• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > The consensus synaptic connectome of a whole brain
Albert Cardonanb

Albert Cardona

The consensus synaptic connectome of a whole brain

Group Leader Page

Every brain is unique, yet individuals of the same species share a set of common behaviors. To study this conundrum, you will map the brain wiring diagram of many individuals and extract both the consensus cellular connectome across all of them and the set of each individual’s idiosyncrasies. Mapping the complete synaptic wiring diagram of a whole brain is feasible for relatively small animals, such as the Drosophila larva. In this genetic model organism, each neuron is uniquely identified, presenting a stereotyped morphology and connectivity--to a point--, being recognizable between the left and right brain hemispheres, and across individuals. By using an existing complete reconstruction of the larval brain, and building on prior work from the lab, you will devise supervised methods that exploit the priors--the structure of the neuronal arbors in one individual--to enable the fully automatic segmentation of neuronal arbors in additional individuals from volume electron microscopy. Then, with graph-theoretic methods you will extract the minimum common synaptic wiring diagram across all reconstructed brains, to then study how each brain differs from this consensus and from other individual brains. The identification of what makes each brain unique will not only reveal a potential neural circuit basis for inter-individual differences in behavioral responses, but also indicate which neural circuits are more robust to developmental perturbations.


References

Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A. (2016)
Quantitative neuroanatomy for connectomics in Drosophila.
Elife. 5:e12059.

Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD. (2017)
The complete connectome of a learning and memory centre in an insect brain.
Nature. 548(7666):175-82.

Winding M et al. (2020)
The complete wiring diagram of the Drosophila larval brain.
In preparation.

Primary Sidebar

  • Home
  • About LMB
    • Useful Contacts
    • Building and Facilities
    • LMBees Blog
    • Fast Facts
    • History of the LMB
    • LMB Archive
      • Books
      • Manuscripts & Correspondence
      • Photographs
        • Browse the photo archive
      • Recordings
      • Newspaper Articles Archive
      • Scientific Models
      • Published Research
    • LMB Alumni
      • LMB Alumni List
      • LMB Alumni News
      • Newsletters
      • Share Your Memories
        • Gerry Rubin: Looking Back
        • Behind the Scenes with… Steve Scotcher
      • Photographs from the Archive
      • Seminars & Events
      • Keeping in touch
    • Max Perutz Fund
    • How to Find Us
    • Contact Directory
  • Research
    • Goals and Research Focus
    • Cell Biology
    • Neurobiology
      • Initiative with the Department of Clinical Neurosciences
    • Protein and Nucleic Acid Chemistry
      • Centre for Chemical and Synthetic Biology
    • Structural Studies
    • Technology Transfer
      • History Of Technology Transfer
      • Examples of Recent Technology Transfer Initiatives
    • Scientific Facilities & Support Services
    • Locally Developed Software
    • Scientific Training
      • Electron Microscopy
      • Biophysics Lectures
      • Macromolecular Crystallisation
      • Crystallography Course 2013
      • Statistics Course 2014
      • RNA-seq course 2020
    • Published Research
    • Molecular Immunity Unit
    • Animal Research
      • Why is animal research needed?
      • Alternatives to using Animals in Research
      • Welfare and ethics
      • LMB Research Involving Animals
      • Biological Services Group
      • Concordat on Openness in Animal Research
      • Useful Links
  • Research Groups
    • A to G
    • H to M
    • N to S
    • T to Z
    • Emeritus
    • LMB Fellows
    • Molecular Immunity Unit
  • Students
    • International PhD Programme
      • Programme Overview
      • Projects
      • Student Testimonials
      • Entrance Requirements
      • Overview of admissions
      • Funding
      • How To Apply
      • Key Dates for Applicants
      • FAQs
      • Useful Links
      • How did you hear about us?
      • Contact Us
    • Graduate Student Association
    • Student Placement Scheme
    • Work Experience
  • Recruitment
    • Current Vacancies
    • Postdoctoral Opportunities
    • Students
  • Life at the LMB
    • Working Here
    • LMBees Blog
    • Living Socially
    • Equality and Diversity
    • Group Leader Profiles
    • Women in Science
  • Achievements
    • LMB Nobel Prizes
    • Royal Society Awards
    • EMBO Awards
    • Academy of Medical Sciences
    • Perutz Student Prize
    • Brenner Postdoc Prize
    • Technology Transfer
  • News & Events
    • Insight on Research
    • LMB News
    • LMB In The News
    • LMB Alumni News
    • LMB 365
    • Newspaper Archive
    • Scientific Glossary
    • Scientific Seminars
    • Scientific Training
    • Public Engagement
      • Supporting Education
      • LMB on the Road
      • Events at the LMB
      • Resources
      • LMB Science Stories
      • Contact Us
    • Information for Journalists
    • Photographs

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2022 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us