• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

Redefining the importance of astrocytes in the brain’s master body clock

Published on 11 January, 2019

Our daily cycle of sleep and wakefulness – our circadian rhythm – is controlled by a central master clock in our brains: the suprachiasmatic nucleus (SCN). Previously, Michael Hastings’ group in the LMB’s Neurobiology Division had demonstrated that astrocytes were not merely the supporting cells that they had been thought to be, but also had […]

Structures of the human GABAA receptor reveal how it functions and could help improve key drugs

Published on 3 January, 2019

Practically all brain functions are controlled through a finely tuned balance of neuronal excitation and inhibition. The main inhibitory neurotransmitter in vertebrates is gamma-aminobutyric acid (GABA). GABA signals through two types of cell surface receptors: GABAA and GABAB, with GABAA receptors mediating millisecond-fast neurotransmission and GABAB receptors mediating slower signalling events. GABAA receptors were the […]

Catching enzymes in the act of making an antibiotic

Published on 13 December, 2018

Enzymes are proteins that accelerate the conversion of substrate molecules into product molecules. Many enzymes accelerate reactions through formation of chemical bonds to their substrates, but the complexes formed this way are difficult to characterise, as they are intrinsically short-lived. In a new study, researchers from Jason Chin’s group in the LMB’s PNAC Division have […]

Making a cell-based factory for polymer synthesis

Published on 6 December, 2018

Researchers in Jason Chin’s group in the LMB’s PNAC Division have for the first time engineered and optimised a ‘stapled’ ribosome that can act as a cell-based factory for synthetic protein polymer synthesis. We are familiar with polymers in everyday life, from nylon to kevlar and plastics.  Polymers are composed of chemical compounds strung together […]

A new tool using genetic code expansion to study circadian rhythms

Published on 29 November, 2018

Circadian rhythms dominate our lives through our daily cycle of sleep and wakefulness. These rhythms are controlled by a master clock in the brain: the suprachiasmatic nucleus (SCN). Studying neuronal cell biology and how the SCN drives behaviour in humans and all animals has been made easier by the development of tools that allow rapid, […]

How replication of DNA is initiated at origins

Published on 16 November, 2018

We each replicate billions of metres of DNA every hour in our dividing cells and it is important that this DNA is replicated accurately. This requires a complex set of machinery called the replisome to unwind the paired strands of DNA allowing different polymerase enzymes to produce new copies. DNA replication is further complicated by […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok