Work from Madan Babu’s group in the LMB’s Structural Studies Division, spearheaded by Charles Ravarani and in collaboration with Alexandre Erkine’s group at Butler University, has for the first time harnessed next generation sequencing and machine learning to develop a high throughput screen to uncover disordered regions of proteins that are functional within cells. Proteins, […]
Insight on Research
Understanding how TRIM21 is regulated during viral infection
During a viral infection, our immune system produces potent antiviral molecules which are hugely important for restoring us to health. However, if made at the wrong time these molecules can be damaging, leading to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. Our antiviral response must therefore be tightly controlled so that we are […]
Reversing a decline in cellular transport in ageing nerve cells
Ageing is characterised by a decline in function at both the cellular and organismal level and is the major risk factor for several neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. One of the key cellular processes that is affected during ageing is the transport system that nerve cells use to deliver components to different locations. […]
Speeding up cargo deliveries in the cell
Cytoplasmic dynein-1, a protein that transports cargos along microtubule tracks throughout the cell, binds to dynactin and cargo adaptor proteins to carry its cargos over long distances. Various cargos use different adaptors to recruit dynein for transport. Until now, it has not been clear whether all cargos recruit dynein in the same way and how […]
Uncovering how alcohol-derived metabolites damage the genome of stem cells
Previous work from KJ Patel’s group in the LMB’s PNAC Division revealed that aldehydes – such as acetaldehyde, a by-product of alcohol metabolism – can damage our DNA. Further research by the group showed that our cells are protected against these toxic aldehydes using a two-tier protection system: enzymes that remove these aldehydes (tier-1) and […]
New machinery for membrane protein insertion
The human genome encodes approximately 5000 membrane-embedded proteins that carry out many essential processes such as cell-to-cell communication, cell adhesion and intracellular trafficking. Almost all of these proteins are assembled at the endoplasmic reticulum (ER) by molecular machines that guide them into the membrane. Because these thousands of membrane proteins are highly diverse in size, […]