w
 (xinnen $+2$
 5
$\sqrt{2}+2$
-

7

.

$+$
cery
.
\square -

-
$=$

$$
1
$$

\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1725

Model-Building Using X-ray Data With Coot

Paul Emsley
MRC Laboratory of Molecular Biology Jan 2017

Modelling Proteins with Coot

About this presentation:

- (Quite) New tools
- "Bonbons pour les yeux"
- Backrub Rotamers
- Ligands

- N -linked carbohydrates
- cis-peptides
- pdf available if needed

Acknowldegments, Collaborators

Bernhard
Lohkamp

Kevin
Cowtan

Eugene
Krissinel

Stuart
McNicholas

Martin Noble

Alexei Vagin

A Brief History of Coot

- Released in 2004, Coot was designed primarily for model-building protein models into maps from x-ray data
- Torsions: Rotamers, Ramachandran plots
- Several optimisers, including Real Space Refinement
- Used typically after automated model-building or refinement
- Since:
- Nucleic Acids, Ligands \& Cryo-EM
- It's never been pretty...
- Not the best tool for presentation graphics and animations

Coot Key-bindings

- Many hundreds of functions available in Coot's API
- available via scheme or python
- Coot's gui doesn't help much to learn key-bindings
- they are "off" by default
- so that you can program your own
- If you are more than a casual/occasional users of Coot... are probably worth learning

Making Density Slides with Coot

- White background
- "High" Oversampling (2.3x)
- Pale gray (or very pastel) density colour
- Enable Cut-glass mode 5-10\%
- Anti-aliased Coot
- \$ setenv __GL_FSAA_MODE 5
- 0.8 .3 will do a better job of anti-aliasing out the box

Example Density Slide

Feature Integration

Refinement

Validation, Model Building and Refinement should be used together

Real Space Refinement

- Major Feature of Coot
- Gradient-based minimiser (BFGS derivative)
- Geometry library is the standard CIF-based Refmac dictionary
- Minimise deviations in bond length, angles, torsions, planes, chiral volume, non-bonded contacts
- Including links and modifications
- Provides"interactive" refinement
- Subject to substantial extension

Peptide Backbone Geometry

Low Resolution Model-Building

- "Backrub" rotamers

Rotamer Searching

- Two methods
- Traditional
- Backrub

Cosemindow Resolution Rotamer Search

Davis et al. (2006) Structure

New Low Resolution Rotamer Search

After Fitting Tools in KING/Molprobity

Ligands

2D Ligand Builder

- Free sketch
- SBase search

2D Sketcher

- Structural Alerts

- On the fly ROMol creation
- Check vs. vector of SMARTS
- (from Biscu-it)
- And user-defined (python variable) list

QED Score

Quantitative Evaluation of Drug-likeness

ARTICLES

nature chemistry

Quantifying the chemical beauty of drugs

G. Richard Bickerton¹, Gaia V. Paolini², Jérémy Besnard', Sorel Muresan³ and Andrew L. Hopkins ${ }^{1 *}$

Drug-likeness is a key consideration when selecting compounds during the early stages of drug discovery. However, evaluation of drug-likeness in absolute terms does not reflect adequately the whole spectrum of compound quality. More encroachment of rule-compliant compounds towards their boundaries. We propose a measure of drug-likeness based on the concept of desirability called the quantitative estimate of drug-likeness (QED). The empirical rationale of QED reflect
the underlying the underlying distribution of molecular properties. QED is intuitive, transparent, straightforward to implement in man
practical settings and allows compounds to be ranked by their relative merit. We extended the utility of QED by applyin it to the problem of molecular target druggability assessment by prioritizing a large set of published bioactive compounds. The measure may also capture the abstract notion of aesthetics in medicinal chemistry.

NATURE CHEMISTR

ARTICLES

deign ${ }^{1728}$, prioritization of molecular targets, penetration of the central nervous sysem ${ }^{19}$ and estimating the reliability of screning data ${ }^{20}$. The concept was introduced originally by Harrington ${ }^{15}$ in
the area of process engineering and further refined by Derringer the area of process engineering and further refined by Derringe
and Suich ${ }^{2}$! Desirability takes multiple nummerical or categorical parameters measured on different scale and describes each by a individual desirability function. These ane then integrated into a
single dimensionless score. In the case of compounds, a series of single dimensionless score. In the case of compounds, a series of
desirability functions (d) are derived, each of whid correspond to a different molecular descoiptor. Combining the individual desir
hyown in hown in Fig. 1 over the same range. The gencral ADS function is
shown in equation (2), whece $d(x)$ is the desiability function fo shown in equation (2), where $d(x)$ is the desirability function for
molecular descriptor x
$d(x)=d$

Bickerton et al (2012) Nature Chemistry

2D Sketcher

- QED score

Silicos-it's Biscu-it ${ }^{\text {TM }}$

Look up the function with PyModule_GetDict() and
PyModule_Getltem()

Ligand Utils

- "Fetch Molecule"
- Uses network connection to Wikipedia
- Get comp-id ligand-description from PDBe
- downloads and reads (e.g.) AAA.cif
- (extracted from chemical component library)
- Drag and drop
- Uses network connection to get URLs
- or file-system files
- pyrogen
- restraints generation

Using "Yesterday's" Ligand

Common subgraph isomorphism, Krissinel \& Henrick (2004)

- Atom name matching
- Torsion matching
- Ligand overlay

Generating Conformers

- Using restraint information...

REFMAC Monomer Library chem_comp_bond

loop_
_chem_comp_bond.comp_id
_chem_comp_bond.atom_id_1
_chem_comp_bond.atom_id_2
_chem_comp_bond.type
_chem_comp_bond.value_dist
_chem_comp_bond.value_dist_esd

ALA	N	H	single	0.860	0.020
ALA	N	CA	single	1.458	0.019
ALA	CA	HA	single	0.980	0.020
ALA	CA	CB	single	1.521	0.020
ALA	CB	HB1	single	0.960	0.020
ALA	CB	HB2	single	0.960	0.020

REFMAC Monomer Library chem_comp_tor

```
loop_
_chem_comp_tor.comp_id
_chem_comp_tor.id
_chem_comp_tor.atom_id_1
_chem_comp_tor.atom_id_2
_chem_comp_tor.atom_id_3
_chem_comp_tor.atom_id_4
_chem_comp_tor.value_angle
_chem_comp_tor.value_angle_esd
_chem_comp_tor.period
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ADP & var_1 & 02A & PA & 03A & PB & 60.005 & 20.000 & 1 \\
\hline ADP & var 2 & PA & 03A & PB & 01B & 59.979 & 20.000 & 1 \\
\hline ADP & var_3 & 02A & PA & "05'" & "C5'" & -59.942 & 20.000 & 1 \\
\hline ADP & var_4 & PA & "05'" & "C5'" & "C4'" & 179.996 & 20.000 & 1 \\
\hline ADP & var_5 & "05'" & "C5'" & "C4'" & "C3'" & 176.858 & 20.000 & 3 \\
\hline ADP & var 6 & "C5'" & "C4'" & "04'" & "C1'" & 150.000 & 20.000 & 1 \\
\hline ADP & var 7 & "C5'" & "C4'" & "C3'" & "C2'" & -150.000 & 20.000 & 3 \\
\hline
\end{tabular}
```


Ligand Torsionable Angle Probability from CIF file

Conformer Generation

Non-Hydrogen Non-CONST Non-Ring

Fitting Ligands

Ligand Site

Cocktail Examples

Orienting the Ligand

Orienting the Ligand

Ligand Validation

- Mogul plugin in Coot
- Run mogul, graphical display of results
- Update restraints (target and esds for bonds and angles)
- CSD data not so great for plane, chiral and torsion restraints
- (not by me, anyway)

Example Coot Ligand Distortion Score

Mogul Results Representation

Coot 0.8-pre EL (revision 5090)
File Edit Calculate Draw Measures Validate HID About Extensions Ligand E R Reset View 名 Display Manager ๑ \& \& Ligand Builder © Sphere Refine
z_{\varnothing}

| Percentile relative to all x-ray structures
ПPercentile relative to x-ray structures of similar resolution

Bad RSRZ 0.573
Residue A 676 XNM:
Mogul-based Bond Outlier CAG, CAH, z $=-5.11$
Mogul-based Bond Outlier CAL,NAK, z $=-2.45$
Mogul-based Bond Outlier CAV,NAW, $z=2.64$
Mogul-based Bond Outlier CBC,NBB, $z=-16.67$
Mogul-based Angle Outlier CAF, CAG, CAD, z $=2.16$
Mogul-based Angle Outlier CAG, CAH,NAI, z $=2.97$
Mogul-based Angle Outlier CAH,NAI, CAJ, z = 7.12
Mogul-based Angle Outlier NAR, CAJ,NAI, z $=-9.85$
Mogul-based Angle Outlier CAP, CAQ,NAR, $z=-4.47$
Mogul-based Angle Outlier CAQ,NAR, CAJ, z $=10.16$
Mogul-based Angle Outlier OAO, CAV,NAW, $z=-2.68$
Mogul-based Angle Outlier CAU, CAV,NAW, $z=2.96$
Mogul-based Angle Outlier CBC,NBB, CAY, z $=2.70$
Mogul-based Angle Outlier CBC,NBB, CBA, z $=4.48$
Clash atom HAQ score: 1.10
Clash atom HAQ score: 0.53
Clash atom CAZ score: 0.88
Clash atom CAJ score: 0.56
Clash atom CAN score: 0.92
Clash atom HAN score: 1.08

Ligand Represenation

- Bond orders (from dictionary restraints)

Chiral Centre Inversion

Inverted chiral centre refinement pathology detection

Hydrogen tunnelling

Chemical Features

Uses built-in FeatureFactory

Conserved Pharmacophores

- Acedrg:
- Structural database is the Crystallography Online Database
- Bond and angle table generation
- Use tables to generate dictionaries
- Given a molecular description (input MDL mol, mol2, SMILES)
- Fei Long (Murshudov Group)
- Pyrogen:
- Based on:
- Refmac Monomer Library Base Tables
- MMFF94s Forcefield
- CCDC Mogul
- Available with Coot

Ligand Environment Layout

- 2d Ligand pocket layout (ligplot, poseview)

Can we do better? - Interactivity?

Ligand Environment Layout

- Binding pocket residues
- Interactions
- Substitution contour
- Solvent accessibility halos
- Solvent exclusion by ligand

Solvent Exposure

- Identification of solvent accessible atoms

Ligand Enviroment Layout

- Considerations
- 2D placement and distances should reflect 3D metrics (as much as possible)
- H-bonded residues should be close the atoms to which they are bonded
- Residues should not overlap the ligand
- Residues should not overlap each other
- c.f. Clark \& Labute (2007)

Layout Energy Terms

$$
\begin{aligned}
E= & \sum \sum w_{i j}\left(d_{i j}^{2}-D_{i j}^{2}\right)+ \\
& \sum \sum \exp \left(-\frac{1}{2} d_{i j}^{2}\right)+ \\
& \sum \sum\left(d_{i k}^{2}-D_{i k}^{2}\right)+ \\
& \sum \sum \exp \left(-\frac{1}{2} d_{i k}^{2}\right)
\end{aligned}
$$

Residues match 3D Distances

Residues don't overlay each other

Residues are close to H -bonding ligand atoms

Residues don't overlap ligand

"Don't overlap the ligand"

Ligand Environment Layout

- Initial residue placement

Ligand Environment Layout

- Residue position minimisation

Determination of the Substitution Contour

How far can we go (in the direction of the hydrogens) before hitting atoms of the protein?

Substitution Contour: Extending along Hydrogens

Riding Hydrogens

Torsionable Hydrogens
(test multiple directions)

Layout Examples

File Help

Scoring Protein-Ligand Complexes

- Score all PDB protein-ligand complexes
- No covalent link to protein
- No alt confs
- Hetgroups with more than 6 atoms
- Score:
- Correlation of maps: omit vs calculated
- around the ligand
- Mogul distortion
- Z-worst
- Clash-score
- c.f. Molprobity tool

Assessing Ligand Geometry Accuracy

- CSD's Mogul
- Knowledge-base of geometric parameters based on the CSD
- Can be run as a "batch job"
- Mean, median, mode, quartiles, Z-scores.

Score Histograms

- Density Correlations
- Mogul z-score
- \# Bumps/ligand

Resolution dependence of Density Correlation

Resolutions Low -> $2.3 \AA$

Resolutions 2.3 -> $1.7 \AA$

Resolutions 1.7 -> $1.2 \AA$

Overall Histogram of Mogul Z-worst of wwPDB Ligands

Histogram of Mogul Z-worst

Resolution Dependence of Mogul Z-worst

Resolutions 2.3 -> $1.7 \AA$

Resolutions 1.7 -> $1.2 \AA$

Histogram of Bad Contacts

Histogram of Bumps

Ligand Scoring

Preliminary recommendatation...

Histogram of Density Correlations

Scoring Ligands: To Be Better Than The Median:

- 1 or 0 bumps
- Mogul z(worst) < 6.3
- Density correlation > 0.88

Histogram of Density Correlations

Sliders

or

Yes/No?

Ligand Validation Sliders

Coot Ligand Validation Metrics Screenshot

Problematic Glycoproteins

- Crispin, Stuart \& Jones (2007)
- NSB Correspondence
- "one third of entries contain significant errors in carbohydrate stereochemistry..."
- "carbohydrate-specific building and validation tools capable of guiding and construction of biologically relevant stereochemically accurate models should be integrated into popular crystallographic software. Rigorous treatment of the structural biology of glycosylation can only enhance the analysis of glycoproteins and our understanding of their function"
- PDB curators concur
- Also Joosten \& Lűtteke (2017), Agirre et al. (2017)

Problematic Glycosylation

- In the case of carbohydrates, their inherent complexity [and] conformational flexibility [] are causing massive experimental problems which hinder the determination of the exact tertiary structures of these biomolecules
- Engelsen et al. (2014)"Biopolymers"

Carbohydrate Links

Thomas Lütteke (2007)

Validate the Tree: N -linked carbohydrates

Linking Oligosaccharides/Carbohydrates: LO/Carb

- One can fully define carbohydrate structure by the primary structure and a set of torsion angles
- Build complex carbohydrate structure
- from a dictionary of standard links
- and monomers
- torsion-angle refinement
- by simulated annealing

Refinement Progress (NAG-ASN example)

E Reset View 昌 Display Manager $\&$

Problematic Glycosylation

Agirre et al. (2017) The Rocky Road to Automation
Figure 2

Linking Fucose: Fuc- $\alpha 1,3$

- Add a menu item to wrap the command
- add_linked_residue("FUC", "ALPHA1-3")

Added into a new N -linked tree:

- paucimannose

Xyl- $\beta 1,2$

- Xyl - $\beta 1,2$ - Man
- using XYP (beta D xylosepyranose)
- was not in the Refmac Monomer Library list of links
- It has been added and will be available to CCP4 shortly

Building Models "Wrongly" (judging by density)

Good Density

Model built

No Model
False Negative

Poor/Bad density

False Positive

Adding PRIVATEER for Model Validation

- 2016-Coot had no validation for carbohydrate geometry
- (only fit to density was used)
- Now the model is validated (and filtered) by tree
- using the output of PRIVATEER
- both GUI interface and built into the auto-builder
- New Interface
- needs debugging?

cis-Peptides

- What is a cis-peptide?
- Peptide restraints in Coot 2004-2015

cis-Peptides

- A number of paper have been published recently highlighting the unusually large number of cis-peptides in some structures:
- Croll: The rate of cis-trans conformation errors is increasing in lowresolution crystal structures Acta Cryst. (2015). D71, 706-709
- Touw et al.: Detection of trans-cis flips and peptide-plane flips in protein structures Acta Cryst. (2015). D71, 1604-71614

cis-Peptides

trans-peptide

PRO trans-peptide

cis-peptide

PRO cis-peptide

cis-Peptides

trans-peptide with plane restraints

trans-peptide with plane and trans restraints

cis-peptide Representation

Finding Holes

- An implementation of
- Smart, Goodfellow \& Wallace (1993) Biophysics Journal 65, 2455
- Atomic radii from AMBER
- I used
- radii from CCP4 monomer library
- sans simulated annealing

File Edit Calculate Draw Measures Validate HID About Extensions Lidia Test Hole

Acknowledgements

- Kevin Cowtan
- Bernhard Lohkamp
- Eleanor Dodson
- Keith Wilson
- Libraries, dictionaries
- Alexei Vagin, Eugene Krissinel
- Richardsons (Duke)
- Funding
- BBSRC, CCP4 \& MRC

