | 962 | 954 | 124.1] 772
(min head to centroid distance) Std 8.9 9.9 2121 200 | 135 | 121 | 240 | 187
HDCNTDMAX Mean | 149.1| 124.1 ] 110.7( 1332 1322 136.7| 1659] 132.8
(max head to centroid distance) Std 73 7.8 11.7 | 6.6 7.6 7.2 9.5 9.5
HDCNTDAVG Mean | 136.6| 108.1} 96.0 [ 113.6| 116.0| 118.5| 148.0| 108.5
(avg head to centroid distance) Std 7.1 7.5 146§ 95 9.1 84 134 | 125
TLCNTDMIN Mean | 12221 79.0 | 854 | 905 | 88.6 | 81.0 | 120.8| 82.1
(min tail to centroid distance) Std 9.2 115 19.0 | 15.7 18.0 149 | 258 | 221
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | wuc2

TLCNTDMAX Mean | 1494 119.1 [ 107.2 131.7 | 127.5| 133.1 | 159.5| 133.3
(max tail to centroid distance) Std 7.1 7.7 164 | 6.7 8.7 8.7 9.8 11.1
TLCNTDAVG Mean | 1374 103.0 [ 975 | 1144 | 1103 | 110.1 | 1432} 1109
(avg tail to centroid distance) Std 6.7 8.1 16.7 | 8.0 1.2 10.2 144 13.0
HDTLANMIN Mean | 146.4| 142.8 | 129.7 1253 | 132.6 | 1256 | 1343 | 1179
(min head to centroid vs. tail to centroid an- | Std 7.3 105 | 291 | 241 | 155 | 128 | 213 | 249
gle)
HDTLANMAX Mean | 177.7| 1774 | 173.2| 1758 | 1759 | 1758 | 176.8 | 174.1
(max head to centroid vs. tail to centroid an- | Std 0.5 0.8 13.8 | 4.2 3.5 1.7 1.8 5.7
gle)
HDTLANAVG Mean | 163.8( 162.4 [ 154.0] 1549} 156.8 | 154.0 [ 159.1| 149.9
(avg head to centroid vs. tail to centroid an- | Std 3.0 3.9 192 { 112 | 79 6.1 8.3 124
gle)
HDTLDMIN Mean | 48.9 | 379 | 364 | 434 | 413 | 429 | 52.0 | 44.0
(min head to tail distance) Std 6.9 6.0 6.7 5.9 4.9 5.6 6.7 6.8
HDTLDMAX Mean | 2784 221.7 | 198.9( 239.3 | 234.1 | 238.7 | 298.9| 232.5
(max head to tail distance) Std 137 | 152 | 278 | 155 17.4 169 | 22.7 | 225
HDTLDAVG Mean | 1798 138.8 [ 126.9{ 149.8 | 148.1 | 149.0| 1903 | 144.2
(avg head to tail distance) Std 103 | 11.1 191 | 161 | 129 | 115 | 185 | 157
HDANGMIN Mean | - - -37 - -99 - - -

131 131 110 120 126 109
(min absolute head to centroid angle) Std 3511 385 | 961 | 549 | 686 | 566 | 41.7 | 62.6
HDANGMAX Mean | 130.4] 129.5| 64.7 | 122.3| 1044 113.1} 1222 106.5
(max absolute head to centroid angle) Std 35.1 | 30.2 90.7 | 47.7 67.3 56.4 504 | 622
HDANGAVG Mean | -3.1 | 04 13.7 | 87 03 1.7 | -1.9 | 3.0
(avg absolute head to centroid angle) Std 299 | 305 | 796 | 41.0 | 589 | 494 | 422 | 522
TLANGMIN Mean | - - -49 - - - - -

131 132 117 102 115 126 112
(min absolute tail to centroid angle) Std 279 | 330 | 914 | 538 | 686 | S51.5 | 479 | 57.0
TLANGMAX Mean | 131.7| 1249 | -53 | 1092 994 | 114.1| 1253} 1014
(max absolute tail to centroid angle) Std 365 | 412 | 970 [ 56.6 | 69.7 | S3.0 | 433 | 63.2
TLANGAVG Mean | 4.8 -32 | -29 -10 -2.7 1.9 1.8 -5.8
(avg absolute tail to centroid angle) Std 30.8 | 339 | 8.5 | 473 | 558 | 451 | 362 | 526
REVSALD Mean | 0.2 0.3 0.6 0.2 0.2 0.2 0.1 0.2
(total reversal distance) Std 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
REVSALTIM Mean | 0.2 0.4 0.7 0.3 0.3 0.3 0.2 0.3
(total percentage of time stay in reversal) Std 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.2
HDMVHFMIN Mean | 0.9 0.4 0.2 0.2 0.5 0.5 0.4 0.2
(min local head move in 0.5 sec or 1 frame) Std 0.7 0.6 0.2 0.1 0.3 04 0.4 0.2
HDMVHFMAX Mean | 87.9 | 79.6 | 31.2 | 308 | 38.1 | 50.7 | 51.2 | 31.0
{max head move in 0.5 sec or 1 frame) Std 301 | 136 | 9.7 11.0 104 | 204 15.0 104
HDMVHFAVG Mean | 235 [ 23.1 | 75 7.1 103 | 129 | 116 | 7.3
(avg local head move in 0.5 sec or 1 frame) Std 4.9 59 24 1.8 2.6 4.2 35 2.0
HDMVI10MIN Mean | 4.5 35 2.1 3.7 4.4 6.4 4.8 5.1
(min local head move in 10 seconds) Std 25 4.0 1.7 25 32 55 3.6 39
HDMVIOMAX Mean | 2202} 18561 77.1 | 1233 | 119.1 | 144.1| 161.0( 111.7
(max local head move in 10 seconds) Std 48.1 | 338 | 29.0 | 49.0 | 36.0 | 381 | 41.3 | 44.1
HDMV10AVG Mean| 59.9 | 60.9 | 245 | 37.0 | 40.0 | 51.8 | 52.1 | 36.6
(avg local head move in 10 seconds) Std 139 | 167 | 7.5 9.9 108 | 16.1 122 | 93
HDMV20MIN Mean | 8.1 7.4 3.5 7.2 7.9 103 | 95 10.4
(min local head move in 20 seconds) Std 4.7 72 25 5.0 6.1 7.6 6.7 9.3
HDMV20MAX Mean | 236.2| 199.6 | 82.1 | 1479 | 148.1 | 167.9| 2023 | 130.8
(max local head move in 20 seconds) Std 42,7 | 36.6 | 31.6 | 474 | 41.7 | 47.1 500 | 435
HDMV20AVG Mean | 839 | 833 | 29.0 | 51.3 | 551 | 71.5 | 73.8 | 50.8
(avg local head move in 20 seconds) Std 19.8 | 236 { 88 13.6 16.7 | 246 19.9 15.1
HDMV30MIN Mean | 12.1 | 13.0 | 5.1 108 | 1.6 | 172 | 152 | 13.7
(min local head move in 30 seconds) Std 7.7 147 | 34 7.1 8.7 13.1 110 | 97
HDMV30MAX Mean | 244.5| 209.0| 849 | 1714} 1644 1850} 2239 137.7
(max local head move in 30 seconds) Std 41.0 | 35.1 334 | 464 | 444 | 463 509 | 512
HDMV30AVG Mean| 10141 99.1 | 322 | 644 | 669 | 859 | 91.9 | 59.7
(avg local head move in 30 seconds) Std 248 | 294 | 9.7 19.2 | 21.1 28.7 | 249 | 207
HDMV40MIN Mean| 188 | 16.7 | 6.4 156 | 142 | 269 | 18.8 | 20.6
(min local head move in 40 seconds) Std 146 | 194 | 37 112 | 131 | 234 | 16.1 17.8
HDMV40MAX Mean | 2534 2088 | 84.3 | 177.7| 170.6 | 192.6 | 229.5( 147.2
(max local head move in 40 seconds) Std 390 | 341 | 343 | 488 | 474 | 457 | 520 | 49.7
HDMV40AVG Mean | 1184| 107.7| 33.6 | 744 | 752 | 99.1 107.6 | 71.2
(avg local head move in 40 seconds) Std 274 | 314 | 117 | 216 | 247 | 33.6 | 314 | 252
HDMVSOMIN Mean | 24.1 | 252 | 7.6 21.0 | 21.1 | 28.8 | 26.6 | 25.0
(min local head move in 50 seconds) Std 192 | 209 | 4.6 168 | 15.0 | 23.7 | 27.0 | 203
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | wuc2
HDMVS50MAX Mean | 2542 206.8| 84.7 | 182.1 | 1743 | 197.7| 239.0} 160.8
(max local head move in 50 seconds) Std 364 | 36.1 345 478 | 499 | 499 | 555 | 527
HDMVS50AVG Mean | 128.5| 116.5] 36.5 | 84.1 | 84.0 | 1050 117.9| 79.8
(avg local head move in 50 seconds) Std 313 | 328 | 122 | 260 | 29.7 | 32.7 | 379 | 301
TLMVHFMIN Mean | 04 0.3 0.0 0.2 0.1 0.2 0.2 0.1
(min local tail move in 0.5 sec or 1 frame) Std 03 0.4 0.0 0.1 0.1 0.2 0.2 0.1
TLMVHFMAX Mean | 79.3 | 81.0 [ 188 | 30.8 | 31.8 [ 40.1 | 45.7 | 255
(max tail move in 0.5 sec or 1 frame) Std 255 | 11.0 130 | 98 9.1 14.8 144 | 105
TLMVHFAVG Mean | 149 | 212 | 3.0 6.3 6.6 9.1 9.1 4.7
(avg local tail move in 0.5 sec or 1 frame) Std 3.6 5.8 1.0 1.6 23 3.7 31 14
TLMV10MIN Mean | 3.4 34 0.8 24 29 53 3.5 28
(min local tail move in 10 seconds) Std 1.8 38 0.6 1.6 2.6 4.6 24 23
TLMV10MAX Mecan | 218.1| 1785 37.6 | 129.1 | 110.8 | 1314 160.9( 1159
(max local tail move in 10 seconds) Std 53.9 | 315 | 243 | 46.6 | 384 | 389 | 442 | 447
TLMV10AVG Mean | 53.1 | 578 [ 99 335 | 326 | 449 | 466 | 292
(avg local tail move in 10 seconds) Std 144 | 17.0 | 3.6 8.0 12.1 15.7 13.5 11.1
TLMV20MIN Mean | 6.5 7.4 1.6 6.1 5.7 11.9 | 8.6 6.1
(min local tail move in 20 seconds) Std 4.5 7.9 1.4 43 4.4 113 | 6.6 5.3
TLMV20MAX Mean | 234.7( 194.7| 40.7 | 150.7{ 132.1 | 157.9 | 187.7{ 133.3
(max local tail move in 20 seconds) Std 48.1 | 338 | 273 | 453 | 422 | 436 | 472 | 436
TLMV20AVG Mean | 789 | 78.8 | 124 | 484 | 464 | 653 | 68.6 | 444
(avg local tail move in 20 seconds) Std 21.0 | 249 4.5 13.1 18.0 25.2 20.8 16.8
TLMV30MIN Mean | 109 | 138 [ 2.2 9.6 8.6 17.5 | 11.5 | 9.2
(min local tail move in 30 seconds) Std 9.7 173 1.5 74 6.4 163 | 93 8.6
TLMV30MAX Mean | 2439 201.6 | 41.3 | 172.1| 146.5| 171.9! 209.7| 144.6
(max local tail move in 30 seconds) Std 425 | 341 | 306 ) 464 | 454 | 452 | 562 | 46.8
TLMV30AVG Mean | 982 | 940 | 134 | 622 | 57.1 | 78.0 | 858 | 56.2
(avg local tail move in 30 seconds) Std 26.5 | 292 | 51 188 | 21.5 | 30.0 | 26.0 | 21.8
TLMV40MIN Mean | 168 | 183 | 2.7 129 | 13.0 | 251 | 193 | 172
(min local tail move in 40 seconds) Std 107 | 205 | 1.8 120 | 11.8 | 23.1 162 | 184
TLMV40MAX Mean | 253.5] 201.6 [ 42.7 | 1813} 1593 | 1774 | 2198 153.8
(max local tail move in 40 seconds) Std 399 | 334 | 312 | 448 47.2 51.2 56.5 | 495
TLMV40AVG Mean | 115.0| 103.5| 148 | 740 | 672 | 90.2 | 1004 | 66.8
(avg local tail move in 40 seconds) Std 283 | 316 | 6.2 238 | 249 | 345 | 304 | 273

Continued on next page
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Variable Stat. | wild | goal | nicl | uc36 | uc38 | uc29 | egl9 | uc2
TLMVSOMIN Mean | 24.7 | 248 | 3.7 17.8 | 164 | 309 | 276 | 254
(min local tail move in 50 seconds) Std 188 | 243 | 25 160 | 11.6 | 213 | 247 | 24.1
TLMV50MAX Mean | 2563 | 199.9 | 422 | 184.6 | 159.6 | 179.5] 2264 | 147.4
(max local tail move in 50 seconds) Std 382 | 331 | 334 442 | 480 | 524 | 522 | 494
TLMV50AVG Mean | 1263 110.1 [ 160 | 82.6 | 743 | 968 | 1119 755
(avg local tail move in 50 seconds) Std 31.8 | 328 7.4 254 | 26.1 34.1 373 | 326
HTMVRMIN Mean | 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2
(min total local head move/tail movement) Std 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0
HTMVRMAX Mean| 234 | 189 [ 146 | 11.1 | 142 | 149 | 13.0 | 128
(max total local head move/tail movement) Std 6.6 7.7 4.2 4.0 31 43 39 4.0
HTMVRAVG Mean | 2.5 1.6 2.8 1.5 2.2 2.0 1.7 2.0
(avg total local head move/tail movement) Std 0.3 0.2 0.4 0.2 04 0.3 0.2 0.3
HDHFTOTMV Mean | 13219] 12844 4326 | 3389 | 4676 | 5148 | 6049 | 2756
(total local head move) Std 2845 3295 | 15251 837 1170 | 1607 | 1631 | 850
TLHFTOTMV Mean | 8379 { 11730} 1738 | 3024 | 2971 | 3652 | 4747 | 1752
(total local tail move) Std 1931 | 3174 | 621 | 817 1016 | 1349 | 1338 | 556
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