The LMB has a dedicated NMR facility which is heavily involved in answering structural and biophysical questions that can’t be tackled by other techniques. Day 33 of #LMB365 brings you a two-dimensional projection of an NMR experiment to assign the backbone signals of the plastic eating enzyme PETase in collaboration with Prof. John McGeehan from University of Portsmouth. The aim of this study is to search for scientific solutions to the plastic pollution crisis by improving the efficiency and stability of this novel enzyme.
Image365
LMB 365 – Day 32
Feeding the brain for a day at work at the LMB. Day 32 of #LMB365 shows a selection of treats available in the LMB Restaurant, including the ‘famous’ LMB cheese scones, that have been much loved throughout the decades and are fondly remembered by many LMB alumni. Whenever the LMB has a new chef their ability to make a perfect scone is key to their success!
LMB 365 – Day 31
The LMB’s first, purpose built laboratory was officially handed over on 29 January 1962, and all 43 scientists had moved in by the middle of February. Day 31 of #LMB365 shows the building in 1962, on the ‘new’ Addenbrooke’s site, off Hills Road, Cambridge. The facilities on site were very limited at the time, but there was a ‘shop’ from which you could buy your daily newspaper
LMB 365 – Day 30
A beautiful crisp winter morning today on the Campus @CamBioCampus, with a scattering of snow. Still not enough to deter the LMB’s cyclists on day 30 of #LMB365
LMB 365 – Day 29
Day 29 of #LMB365 is a black and white photo of one of the LMB’s service towers that make up the iconic architecture of the LMB building on the Cambridge Biomedical Campus. This photo was the winner of the 2018 LMB Image Competition and is now proudly displayed in the Director’s office – we’ll bring you more of the winning images over the year
LMB 365 – Day 28
The central nervous system of a larval vinegar fly, Drosophila Melanogaster, is the subject of day 28 of #LMB365. In this image, by Alex Bates in the group of Greg Jefferis in the Neurobiology Division, the larva is expressing a green fluorescent protein in its newly formed neurons, highlighting tracts in which bundles of neurons project together. Tracts can be used as landmarks, by which different neurons and brain regions can be identified